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ON A CERTAIN KIND OF
REDUCIBLE RATIONAL FRACTIONS

MORDECHAI LEWIN

The rational fraction

a> c•> P> <7 positive integers, reduces to a polynomial under

conditions specified in a result of Grosswald who also stated

necessary and sufficient conditions for all the coefficients to

tie nonnegative.

This last result is given a different proof using lemmas

interesting in themselves.

The method of proof is used in order to give necessary and

sufficient conditions for the positive coefficients to be equal

to one. For a < 2pq , a = ap + 3<7 , a, 3 nonnegative

integers, a > 1 , the exact positions of the nonzero

coefficients are established. Also a necessary and sufficient

condition for the number of vanishing coefficients to be minimal

is given.

In a recent paper, Grosswald [2] poses and solves the following

problem.

Let
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322 Mordechai Lewin

where the g., h. are positive integers.

Give necessary and sufficient conditions for f(u) to reduce to a

polynomial in u . Under what conditions will such a polynomial have only

nonnegative coefficients?

Let a, a, p, q , be positive integers; a, p, q fixed and p, q

relatively prime. For the particular case k = 2 , g = opq , g^ = a ,

h^ = p , h = q , it follows from [2, Theorem 1] that f(u) reduces to a

polynomial. Theorem 3 in [2] states necessary and sufficient conditions

for the coefficients to be nonnegative. Corollary 1 in [2] treats the

case a = 1 , and shows that, if the coefficients are all nonnegative, then

all the nonvanishing coefficients are equal to one.

In this note we wish to treat the case a > 1 . We shall then

determine the vanishing coefficients for any expansion for which all the

nonvanishing coefficients are equal to one, without any restriction on a .

We shall start with a few lemmas some of which may have interest of their

own. We shall then give a different proof to a part of Theorem 3 in [2].

This proof will serve as a guide-line to the new results we are going to

establish.

Let n be a positive integer. Put {p, q} = i? . Let Pp(n) denote

the unrestricted number of partitions of n into parts p, q from .??

(see [2, p. 22]). Since R is assumed fixed we shall simply write P{n) .

An integer m is representdble by (p, q) if it is a nonnegative integral

linear combination of p and q . Negative integers are thus not

representable, while zero is representable. Let T be the set of all

representable numbers and let T denote the set of those integers whose

least positive residue modulo pq is in T . Put pq = b ,

ab+a-p-q=D. We have

LEMMA 1. For 0 £ t 2 b we have P(t) = 1 for every t in T .

Proof. Let t € T and 0 5 t 5 b . Put t = xp + yq . Then x 5 q

and y £ p . Suppose that t has a different representation

t = x±p + y^q . Let x > x± . Then y < y± . We have [x-x^p = [y±-y)q

so that q\x - x . This is only possible if x = 0 and x = q .
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Likewise, p\y~. - y implies y = 0 and y. = p , but then the two

representations are not distinct, contradicting our assumption. This

proves Lemma 1.

LEMMA 2. For every nonnegative integer t we have

Pit+b) = Pit) + 1 .

Proof. We have:

Case 1. t f T . Then t < b and hence t + b < 2b . Suppose

t + b has two dis t inc t representations as in Lemma 1. Again we have

q\x - x . Put x - x= mq where m i s some positive integer. Then

x = mq + x , so t h a t 2b>t + b = xp + yq = mb + x.p + yq .

It follows that m = 1 and hence t = x p + yq , a contradiction,

since t was not assumed in T .

Case 2. t € T . Let x be the smallest nonnegative integer for

which there is a representation t = x.p + y q . Let the other

representations be x.p + y .q with x < xo < < x, where X = Pit) .

It should be noted that x. - x. = q and that [y.) is a decreasing

sequence with y. - y. = p . Consider now kb + j . Arranging the

representations by ascending order of the x. starting from the lowest we

get

kb + 3 = * X P + G z - L + P h = ••• = a ^ P + G ^ + P k = ••• •

Since y . + p = y . for i > 1 we get

kb + j = xiP + j / i _ 1 q

for i = 2, 3, ..., n . But then we have an additional representation

(x +q)p + y q yielding n + 1 representations. This proves Lemma 2.

Put £ = kb + j , fe, j > 0 . We have

COROLLARY 1 . p( t ) = Pikb+j) = k + Pij) .

Proof. Apply Lemma 2 in succession.

LEMMA 3. Pib-p-q-t) + Pit) = 1 /o r euerj/ integer t ,
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0 5 t 5 b-p-q .

Proof. I t i s well known that there are exactly (p-l)(q-l)/2

posi t ive integers which are not representable. They a l l are less than or

equal to pq - p - q (see for example [/ , p. 2991) • I t follows that there

are exactly (p-l) (<7~l)/2 integers not exceeding b - p - q which are

representable. Since b - p - q = b ' i s known to be irrepresentable [ / ] ,

i t follows that for every integer t exactly one of the two numbers t

and b' - t i s representable. Applying now Lemma 1 we get Lemma 3.

LEMMA 4. If a € T , then P(a+t) > P{t) for every nonnegative

integer t .

Proof. Suppose P(a+t) < P(t) for some t . Put a = Xb + a ,

t = u£> + g , 0 5 a , B < & . We now have P(a+t) = X + u + P(a+B) ,

P(t) = u + P($) by Lemma 3. By assumption we have

V + P{&) >A + u + P(ct+B) , so that P(B) > X + P(a+8) 2 0 . Since

6 < b , th is implies P(3) = 1 , X = 0 , P(a+6) = 0 . Then a = a and

hence P(a) = 1 . Thus a and 3 are in T and hence so i s a + g ,

so tha t P(a+3) > 0 , a contradiction. This proves the lemma.

We now prove

THEOREM 1 [2, Theorem 3 (a)]. The polynomial

b +(1) g(u) = {l-ucb)[l-ua)/{l-iP){l-u^) , (p, q) = 1 , c * Z

has only nonnegative coefficients if and only if a £ T .

Proof. Let y{t) denote the coefficients of u in g(u) . By

equating the coefficients of the formal expansion of g{u) we obtain

(2) yU) = Pit) - P(t-a) - P(t-bc) + P(t-bc-a)

for every t , with the convention that P vanishes for negative

arguments. Suppose a is not representable. Then clearly a < b .

Choose t = a in (2) so that y(t) = P(a) - P(0) = -1 . The condition

a € T is therefore necessary and we assume it throughout the rest of the

proof.

We may clearly assume p, q > 1 , otherwise the theorem is trivial.

We have

Case 1. t < min(a, be) . Then y(t) = P(t) £ e so that y(t) = 0
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if and only if t \ T .

Case 2. a £ t < be . Then y(t) = Pit) - P(t-a) £ c . Lemma h

implies that y(t) is nonnegative.

Case 3. be £ t < a . Then yit) = Pit) - P{t~ba) = c > 0 , "by Lemma

3.

Case 4. max(a, bo) £ t £ D . Then

y(t) = P(t) - P(t-a) - Pit-be) = a - P(t-a) £ a .

Since t-a 5 D-a < bo , it follows that y(*) is nonnegative.

It is clear that for t > D we have y(£) = 0 so that all the cases

are covered and the theorem is proved.

The four cases in the proof of Theorem 1 will "be made use of at later

stages and will be referred to as Cases 1 to I).

We now have

THEOREM 2. For representable a the polynomial ( l ) has exactly ca

coefficients equal to one, while all the other D + 1 - ca coefficients

are zero, if and only if the following condition is satisfied: c = 1 or

a - p - q is not representable.

Proof. By [2, Corollary 1] , we need only consider a > 1 . Regarding

the various cases in the proof of Theorem 1 we seek necessary and

sufficient conditions for y(t) £ 1 . If a > b , then y{b) = P(b) = 2

and hence a necessary condition is a £ b . For t < a £ b we have

clearly y(t) =0 if and only if t § T , and y(t) = 1 if and only if

t € T . I t is equally clear that for t < b , yit) < 1 .

For b 5 t < bo we consider Case 2 requiring P(t) - P(t-a) £ 1 .

Define ty{t) = Pit) - P(t-a) . The function i/> is periodic with

period b and hence we may assume 0 £ t-a < b . In order that tyit) > 2

it is necessary and sufficient that P(t) = 2 , P(t-a) = 0 . Then

t-a $ T and so t - a = b - p - q - T for some T € T . Put

t = b + T2 . Then, since p{p+T^j = 2 , i t i s necessary and sufficient

that T_ € T . Using t = b + Tp we ar r ive a t

a = p + q + T + T = p + < ? + T ,
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with T = T + T € T .

Case 3 is not applicable. Case It, although easy to prove, need not be
considered because g{u) is known to be a reciprocal polynomial [2].
This completes the proof of Theorem 2.

We now wish to determine the vanishing coefficients of g(u)
satisfying the conditions of Theorem 2. We assume t £ D .

Let a 2 2b . We seek the vanishing coefficients for a > 2b . Cases
1 and 3 need not be considered. Case 2 implies P(t) > P(.t-a) for every
t > a , so that y(.t) > 0 . Considering Case h, let y(t) =0 . Then
P(t-a) = a and hence t-a > be , so that t 2 da+a > D . We now assume
a < 2b .

L e t t = Xb + a , 0 5 a < £ . D e f i n e B. = it I t = Xi+a , 0 5 a < b)

A

for X a nonnegative integer. Let t (. T. if and only if P(a) = 1 .
Consider the following three conditions:

I . t, t - a are in the same class B. ;
A

II- M TQ ;

I I I . t-a Z TQ .

The case e = 1 is solved in [2]. If a > b and bo £ t < bo+a-b , then
applying Case k we have Y(*) = P{t-a) / 0 . We now prove

THEOREM 3. Let a < 2b , a > 1 and let g(u) satisfy the
conditions of Theorem l . Then y(t) = o if and only if the following
hold:

for t < a , t \ T ;

for max(foe, ba+a-b) £ t £ D , condition III holds;

for a £ t < be precisely two of the three conditions I} IIj

III hold.

Proof. For t < a the result is obvious.

Let max(£>e, bc+a-b) £ t £ D . The appropriate case is k, so that

= 0 if and only if P(t-a) = c . Then either t-a € B n n 2\ or
e-1 0
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t-a € B \T . The second possibility is excluded since t 5 D so that

t-a (. T . The converse is derived by the same argument.

Now let a 5 t < be . Consulting Case 2 we have y(t) = 0 if and

only if iKt) = P(£) - P(t-a) = 0 . Since ip(t) is periodic with period

6 , we assume t-a < b . Then P(t-a) is either 0 or 1 and we have

the following cases.

Case A. P(t-a) = 0 . Then P{t) = 0 , so that t < b . It follows

that t and t-a are in the same class and both t and t-a are not

in T . Conditions I and II are therefore satisfied but III is not. The

proof goes of course both ways.

Case B. P(t-a) = 1 . Then P{t) = 1 . This is possible if and only

if for the modified t we have t £ B n T or t € B-,\T0 • Since

t-a € B n T it follows that III holds and either I or II, one of them

excluding the other. This completes the proof of the theorem.

If a < b , we have y(a) = P(a) - 1 = 0 for every representable a

and D-a € T for e > 1 . If a = fc + 6 , 6 $ T , then

y(a) = P{a) - 1 = 0 and again D •• a = (a-l)b - p - q - 6 6 T , for

a > 1 . However we have the following

LEMMA 5. Let a € TQ , b 5 a 2 2b . Then y{t) = 0 if and only if

either t \ T or D-t $ T .

Proof. We may assume a < 2b . Put a = b + T , T € T . The

numbers t and t - a are clearly of different classes, so that I is

not satisfied. We show that for a S t 5 be we have

(3) Pit) - P{t-a) > 0 .

If t and t-a are not in neighbouring classes, then (3) is proved.

Assume t and t-a in neighbouring classes. Let t = kb + 6 ,

0 5 6 < i> . Condition I is not satisfied. We show that t $ T. implies

t-a $ 2"0 • Let t { T Q . Then 6 f T , and t - a = (fe-l)Z? + 6 - T .

Since t € B, , we have t-a € B, , so that 6-x > 0 . 6 - x = a € 2 '

implies 6 = T + a € T , a contradiction, so that 6-x f 7 and hence

t-a f T Q . Thus two of the three conditions I, II, III cannot be satisfied
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and the resu l t follows from Theorem 2.

Summing up we come to the following theorem assuming a

representable .

THEOREM 4. The (p-l)(q-l) vanishing coefficients y(t) of the

expansion into a polynomial for g{u) , with t \ T or D-t $ T , are the

only vanishing coefficients if and only if at least one of the following

conditions is satisfied:

1. c = 1 ;

2. a € T y b 2 a < 2b ;

3 . a > 2& .
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