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Abstract
In this paper an expansion method, based on Legendre or any orthogonal polynomials,
is developed to find numerical solutions of two-dimensional linear Fredholm integral
equations. We estimate the error of the method, and present some numerical examples
to demonstrate the accuracy of the method.
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1. Introduction

In recent years, many numerical methods of high accuracy have been developed
for solving integral equations (see, for example, [2, 3, 6, 7, 9]). Much work
has also been done on integro-differential equations (see [1, 4]). A great deal of
this work is concerned with one-dimensional cases; however, methods for treating
two-dimensional integral and integro-differential equations also deserve further
study, as these equations have many applications in physics, mechanics and other
applied sciences.

In this paper we develop expansion methods, based on orthogonal polynomials, for
the numerical solution of two-dimensional linear Fredholm integral equations.

1.1. Legendre polynomials Consider the well-known Legendre polynomials which
are defined by the recursive formula [5]

p0(x)= 1,

p1(x)= x,
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pn+1(x)=
2n + 1
n + 1

xpn(x)−
n

n + 1
pn−1(x), n = 1, 2, . . . . (1.1)

These polynomials are orthogonal on the interval [−1, 1] with respect to the weight
function ω(x)= 1, but they are not orthonormal.

To normalize {pn}, we set (see [3])

p∗n(x)=

√
2n + 1

2
pn(x), n = 0, 1, 2, . . . . (1.2)

Then, to shift {p∗n} to an arbitrary interval [a, b], we set

un(x)=
√
α p∗n(αx − β), n = 0, 1, 2, . . . , (1.3)

where α = 2/(b − a) and β = (b + a)/(b − a).
Therefore {un} is a set of orthonormal polynomials on the interval [a, b] with

respect to the weight function ω(x)= 1.

1.2. Chebyshev polynomials The Chebyshev polynomials are defined by

T0(x)= 1,

T1(x)= x,

Tn+1(x)= 2xTn(x)− Tn−1(x), n = 1, 2, . . . . (1.4)

These polynomials are orthogonal on the interval [−1, 1] with respect to the weight
function ω(x)= 1/

√
1− x2.

Normalization of these polynomials may be done by setting

T ∗0 (x)=
1
√
π

T0(x), T ∗n (x)=

√
2
π

Tn(x), n = 1, 2, . . . . (1.5)

To shift {T ∗n } to the arbitrary interval [a, b], set

un(x)=
√
α T ∗n (αx − β), n = 0, 1, 2, . . . , (1.6)

where α = 2/(b − a) and β = (b + a)/(b − a).
Thus {un} is a set of orthonormal polynomials on the interval [a, b] with respect to

the weight function ω(x)= 1/
√

1− (αx − β)2.

2. Description of the method

In this section, we describe a method for solving bivariate linear Fredholm integral
equations by using Legendre polynomials. For Chebyshev polynomials the method is
similar.
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Consider the integral equation

φ(x, t)−
∫ d

c

∫ b

a
K (x, t, y, z)φ(y, z) dy dz = f (x, t), x ∈ [a, b], t ∈ [c, d]

(2.1)

for which an approximate form is

φN (x, t)−
∫ d

c

∫ b

a
KN (x, t, y, z)φN (y, z) dy dz = fN (x, t), (2.2)

for x ∈ [a, b] and t ∈ [c, d], where φN , KN and fN are approximations of φ, K and
f , respectively.

Assume that {un}
N
n=0 and {vn}

N
n=0 are the sets of Legendre polynomials on the

intervals [a, b] and [c, d], respectively.
One can then write

φN (x, t)=
N∑

i=0

N∑
j=0

Ci j ui (x)v j (t), x ∈ [a, b], t ∈ [c, d], (2.3)

fN (x, t)=
N∑

i=0

N∑
i=0

fi j ui (x)v j (t), x ∈ [a, b], t ∈ [c, d] (2.4)

and

KN (x, t, y, z)=
N∑

i=0

N∑
j=0

N∑
l=0

N∑
m=0

ki jlmui (x)v j (t)ul(y)vm(z),

x, y ∈ [a, b], t, z ∈ [c, d], (2.5)

where the coefficients fi j and ki jlm are determined by

fi j =

∫ d

c

∫ b

a
f (x, t)ui (x)v j (t) dx dt, i, j = 0, 1, . . . , N (2.6)

and

ki jlm =

∫ d

c

∫ b

a

∫ d

c

∫ b

a
K (x, t, y, z)ui (x)v j (t)ul(y)vm(z) dx dt dy dz,

i, j, l, m = 0, 1, . . . , N , (2.7)

while Ci j are unknown coefficients which must be determined.
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Substituting φN (x, t), fN (x, t) and KN (x, t, y, z) from (2.3), (2.4), (2.5) into
(2.2) gives

N∑
i=0

N∑
j=0

Ci j ui (x)v j (t)

−

∫ d

c

∫ b

a

∫ d

c

∫ b

a

{( N∑
i=0

N∑
j=0

N∑
l=0

N∑
m=0

ki jlmui (x)v j (t)ul(y)vm(z)

)

×

( N∑
r=0

N∑
s=0

Crsur (y)vs(z)

)}
dy dz

=

N∑
i=0

N∑
i=0

fi j ui (x)v j (t), (2.8)

and the second term in the left-hand side of the above relation can be simplified to

N∑
i=0

N∑
j=0

N∑
l=0

N∑
m=0

N∑
r=0

N∑
s=0

ki jlmCrsui (x)v j (t)
∫ d

c
vm(z)vs(z)

∫ b

a
ul(y)ur (y) dy dz

=

N∑
i=0

N∑
j=0

N∑
l=0

N∑
m=0

N∑
r=0

N∑
s=0

ki jlmCrsui (x)v j (t)δmsδlr

=

N∑
i=0

N∑
j=0

N∑
l=0

N∑
m=0

ki jlmClmui (x)v j (t). (2.9)

Therefore, by substituting (2.9) into (2.8), we obtain

N∑
i=0

N∑
j=0

{
Ci j −

N∑
l=0

N∑
m=0

ki jlmClm − fi j

}
ui (x)v j (t)= 0, (2.10)

and so

Ci j −

N∑
l=0

N∑
m=0

ki jlmClm − fi j = 0, i, j = 0, 1, . . . , N (2.11)

since both {un}
N
n=0 and {vn}

N
n=0 are sets of basis functions.

Equivalently,

(1− ki j i j )Ci j −

N∑
l=0,l 6=i

N∑
m=0,m 6= j

ki jlmClm = fi j , i, j = 0, 1, . . . , N . (2.12)

By solving this system, we obtain the unknowns Ci j for i, j = 0, 1, . . . , N and,
consequently, the approximate solution φN (x, t) of (2.3).
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3. Error estimation

It is known [3] that an orthogonal basis has the advantage that it guarantees
convergence of the method based on it; in this section we estimate the size of the
error.

For this purpose, we define the error function as

e(x, t)= φ(x, t)− φN (x, t), (3.1)

where φ(x, t) is the exact solution and φN (x, t) is the approximate solution of the
integral equation (2.1).

By substituting φN (x, t) in the integral equation (2.1), we obtain

φN (x, t)−
∫ d

c

∫ b

a
K (x, t, y, z)φN (y, z) dy dz = f (x, t)+ hN (x, t), (3.2)

where hN (x, t) is a perturbation term which can be found by substituting the computed
solution φN (x, t) into the formula

hN (x, t)= φN (x, t)−
∫ d

c

∫ b

a
K (x, t, y, z)φN (y, z) dy dz − f (x, t). (3.3)

We proceed to find an approximation eN (x, t) to the error function e(x, t) in the same
way as we did earlier for the solution of equation (2.2).

By subtracting (3.2) from (2.1) and using (3.1), the error function e(x, t) satisfies
the equation

e(x, t)−
∫ d

c

∫ b

a
K (x, t, y, z)e(y, z) dy dz =−hN (x, t). (3.4)

It should be noted that in order to construct the approximation eN (x, t) to e(x, t),
only the right-hand side of equation (2.1) needs to be recomputed; thus, by solving the
integral equation (3.3), we obtain an estimate for the error function (3.1).

4. Numerical examples

The following examples are given to demonstrate the accuracy of the method that
we have presented.

EXAMPLE 1.

φ(x, t)−
∫ 1

−1

∫ 1

−1
(x sin t + yez)φ(y, z) dy dz = xe−t

+ 4x sin t −
7
3
,

x, t ∈ [−1, 1].

The exact solution is φ(x, t)= xe−t
− 1.

Table 1 shows the absolute error between the approximate solution and the exact
solution at the points (x, t)= (0.25i, 0.25i), for i =−4,−3,−2,−1, 0, 1, 2, 3, 4,
with N = 10.
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TABLE 1. Errors e(x, t) and eN (x, t) for N = 10 at the points (x, t)= (0.25i, 0.25i) i =−4,−3,−2,
−1, 0, 1, 2, 3, 4.

(x, t) e(x, t) eN (x, t)
(−1,−1) 0.7756e–10 0.7743e–10
(−0.75,−0.75) 0.5092e–11 0.5116e–11
(−0.5,−0.5) 0.2756e–11 0.2745e–11
(−0.25,−0.25) 0.1209e–11 0.1208e–11
(0, 0) 0.1000e–18 0.5791e–18
(0.25, 0.25) 0.8407e–12 0.8386e–12
(0.5, 0.5) 0.2003e–11 0.1992e–11
(0.75, 0.75) 0.5596e–11 0.5618e–11
(1, 1) 0.7111e–10 0.7098e–10

TABLE 2. Errors e(x, t) and eN (x, t) for N = 10 at (x, t)= (0.5i, 0.5i) i = 0, 1, 2, 3, 4, 5, 6.

(x, t) e(x, t) eN (x, t)
(0, 0) 0.6112e–13 0.4939e–13
(0.5, 0.5) 0.8982e–10 0.8979e–10
(1, 1) 0.9181e–11 0.9527e–11
(1.5, 1.5) 0.1956e–9 0.1950e–9
(2, 2) 0.2982e–9 0.2976e–9
(2.5, 2.5) 0.2946e–10 0.2804e–10
(3, 3) 0.1233e–9 0.1218e–9

TABLE 3. Errors e(x, t) and eN (x, t) for N = 6 at (x, t)= (0.5i, 0.5 j) i, j = 0, 1, 2.

(x, t) e(x, t) eN (x, t)
(0, 0) 0.133 807e–15 0.134 793e–15
(0, 0.5) 0.133 814e–15 0.133 971e–15
(0, 1) 0.133 798e–15 0.130 633e–15
(0.5, 0) 0.129 039e–7 0.129 168e–7
(0.5, 0.5) 0.229 859e–9 0.229 699e–9
(0.5, 1) 0.145 827e–7 0.145 969e–7
(1, 0) 0.258 079e–7 0.258 336e–7
(1, 0.5) 0.459 718e–9 0.459 398e–9
(1, 1) 0.291 655e–7 0.291 938e–7

EXAMPLE 2.

φ(x, t)−
∫ π

0

∫ π

0
(xy + t z)φ(y, z) dy dz = x sin t −

(
2
3

x +
1
2

t

)
π3,

x, t ∈ [0, π ].

The exact solution is φ(x, t)= x sin t .
Table 2 shows the values of the absolute error at the points (x, t)= (0.5i, 0.5i), for

i = 0, . . . , 6, with N = 10.
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TABLE 4. Errors e(x, t) and eN (x, t) for N = 10 at (x, t)= (0.5i, 0.5 j) i, j = 0, 1, 2.

(x, t) e(x, t) eN (x, t)
(0, 0) 0.4064e–18 0.8438e–15
(0, 0.5) 0.4556e–19 0.2463e–15
(0, 1) 0.6570e–18 0.1846e–14
(0.5, 0) 0.8130e–14 0.7950e–14
(0.5, 0.5) 0.7607e–16 0.1294e–15
(0.5, 1) 0.8804e–14 0.8409e–14
(1, 0) 0.1626e–13 0.1547e–13
(1, 0.5) 0.1522e–15 0.3802e–15
(1, 1) 0.1761e–13 0.1589e–13

EXAMPLE 3.

φ(x, t)−
∫ 1

0

∫ 1

0
(y sin z + 1)φ(y, z) dy dz = x cos t −

1
6

sin(1)(sin(1)+ 3),

x, t ∈ [0, 1].

The exact solution is φ(x, t)= x cos t .
Tables 3 and 4 show the values of the absolute error at the points

(x, t)= (0.5i, 0.5 j), for i, j = 0, 1, 2, with N = 6 and N = 10, respectively.
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