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Avalanches: a probabilistic approach to modelling
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ABSTRACT. A probabilistic approach to modelling avalanche origin and dynamics is
developed. An avalanche process is considered as a single event. As a basis, the physically
established deterministic models describing the processes of avalanche origin and motion
are used. On the other hand, input data and/or parameters of these models are treated as
random variables. The study is restricted only with respect to the dynamic stage of the ava-
lanche process. It is assumed that the initial volume of snow, entrained into the motion, and
the coefficients of dry and turbulent friction of the avalanche body are random variables.
The other input data are deterministic. Three kinds of distribution laws for random vari-
ables are examined: uniform, normal and exponential. Several hundred numerical tests,
carried out for the selected avalanche path No. 22 in the Khibiny region, Russia, allowed
construction of the distribution functions for the output parameters of the dynamic model.
These parameters are the front velocity, the height and the volume of the avalanche body at
fixed points of the avalanche path. No very strong dependence of distribution functions on
the kind of distribution laws was found. The model and empirical distribution functions are
very close to one another for run-out distances and sufficiently close for depths and volumes

of snow deposits.

INTRODUCTION

A snow avalanche is the result of many complicated physical
processes operating both in the snowpack and during the
gravity-driven motion of the snow masses along the slope.
Traditionally, an avalanche process can be divided into two
stages, namely, origin and motion of the snow avalanche. In
general, modelling of the instability of the snow masses on
the slope and determining their motion along the track are
carried out as separate units. At the same time, it 1s neces-
sary to consider an avalanche process as a single event due
to continuity of the overall process. To be precise, the output
data concerning the problem of stability of snowpack on the
slope are the input data for the models describing the ava-
lanche motion. More specifically, for each unstable volume
of snow initially made available for the motion, all basic
dynamic characteristics of the avalanche are determined.
At the present time, there are a number of deterministic,
physically proven, mathematical models that allow descrip-
tion of the processes of the avalanche origin and motion
(Grigoryan, 1979; Eglit, 1986, 1998; Bozhinskiy and Losev,
1987; Nefed’ev and Bozhinskiy, 1989). However, the parameters
and input data of the models have both a regional and random
nature. In the end, evaluation of the dynamic characteristics
of the avalanche leads in many cases to large scatter of the
output results. For this reason, it is necessary to construct
the probabilistic models for the avalanche process. A random
distribution of snow depth and strength of the snowpack in
the avalanche starting zone leads to corresponding random
distributions of the initial volume of snow that participates
in the motion, and consequently yields random distributions
of the dynamic characteristics of the avalanche, namely,
velocity and depth of avalanche body, run-out distance and
pressure on the protective structures. An approach in which
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parameters and/or input data of the deterministic mathema-
tical model are considered as random variables was applied
to estimate the stress state and stability of the snow cover on
the slope (Bozhinskiy, 1979; Bozhinskiy and Chernouss, 1986;
Chernouss and Fedorenko, 1998). Bozhinskiy (1992, 1994)
obtained the probabilistic estimations of snow-avalanche
and debris-flow velocities using this approach and determi-
nistic analytical formulas for the velocities.

In this paper, a simplified version of a probabilistic model
of snow-avalanche dynamics is developed. An initial volume
of snow participating in the motion is prescribed as a random
variable, which is an input parameter of the dynamic model.
Generally, this volume must be determined by using the
solution of the problem of equilibrium and stability of the
snow cover on a mountain slope.

PROBABIILISTIC MODEL

The deterministic one-dimensional hydraulic model is a
basis for the probabilistic model of the avalanche motion.
This model acts as an operator. The system of the model
equations has the following form. The mass-conservation
equation is
(H), + (HU), = av, (1)
whilst the momentum-conservation equation is
(HU), + (HU?), = gHsin ¥ — (g/2)(H” cos ¥),
— pgH cos U — k(U)|U|. (2)

In Equations (1) and (2) H and U are the depth and velocity
of the avalanche body, respectively, ¥ is the local slope
angle, g, 1s the rate of specific snow volume (per unit area
of the bottom), g is the gravity acceleration, p and k are the
coefficients of dry and turbulent friction, respectively, s is
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the coordinate along the slope and ¢ 1s time. The round
brackets with attached lower index designate partial deriva-
tives with respect to the variable, indicated by this index.
The avalanche density p is assumed constant.

The specific volume of snow masses entrained into the
motion 1s assumed to be proportional to the avalanche
velocity

gy = meUa (3)

where m, 1s the non-dimensional coeflicient of entrainment.

Finally, the snow-cover thickness during the avalanche
motion on the slope diminishes according to

(H); = —qv- (4)

Let us consider the dynamic model, formulated above, as

a probabilistic one, in such a way that the input data and/or

the model parameters are random variables. Because the

distribution laws of these variables are unknown in general,
three kinds of distributions were considered (Ventsel, 1969).

(1) Uniform law, u

fu = (xmax - zmin)ila
Mu = (-Tmax + mmin)/27 Du = (-rmax - xmin)g/127 (5)

where f is the probability density and M and D are the
mathematical expectation and dispersion of the random
variable x, respectively.

(i1) Normal law, n

fo = [27)%0] Lexp|—(z — m)?/(202)],
M, =m;D, = o> (6)
(ii1) Exponential law, e
fo = Aexp[~ A& — Tuin)],
M, = T +1/X; Do = 1/X2, (7)

where A is the parameter of the distribution.

It should be emphasized that the uniform and normal
laws are symmetric, whilst the exponential law is not. Thus,
there is a sufficiently wide scope for description of output
model characteristics. In order to compare the different
distribution laws, it will be assumed that the mathematical
expectations for all distribution laws of the input variables
are equal:

M, = M, = M.. (8)

Tor the dispersion coefficients this condition cannot fully be
observed since

Du = Dn = Dc/Sv (9)

1.e. the dispersion coefficient of the exponential law, because
of its structure, is three times higher than the dispersions of
the uniform and normal laws.

NUMERICAL RESULTS AND DISCUSSION

The above probabilistic model of the snow-avalanche motion
was used to evaluate the dynamic avalanche characteristics
and run-out distance for the avalanche path No. 22 in Khibiny,
Russia. This path is situated on the southern slope of the
Yukspor mountains. It is a bow with west-northwestern—north-
ern exposure. The starting zone has an average inclination of
33°, maximum width of 470 m and an area of 1.87 x10* m>.
The avalanche slope consists of a rocky surface in the upper
part and is covered by moss, lichen and bushes in the lower
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Fig. 1. Longitudinal profile of avalanche path No. 22, Khibiny.
The initial and final avalanche volumes are shown schemati-
cally in conditional units of thickness. sy is the position of the
center of gravity of the initial volume; S, 1s the stop point of the
avalanche front.

part. The average inclination of the run-out zone is 9°, and
the maximum width is 175 m. The longitudinal profile of the
avalanche path is depicted in Figure 1. Avalanche observations
were started here in 1935 after a huge accident. The total num-
ber of registered avalanches is about 90, but only 30 of them
were sufficiently described and analyzed in this paper. Usually,
avalanches occur here a few times per year, and many of them
are artificially triggered by mortar firing. In 1985, an ava-
lanche protection was built in the run-out zone to protect rail
and automobile roads and domestic buildings. The data used
in the work were taken from such previous events.

Two series of numerical experiments were carried out. In
the first series the random variables were the thickness h of the
snow cover, which lost stability in the starting zone (the input
data), and the coefficient k£ of the turbulent friction (the
model parameter). The other model parameters, length and
location of the unstable zone were taken as deterministic. The
ranges of the random variables h and k were prescribed,
respectively, as follows: 0.1 <h <13m and 1 x 0°3<k<
11 10 °. Every range was divided into 10 equal intervals.
Then the model Equations (1-4) were solved numerically.
Thus, for the output model characteristics the square matrix
of 10 x 10 values, corresponding to the intervals of division,
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Fig. 2. Distribution functions of the avalanche front velocity at
the slope point s = 1000 m. Symbols @, o, + correspond to uni-
Jorm, normal and exponential distribution laws, respectively.
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Fg. 3. Histogram of avalanche run-out distance.

was obtained. It was assumed that the random variables h
and k are independent. Thus, the probability of the realiza-
tion of each output model characteristic, corresponding to
the matrix of values, was equal to the product of the probabil-
ities h and k of the corresponding intervals (Ventsel, 1969). For
example, for a uniform distribution, the probability of real-
ization of any element belonging to the matrix of values is
equal to 0.0L. For the two other distributions (normal and
exponential), the probabilities of realization of the matrix
element are different. Thus, for each dynamic characteristic,
the artificial series consisting of 100 terms was constructed.

In the first series of numerical experiments, the value of
dry-friction coefficient p was equal to 0.25. The snow-cover
thickness along the slope was 1m and the coefficient of
entrainment was equal to 0.003. The center of gravity of the
initial released snow mass was situated at the point sy =
200 m on the profile (origin of coordinate is on the top point
of profile; see Fig. 1). According to this set of the model param-
eters, a run-out distance of about 1400 m (along the slope)
was achieved. This point on the profile corresponds to the be-
ginning of the flatter part of the slope. The whole range of
run-out distances was 1000—1400 m. In the numerical compu-
tations, the values of the front velocity, height and volume
(per unit width) of the avalanche body were calculated at
the points s =1000, 1200, 1300 m. At the stop points of the
avalanche front, the location, maximum depth and volume
(per unit width) of the avalanche deposits were determined.

The histograms and distribution functions were con-
structed using the matrix of values of the output model char-
acteristics. The plots of the distribution functions of the front
velocity at the position s = 1000 m are shown in Figure 2. The
curves illustrate a relatively weak influence of the distribution
laws for input data and model parameters on the distribution
function for output data. The maximum difference occurs for
moderate values of the velocity. For large values of the front
velocities, differences are small, and the curves, correspond-
ing to uniform, normal and exponential distribution laws of
h and k, merge into a single curve. Similar results also arise
for the distribution functions of other output characteristics,
namely, the height of the front, the run-out distance, the depth
and the volume of the avalanche deposits.

The three variables (the length [ of snow slab in the
starting zone and the coefficients of dry and turbulent fric-
tion) were taken as random variables during the second series
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Fig. 4. Model and empirical (@) distribution functions of

avalanche run-out distance.

of numerical experiments. The snow-cover thickness in the
rupture zone was prescribed and set equal to the mean value
0.7 m, observed in the field conditions. This was due to a
smaller coefficient of variation (C}, = 0.56) for the thickness
of the ruptured snow slab in comparison with the coefficient
of variation (C) =1.39) for the length of snow slab that was
set in motion. The other deterministic parameters were the
same as in the first series of numerical tests. The uniform
distribution law was assumed for all three random variables
L,k in the ranges: 100 <1< 280m, 020 < p < 045,
25x10 * < k<10 x10 *. Every range was divided into six
equal intervals. Therefore, for the output model characteris-
tics the cubic matrix consisting of 6> = 216 elements was
obtained. Thus, the probability of realization of output char-
acteristics from the matrix of values was set equal to
463 x10 . During the numerical modelling process, the
location of the stop point of the avalanche front, the maxi-
mum depth and the volumes (per unit width) of the ava-
lanche deposits were calculated.

The histogram of the stop points of the avalanche front
(the run-out distance) is depicted in Figure 3. The distribution
1s characterized by positive asymmetry and negative excess.
The modal value is shifted to the left. The model and empirical

1.0 ®

0.8 — L4

0.6 —

F(Hmax)

0.4 —

0.2 — ®

0.0 T I T

Hmax(m)

Fig. 5. Model and empirical (e ) distribution functions for
maximum thickness of avalanche deposits.
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Fig. 6. Model and empirical (@) distribution functions for
volumes ( per unit width) of avalanche deposits.

distribution functions, corresponding to the stop points of the
avalanche front, are shown in Figure 4. The solid and dashed
curves correspond to the three and two random parameters,
respectively. The correlation between model (the solid curve)
and field observations is good, practically over the whole
range of the run-out distance. The exclusion occurs for small
run-out distances, which are not overlapped by the determi-
nistic model of avalanche motion under the assumed set of
parameters. The dashed curve agrees with the field data with-
in the large run-out distances. The maximum avalanche run-
out distance, derived by statistical modelling, was equal to
1387 m, whereas over the whole 50 year period of observations
it was equal to 1373 m. The model and empirical distribution
functions of the maximum depth of avalanche deposits are
given in Figure 5. Here the model curve agrees also with field
data, but in the whole, the calculated values of maximum
depths of the avalanche deposits are about 1m higher. The
model and empirical distribution functions of the volumes
(per unit width) of avalanche deposits are shown in Figure 6.
The model overestimates and underestimates the volumes of
avalanche deposits, respectively, for small and large probabil-
ities close to unit. Thus, on the whole, the probabilistic model,
which uses sufficiently restricted input information, gives
good estimates of avalanche dynamic characteristics.

CONCLUSIONS

The derived probabilistic model of snow-avalanche dynamics
allows calculation of the probability of all dynamic character-
istics of the avalanche body along the prescribed avalanche
path. These characteristics are the velocity and the height of
front, the pressure on any obstacle at any point of slope, the
run-out distance, the maximum depth and the volume (per
unit width) of avalanche deposits. By using these probabilis-
tic estimations, the model provides the possibility of making a
zoning of a territory with regard to the degree of avalanche
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danger. For model calculations, information about approxi-
mate ranges of released snow-slab volumes and several model
parameters (coefficients of friction, and possibly coefficient of
snow entrainment) is needed. As shown in this paper, and
also before (Bozhinskiy, 1992), the influence of the distribu-
tion laws for the input data and model parameters on the dis-
tribution function of the output model characteristics,
especially near large, rather rare values, is relatively weak.
Thus, the uniform (or normal) distribution law can be
assumed for the input data and model parameters. The num-
ber of random input variables may be extended, but in this
case the volume of the matrix of values for the output model
characteristics will strongly increase.

Further advance in the development of the probabilistic
models describing the origin and motion of snow avalanche
1s connected with the solution of a conjugate problem. The
problem of determination of the stress state in the snow cover
on the slope, and, correspondingly, of initial volume of snow
entrained into the motion, must be matched with the dynamic
problem.

ACKNOWLEDGEMENT

This paper was financially supported by the Russian Fund of
Basic Researches, grant Nos. 99-05-65166 and 00-15-98502.

REFERENCES

Bozhinskiy, A. N.1979. O veroyatnostnykh kriteriyakh obrusheniya snezhnykh
lavin [On the probabilistic criteria of snow avalanche formation]. Mater
Glyatsiol. Issled. 36,107—112. [In Russian.]

Bozhinskiy, A. N.1992. K postroeniyu funktsiy raspredeleniya dynamicheskikh
parametrov lavin [On construction of distribution functions for avalanche
dynamic parameters]. Vestn. Mosk. Univ., Ser. 5. Geogr., 1992(5), 77-83. [In
Russian]

Bozhinskiy, A. N. 1994. Veroyatnostnaya otsenka dynamicheskikh parametrov
selevykh potokov [Probabilistic evaluation of dynamic characteristics of
debris flows]. Vestn. Mosk. Univ. Ser. 5. Geogr., 1994(5), 28-31. [In Russian,]

Bozhinskiy, A. N. and P. A. Chernouss. 1986. Veroyatnostnaya model’ ustoy-
chivosti snega na sklonakh gor [Probability model of snow stability on
mountain slopes]. Mater. Glyatsiol. Issled. 55, 53—60. [In Russian with
English summary]

Bozhinskiy, A. N. and K. S. Losev. 1987. Osnovy lavinovedeniya [ Fundamentals of
avalanche science |. Leningrad, Gidrometeoizdat. [In Russian with English
table of contents.] (Translated by C. Bartelt, SFISAR Special Report.)

Chernouss, P.A. and Yu.V. Fedorenko. 1998. Probabilistic evaluation of
snow-slab stability on mountain slopes. Ann. Glaciol., 26, 303—-306.

Eglit, M. E. 1986. Neustanovivshiesya dvizheniya v ruslakh ¢ na sklonakh | The
unsteady motion tn chutes and on slopes |. Moscow, Izdatel’stvo Moskovskogo
Universiteta. [In Russian]

Eglit, M. 1998. Mathematical modeling of dense avalanches. /n Hestnes, E.,
ed. 25 Years of Snow Avalanche Research, Voss 12—16 May 1998. Proceedings. Oslo,
Norwegian Geotechnical Institute, 15-18. (NGI Publication 203)

Grigoryan, S. S.1979. Novyi zakon treniya i mekhanizm krupnomasshtabnykh
gornykh obvalov 1 opolzney [A new friction law and mechanism for large-
scale cave-ins and landslides]. Dokl. Akad. Nauk SSSR, 244 (4), 846-849. [In
Russian.] (English translation in Sov. Phys. Dokl., 24,1979,

Nefedev, V. O. and A.N. Bozhinskiy. 1989. Ravnovesie tonkoy vesomoy uprugoy
obopochki na zhestkom osnovanit [ Balance of thin weightable elastic shell on the hard
base]. Dubna, Joint Institute of Nuclear Research. (Report P5-89-694,)
[In Russian.]

Ventsel, E.S. 1969. Teoriya veroyatnostey | The probability theory . Moscow,
Gostechizdat. [In Russian|


https://doi.org/10.3189/172756401781819599

