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1. INTRODUCTION

This paper is concerned with the statistical analysis of experiments in which a
series of doses containing different numbers of particles (typically micro-organisms)
are administered to groups of host organisms, and the proportion of host organisms
infected at each dilution is recorded. Isaacs (1956) has reviewed the general
problem of counting virus particles, including the use of the dilution method.

It is assumed that, for each host, a proportion p of the particles will initiate a
detectable infection and that the particles act independently. The proportion p,
which may be regarded as the probability that a particle chosen at random will be
infective, may vary from host to host. We shall refer to p as the susceptibility of
the host. This model has been proposed by Bald (1937) for the infection of plants
by viruses, by Moran (1954a, 6) for the titration of viruses in eggs, and by Druett
(1952) and Peto (1953) for the infection of animals by bacteria. If p is the same
for each host, the expected proportion of hosts remaining uninfected when in-
oculated at a concentration of A particles per dose is

p c— \r> (i \

We shall refer to this as the exponential model. If the values of A are known (as
they are, approximately, in bacterial invasion), and those of P are estimated by
the observed proportions of uninfected hosts, the dose-response curve (1) can be
fitted, and p estimated, by essentially the same methods as are used in the dilution
method of estimating bacterial counts (Finney, 1952, §21-5). One of many alter-
native methods of obtaining the maximum-likelihood solution is given by Peto.

If, as in most virus titrations, the values of A are unknown but their ratios are
known, the most we can do is to estimate A^, where AQ is the number of particles
at a particular dilution—say, in the undiluted inoculum.

If p varies from host to host, with a distribution whose density function is
f(p) (0 ̂ p ^ 1), the probability that a host is uninfected is

P= e~APf(p)dp. (2)
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The curves formed by P as a function of A, or log A, are flatter, broadly speaking,
than those given by (1). Moran (1954a) has developed this model, assuming a
Type III distribution for p, and shown how to obtain the maximum-likelihood
solution for the unknown parameters. (The Type III distribution is defined over
the range O^p^oo, which is unrealistic since p cannot in fact exceed unity, but if
the mean value of p were very small the model might well be adequate.) Moran
also proposes a rapid test for the tendency of the response curve to be natter than
the exponential curve (1), thus indicating host heterogeneity, i.e. variability in p.
The two papers (1954a, b) provide tables enabling the test to be performed for
titrations with dilution factors of 2, 4, /̂10 and 10.

In the present paper we consider the nature of the departures of the response
curve (2) from the exponential curve (1), and examine the extent to which the
departures caused by particular functions f(p) will be detected by Moran's test.
We also compare the efficiency of Moran's test with that of an alternative test for
heterogeneity.

2. DEPARTURES FROM EXPONENTIALITY

It is convenient to write the expression (2) in the form

> _ g

J-p
P--

-p

where p = the mean value of p in the distribution and h=p—p. Expanding the
function inside the integral we have

\ dh

A2/i2 A3/*3

where /ik is the &th moment of f(p) about the mean. It is now obvious that as the
average number of particles in the inoculum to be tested becomes small (A -> 0),
or as the variation in susceptibility declines, the probability of a sterile culture
becomes more and more closely described by the exponential law.

On the other hand, when the expected number of particles, A, or the variation
in susceptibility becomes large, the discrepancy between the true law and the
exponential increases. The general character of the discrepancy is shown in Figs. 1
and 2 in which (writing In for log to base e) hi (— In P) is plotted against A for
some non-exponential curves (the scale for A being logarithmic).

From a practical point of view it is essential that the departure from the
exponential form should occur in regions where it has a reasonable probability of
being detected. For instance, if discrepancies occur only at dilutions where the
probability of a sterile inoculum is about 1 % or less, they are not likely to be
picked up unless large numbers of experimental units are available.

Returning to the expression (3) giving P in terms of the moments of the dis-
tribution of susceptibility, it can be seen that the optimum conditions for testing
the adequacy of the exponential law depend on the relative values of p, A and the
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moments fik. The latter are bound to be fairly small since p is always less than
unity, and furthermore, for most distributions over the range (0, 1) which are
likely to be encountered in practice, the higher order moments tend to decrease
rapidly so that, as an approximation valid in many cases we can write

P = e - ^ ( l + iA«A). (4)

If p is near to 1, then in the region of P = 0-5, A is approximately 0-7, and as the
value of/^ can never be more than 0-25 and will usually be much less, the correction
term involving /i2 cannot alter the value of P by more than about 10 %.
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Fig. 1 Fig. 2
Fig. 1. Curves showing relation between In (— In P) and (on a logarithmic scale) A, when host
susceptibility follows B-function distributions with means 2/3, 1/2, 1/3. If there were no host
variability the relation would be linear.
Fig. 2. Relation between In (— In P) and (on a logarithmic scale) A, when host susceptibility
follows truncated exponential distributions with various means.

As an illustration consider the case of a ^-distribution having a mean of 0-25
and a mode at 0, its frequency function being

The first two moments about the mean are

Pt = 0-0375,

/<3 = 0-00625,

so that P = e -«^ j1+Ali0_0375)_A-16|0625) +

When A = 3 about 250 observations would be required before the divergence from
the exponential value had an even chance of being detected, and when A = 1 the
difference is so small that it would not be detected in any practicable experiment.
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If the hypothesis of variation in susceptibility of the hosts is correct, and if the
higher moments of the distribution are negligible, then it might be worth using the
approximation to P given by (4) instead of Moran's negative binomial model. The
expression for P may be written

where a is the dilution, y0 is the value of Ap at the highest concentration, and
is the ratio of the standard deviation of p to its mean.

The usual maximum-likelihood procedure will yield estimates of y0 and V, but
the calculations are too clumsy to be of much practical use. It is perhaps worth
noting that this approach throws some light on the information which each dilution
yields about the value of /i2, on the assumption that A and p are known. Differ-
entiating the likelihood function in the usual way it is found that the information
about /i2 at a single level is

_

The information is the reciprocal of the sampling variance of the maximum-
likelihood estimate of /i2. If /*2 is very small this function has a maximum (and
hence the sampling variance has a minimum) at the point where the inoculum
contains about four infective particles, so that the optimum dilution for detecting
small departures from the exponential form is that which gives about 98 % positive
inocula.

A number of different kinds of distribution of susceptibility were investigated
in detail to find out the effect they had in causing deviations from the exponential
law. The two general types of distribution used were, first, jB-functions which give
bell-shaped distributions in the range (0, 1), and, secondly, truncated exponential
curves. The latter bear some resemblance to the F-function considered by Moran
but are more realistic as they provide a group of highly skewed distributions over
the range (0, 1), which can be integrated to give an explicit expression for the pro-
bability of a negative inoculum. On the other hand, the .B-functions cannot be
conveniently integrated and the required probabilities are more easily obtained by
numerical methods. * Examples of the results of this investigation are given in
Fig. 1 for the .B-functions, and in Fig. 2 for the truncated exponentials.

The three .B-functions used to obtain the results shown in Fig. 1 had the general
frequency function

' 1

B (I, m) '

the values of I and m being varied to give: (1) a positively skew, (2) a symmetrical,
and (3) a negatively skew distribution. The values of I and m used, together with

* The exact values can be obtained rather tediously by integration by parts. An alterna-
tive method would have been to express P in terms of the confluent hypergeometric function
(cf. Irwin, 1930); the required values of P for certain values of A can be obtained almost
immediately from published tables of this function, and for other values of A by simple
extension of these tables. The exact values of P agree well with those obtained by numerical
integration.

https://doi.org/10.1017/S0022172400044661 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400044661


Variation in host susceptibility 405

the characteristics of the distributions, are given in Table 1. Numerical integration
of the ^-functions to obtain the probability of negative inocula did not demand
great accuracy, and the method adopted as most simple and satisfactory was the
repeated Simpson formula (Whittaker & Robinson, 1944).

Table 1. Constants of B-functions used to represent distributions
of susceptibility

1
2
3

I
2
3
4

m
4
3
2

Mean
1/3
1/2
2/3

Variance
2/63
1/28
2/63

Table 2. Formulae of truncated exponentials used to represent distributions
of susceptibility, together with some of their characteristics

Negatively Positively
skew skew Rectangular

S(p)dp — — dp zidp dp

Jo

ke-kv

k 1

1

1

1

ek

1 1 1 1 1
1 ^^ p— Jc lc f* 1 2

1 ek 1 ek 1
Variance — — —

It can be seen at once from Fig. 1 that variations in susceptibility of this kind
have little effect on the exponential curve and are not likely to be detected in
practice.

The truncated exponential curves used were of two types, one with a mode at
unity and negatively skew, the other with a mode at zero and positively skew.
Their general formulae and characteristics are given in Table 2. The rectangular
distribution occurs as a degenerate case of these truncated exponentials. In Fig. 2
the relationship between hi (— In P) and A is given for truncated exponential
distributions of susceptibility with various mean values of p. The departures
from the exponential form are more marked than was the case for the bell-shaped
^-distributions, but even here the main departures from exponentiality occur at
very high rates of infection where they are difficult to detect experimentally. On
the whole, discrepancies will not be noticed unless the average susceptibility is low,
p having a value of 0-2-0-1 or less.

The test for detection of host variability given by Moran (1954a) is based on the
quantity

where n experimental units are used at each dilution and rt is the number infected
at the ith dilution. The results of using Moran's test for four-fold series are sum-
marized in Table 3. The data relate only to truncated exponentials, as the test
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would be even less sensitive when applied to the ^-function data. The results were
calculated by assuming that T was normally distributed with variance given by
Moran's formula. It is then possible, using tables of the normal curve, to estimate
how often T will differ significantly from the value given by the exponential law.
The calculations for a four-fold series when the distribution ofp is rectangular may
be taken as an example. If the number of replicates at each dilution is 10, Moran's
(19546) Table 1 gives the expected value of T as 45, with standard deviation 12-04,
so that in this case values of T greater than 45 + (1-65) (12-04) = 64-9 will be judged
significant by a one-sided test at the 5 % level. Now for a rectangular distribution
of susceptibility the expected value of T is 57, and its standard error is 14, so,
assuming T to be normally distributed, the probability that it will exceed 64-9 is
that corresponding to the normal deviate (65-57)/14 = 0-56. From a table of the
normal distribution this probability is found to be 0-29. If the number of replicated
inocula had been 40, the probability would have been 0-63. In general it can be

Table 3. Table showing the probability that dilution series with 10 and 40 inocula at
each level will show significant departures from exponentiality as judged by Moran's
T-test [using the one-sided 5 % significance level). The underlying host susceptibility
follows a truncated exponential distribution with the means shown

Mean

0-05
0-10
0-25
0-46
0-50
0-75

n=\Q

0-48
0-49
0-48
0-33
0-29
0 1 7

n = 4 0

0-92
0-93
0-92
0-72
0-63
0-36

seen from Table 3 that the test is not at all sensitive to statistical variations in
susceptibility of the types considered here unless the average susceptibility is low.

3. AN ALTERNATIVE APPROACH

If X = Xp is the mean number of infective particles per dose given to a particular
host whose susceptibility i&p, the probability of infection for that host is, from (1),

F1(X)=l-e~x. (5)

This is a monotonic function, increasing from 0 to 1 as X ranges from 0 to oo, and
may therefore be regarded as the cumulative distribution function of a random
variate, which will be denoted by x.

Suppose now that p varies from host to host, according to the density function
f(p). Define

F2(p)=\Pf(t)dt, (6)
Jo

as the cumulative distribution of the random variate p.
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By (2), the probability of infection, when p varies in this way, is

(7)= r(l-
Jo

which is the formula for the distribution function of a random variate z = x/p,
where x and p are independent random variates from the distributions F1 and F2,
respectively. It will be convenient to refer to the frequency distribution of z as
the tolerance distribution, as is customary for other forms of quantal response data.

Since z = xjp, where x and p are independent,

log z = log x- log p,

where log x and log p are independent. Hence

where o~fogz is the variance of log z, and so on. Since the variance of log z is related
to the steepness of the cumulative distribution (7) (the curve becoming steeper as
the variance decreases), (8) is a precise formulation of the way in which the response
curve flattens as crfogp increases.

The distribution of log x has been studied by Irwin (1942). From Irwin's equation
(13), we find (taking logarithms to base 10)

<gX = (l°gio e)2
 (TT2/6) = 0-31025. (9)

Hence, from (8), 0W* = V{°twj> + 0-31025}. (10)

The exponential response curve (1) is appropriate if >̂, and therefore log£>, is
the same for all hosts, i.e. if o~fogp = 0. Under these circumstances o~logz = -y/0-31025 =
0-5570. The problem of detecting heterogeneity in p is therefore, from this point of
view, the problem of determining whether or not o~louz is greater than 0-5570, and
one might expect it to be amenable to treatment by standard methods of analysis
of quantal response data. •

4. METHODS OF ESTIMATING cr

Many methods have been proposed for the estimation of the mean or standard
deviation of a tolerance distribution from a series of quantal responses at different
doses (cf. Finney, 1952, chapter 20). Some of these methods assume a particular
type of distribution, such as the normal or logistic. As Irwin (1942) has shown, the
cumulative distribution of log x, when the exponential model holds, is fairly
similar to a normal distribution, and one might expect the random variate
log 2 = log x — log p also to be approximately normally distributed.

One approach, then, might be to regard log z as being approximately normally
distributed, and to use probit analysis, assuming a linear relationship between the
probitof 1 — Pand log A. The standard deviation o~logz would be estimated by the
reciprocal of the slope of the probit line. The expected slope on the exponential
model would depend on the choice of the values of A. Peto (1953) has shown that
the expected slope, as measured by the tangent of the curve when P = 0-5, is 2-00,
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which is fairly near the reciprocal of 0-5570, the value of <rlogz on this model
(1/0-5570=1-80).

Another approach to the estimation of crlogz would be to assume a particular
functional form for f(p) and to estimate the parameters of the distribution by an
efficient method such as maximum likelihood. Moran (1954 a) has given the details
of one such model. However, if the distribution of p is concentrated at one value,
as in the exponential model, the value of Moran's I (the parameter determining
°"iog«) is infinite, and it seems likely that the iterative procedure leading to the
maximum-likelihood solution would frequently not converge.

There is probably a place for a rapid test based on some short-cut method of
estimating <riogz, and Moran's test may be regarded as an example of this approach.
For two-fold dilution series, Moran shows that the expected value of T, on the
exponential model, is n (n—1). (For other dilution factors, see Moran, 19546).
Now, T provides an estimate of <Tlogs, and its properties as an estimator, for small
departures from the exponential model, will be examined in §5. If the response
curve of infection rate against log A had been a cumulative normal distribution, so
that log z were a normal deviate, the expected value of T would have been

-logl02 > " 0-5336

(Van der Waerden, 1940, equation (6)). On the exponential model,

<riogz = <rioex = 0-5570,

and thus from (11), E(T)= 1-044% (n- 1),

which agrees well with Moran's exact expression, n (n—1).
Moran's statistic T does not seem to have been widely discussed as a general

method of estimating the standard deviation of a tolerance distribution, and it is
worth considering whether any other easily calculable statistics have been pro-
posed, which may be more efficient as estimators of erlogz, and therefore more
powerful in detecting heterogeneity in p, than is T. One alternative statistic is
considered in § 5.

5. THE SPEARMAN-KARBER METHOD

This method (for reference to which, see Finney, 1952, §20-6) has often been
advocated for the estimation of the mean of a tolerance distribution, and has been
adapted by Epstein & Churchman (1944) for the estimation of higher moments,
including the variance. Suppose that at the ith. dilution, where the number of
infecting organisms is Ait there are ri infections out of nt, and let <li = ̂ ilni and
£i = log10 A ;̂ then an estimate of the cumulative probability between two adjacent
doses is (qt — qi+1). Hence, the mean of the tolerance distribution may be
estimated by m = s {q._ j w ) ( £ + £.+i) /2,

the summation being over a wide enough range of doses to cover the whole range of
responses from 0 to 100 %. An estimate of the variance, c\ogs, is given by
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where c is a Sheppard's correction term. If, as in most dilution series, the £f are
equally spaced, the logarithm of the dilution factor being d, the estimate of variance
may be calculated as

-Sx-Sl-iz), (12)

k k k

where S1 = 2 qt and 82 = 2 21i- I n the summations the suffixes 0 and k refer to the

highest and lowest 'doses' (i.e. lowest and highest dilutions) respectively. It is
assumed in the derivation of (12) that all dilutions beyond the range used would
have given q = 0 at one extreme and q = 1 at the other. A correction for bias in
s\ogz is given by Cornfield & Mantel (1950), but will usually be too small to be
worth making. The variance of s\ogz is*

var (s\ogz) = 4d* nCt-p)2 PiQiK, (13)

where Qi is the expected infection rate at the ith dilution, Pi=l — Qi, and /i is
the true mean of the tolerance distribution. Now, on the exponential model, the
expression on the right-hand side of (13) varies slightly according to the position of
/i relative to the serial dilutions; but, if the ni are all equal to n, it is always close
to the corresponding integral, which can be shown to be equal to

0-40996d/w. (14)

As a test of the null hypothesis that there is no variability in p, then, we could
fi (g2 — 0-31025)2

calculate —lo^ - and regard this as a x2 variate on 1 degree of freedom.

Since the test based on x is one-sided (being designed to detect values of s\ogz

larger, but not smaller, than its expected value), the tabulated probabilities of x2

should be halved.

Table 4. Data of Parker, quoted by Moran (1954a)

Dilution

1
2- 1

2"2

2- 3

2-"
2-5
2-6

2 - '
2"8

i

0
1
2
3
4
5
6
7
8

No. uninfected
out of 40,

4 0 - rt

0
5
8

15
21
30
32
35
36

Proportions

Uninfected
1 - ^ / 4 0 )

0
0-125
0-200
0-375
0-525
0-750
0-800
0-875
0-900

Infected
qi = ri/4:0

1-000
0-875
0-800
0-625
0-475
0-250
0-200
0-125
0-100
4-450

f^iTVin 1 ci +
\_j Lull Lllct L

sum o
9i

4-450
3-450
2-575
1-775
1-150
0-675
0-425
0-225
0-100

14-825

As an example, the data of Parker, quoted by Moran (1954a), are shown in
Table 4. Following Moran, we adjust the numbers of eggs at the first two dilutions
from 38 and 39, to 40, so as to make the ni equal.

* Cornfield & Mantel erroneously have a factor 2 instead of 4.
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From (12), putting d=logw 2 = 0-30103,

s\ogz = (0-30103)2 (29-6500-4-4500- 19-8025-0-0833)

= 0-48157;

var (s\ogs) = (0-40996) (0-30103)/40

= 0-003086;

X2 = (0-48157 - 0-31025)2/(0-003086) = 9-5 (P = 0-001).

Application of Moran's test gives:

T = 2080, E{T)= 1560, s.E.(T) = 141-6;

{T-E (T)}/s.B.(T) = 3-675;

X2= (3-675)2 = 13-5 (P=0-0001).

The Spearman-Karber method provides an estimate of <r\ogz and therefore (from
(10)) of o\ogp. The estimate of <rfogJ) will be

which, for the example above, gives

with a standard error of ^0-003086 = 0-0556.
To estimate o\ogv from T, we may assume that the response curve, of P against

log A, approximates to a cumulative normal distribution. From (11), an estimate
2

og2of<r2
og2is

which in this example gives
silgz= (0-2847) (1-7778) = 0-5061.

Approximately,

which in this example gives

var (sggz) = (0-3242) (0-09071)2 = 0-002668.

The estimate of afogJ, is, therefore,

«&* = « & . - 0-31025 = 0-1959,
with a standard error of -^0-002668 = 0-0517. The two methods agree well.

6. RELATIVE EFFICIENCIES OF THE TWO TESTS

We now investigate the relative efficiencies of the two tests in detecting hetero-
geneity in p; a more precise indication of what we mean by ' relative efficiency' is
given a little later. Suppose the mean value of p is p. Under the null hypothesis,
the expected proportion of uninfected hosts, at a dose of A particles, is (from (1))

P = e-r, (15)
where y=Ap.
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As an alternative hypothesis, Moran assumes that p follows a Type III distri-
bution, with density function

(16)

where* Moran's 1= 1/F and his a=pV. The mean of the distribution is p and the
ratio of the standard deviation to the mean is *JV. From (2), the expected pro-
portion of uninfected hosts is now

P=(l+yV)-<1^, (17)

which, as would be expected, tends to (15) as V ->• 0.
We shall consider the effect on the expected values of T and s\ogz, for small

departures from the null hypothesis (i.e. for small positive values of F), and for
large n. From (17),

lnP=-(l/F)ln(l+yF),

and 8 l n P - 7 ln(l+yF)
d ~dV~~~V(l+yV) + T2 *

Expanding in powers of V, we findf

and hence

Now, E(T) = n(n-l) S P ^ ~ n2 S?^, - for large n,

, 8 rT1/mu n2Hy2
iPi(l-2Pi) n2Y1y

2
ie-yi{l

whence w{E{T)}r=0 ^ *-> = y-^—£

The result of the summation, for any particular dilution factor, will (as in (13))
vary slightly according to the set of values of yi used; but it will always be close
to the corresponding integral

d J_«, v ' 2d ~ d '

= 0-7213 for 2-fold dilutions, since a = 0-30103.
On the null hypothesis, the variance of T is (cf. Moran, 19546)

~ n3 (ZPiQt - 4 SPf Q2) for large n,

which, as Moran shows, for two-fold dilutions approximates to

n3 {1-4 (0-169925)} =0-3203 n3.

* There seems to be a discrepancy between equations (5) and (6) of Moran (1954a). We
have assumed that his (5) should be written

f(p)=e-*la (p/ay-i/aTil).

t This expression is readily obtained from the approximation (4), in which no particular
functional form for f(p) is assumed, but higher moments than the second are neglected.

27 Hyg. 54, 3
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Hence, R2 (T) = \ ~ {E (7)}T /var (T)

\_cv Jr=o/

~ (0-3607 %2)2/0-3203 n3

= 0-4062 n.
R (T) may be regarded as the rate of change, with respect to 7, of the expectation
of the normally distributed variate, X- Since T is, for large n, asymptotically
normally distributed, R (T) is clearly related to the power of the significance test
based on T in detecting small changes in 7. In fact, to compare the values of n
required, by two alternative tests, to provide the same power (i.e. probability of
yielding a result significant at a given probability level) for small values of 7, we
need merely take the ratio of the two values of R2. This ratio is called the asymptotic
relative efficiency (A.R.E.) of one test in comparison with another. We proceed,
therefore, to obtain the value of R2 for the Spearman-Karber test based on the
statistic sfogz.

We have, from (10),
W(o2 \—cr2 — 0-^109^4- /T2

V Xo&ZI — l O g £ — OA.KJ4O -J- U \Qg p.

Now, for small V, a2
0gp ~ (log10e)2 o%jp2

= 0-1886 7.

Hence E (sfogz)~0-31025 + 0-1886 7,

and -jry {E (sfogz)}r=0 = 0-1886.

From (14), on the null hypothesis that 7 = 0, and for two-fold dilutions,

var (sfogz) = (0-40996) (0-30103)/w

= 0-12341/w.

Hence R* (sfogz) = [ ^ {E (sfogz)}T /var (s2
ogz)

= (0-1886)2 ra/0-12341 = 0-2882 n.

The A.R.B. of Moran's test in comparison with the Spearman-Karber test is,
therefore,

.R2 (T) 0-4062 n
R2 («2

0gs) 0-2882 n
= 1-409.

The Spearman-Karber test, therefore, requires samples about 1-4 times as large
as are required by Moran's test, in order to achieve the same power in detecting
very slight heterogeneity in p. The relative efficiency in detecting larger changes in
V is not necessarily the same as the A.B.E., but it would be surprising if Moran's
test were appreciably less efficient than the Spearman—Karber test for moderate
values of V.

The A.R.E. has been calculated above for two-fold dilution series, but it can easily
be seen to be independent of the dilution factor, if the slight fluctuations due to
positioning of the dilutions are ignored.
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It appears to be impossible to investigate the efficiencies of these two tests in
comparison with that based on the maximum-likelihood estimate, because of the
difficulties already mentioned in connexion with this method (cf. §4). In fact, the
expected values, on the null hypothesis, of the second derivatives of the likelihood
function do not all converge. However, one would have expected the Spearman-
Karber estimate to be fairly efficient, since it is known to be, under certain cir-
cumstances, fully efficient when the response curve of 1 — P against log A is logistic
(Cornfield & Mantel, 1950). As pointed out in §4, the exponential model leads to a
curve similar to the cumulative normal, and this in turn is very similar to the
logistic. One would therefore expect Moran's test to be fairly highly efficient.

7. DISCUSSION

We have shown in § 2 that quite appreciable variability in p may exist and yet be
unlikely to be detected by Moran's test. It is natural to suggest that Moran's test
could be improved by giving more weight to observations at dilutions where most
inocula are positive, as it is in this region that discrepancies occur. At higher
dilutions the data are of exponential form to a very good degree of approximation
and observations there are largely wasted. Two methods might be adopted: (i) to
allot many more experimental units at low dilutions; (ii) to modify Moran's
statistic T, for example, by calculating Sr^ (n — r^2 instead of 'Zri (n — r^), where ri

is the number of infected units and n the number of inocula tested at each dilution.
The disadvantage of the second suggestion seems to be that the value of
Er^ (n — rt)

2 will have a large variance which might vitiate the increased weight
given to low values of P.

The other test considered in this paper, based on the Spearman-Karber method,
has been found to be even less sensitive than that of Moran. Two possible alter-
native approaches, which might be worth further investigation, are :

(1) a maximum -likelihood solution, involving some assumption about the
functional form oif(p), similar to that discussed by Moran (1954a);

(2) the use of probit analysis, on the assumption that the response curve may
be approximated to by an integrated normal curve. The slope of the probit line
would then be compared with its expected value, on the exponential model, of
about 2.

Some general observations on dilution counts arise from the foregoing discussion.
First, it seems unlikely that any economical test of exponentiality will be possible
if variation in susceptibility is small or if the average susceptibility is high.
Secondly, it is possible that variations in susceptibility might be confused with
variations in inoculum size if the method of administering it is at all inaccurate.
The latter possibility is probably not important in the virological example dis-
cussed by Moran but has been encountered by one of the present writers in
bacteriology. Finally, it appears that the general usefulness of dilution counting
in virus studies is problematical unless the results are checked by more direct
counting methods. So long as there is no sensitive method of testing departures
from exponentiality there is always a possibility that appreciable host variability
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is present, and in that case we no longer estimate the virus 'count', but rather a
composite figure depending on both the mean number of infective particles and
the distribution of susceptibility among the hosts. For this reason, dilution counts
of virus suspensions made at different times and places may not be in any way
comparable.

SUMMARY

Variation in host susceptibility results in flattening of the quantal response curve
obtained in dilution counting experiments. This departure from the exponential
curve obtained with uniform hosts is found primarily at the lower dilutions, where
the infection rates are high. The test proposed by Moran, for the detection of host
variability, may easily fail to detect quite appreciable heterogeneity with the
numbers of observations that are likely to be available in practice. Examination
of the response curves corresponding to various theoretical distributions of sus-
ceptibility suggests that detection of heterogeneity is unlikely unless the proba-
bility that a particle can initiate infection is distributed with a low mean and
considerable positive skewness.

The problem is related to that of estimating the standard deviation of a tolerance
distribution from quantal response data. This suggests an alternative test, based
on the Spearman-Karber method, which, however, appears to be no better than
Moran's test. Both methods provide estimates of the variability of the sus-
ceptibility distribution.
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