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Abstract

We present a simple and robustly incentive-compatible price list methodology to elicit quantiles of a sub-
jective real-valued belief. These elicited quantiles can be employed to approximate a subject’s complete
subjective distribution, and we establish that the distribution maximizing entropy while adhering to the
elicited quantiles is piecewise linear. Using this approach, our methodology extends to estimating arbitrary
unobserved attributes of the subjective distribution, such as mean and variance, which are otherwise chal-
lenging to elicit. We provide a proof-of-concept for our framework through an experiment involving the
elicitation of participants’ beliefs regarding the mathematical abilities of their peers.
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JEL Codes: C90; C91; D83

1. Introduction

Subjective beliefs play a crucial role in economic decision-making. Relevant beliefs are often about
real-valued random variables.! The decision to buy an asset depends on beliefs about the future price.
The decision to install farm irrigation depends on beliefs about future rainfall. In these cases, beliefs
take the form of a density function over the range of possible values.

Decisions can depend in complex ways on the subjective belief distribution. For example, the value
of an asset to a risk-neutral buyer depends on the mean of the price distribution. The value of irri-
gation for a farmer depends on the likelihood and severity of dry conditions, which may be related
to the lower tail of the rainfall distribution. Because of this, it is important that a belief elicitation
methodology in this environment allows a researcher to capture the relevant information about the
subjective distribution.

In this paper, we introduce a methodology for eliciting quantiles of a subjective real-valued belief
using a price list methodology: the quantile price list. Our methodology is simple, incentive compat-
ible under very general conditions, and can be extended to elicit any quantile. This allows researchers
to pinpoint the information they require or to get a more comprehensive view of a participant’s under-
lying beliefs by eliciting several quantiles. We also show how the elicited quantiles can be used to
approximate an entire belief distribution and estimate unobserved properties, such as the mean.

We demonstrate our methodology using an experiment on beliefs about student math test per-
formance. Twenty students from The Ohio State University took a math test and were marked as

'Either truly random or random from the perspective of the decision-maker.
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“successful” if they answered at least 13 questions correctly. We elicited the beliefs of the partici-
pants about the number of students who were successful, specifically the 0.25, 0.50 (median), and
0.75 quantiles of their subjective belief distributions, and use these beliefs to approximate the entire
cumulative distribution function (CDF) for each participant.

Additionally, we elicited the probability each participant believes that a randomly chosen student
passed the math task using a price list methodology for probabilities popularized in Holt and Smith
2016. We compare the approximated CDFs from our methodology to the implied binomial distribu-
tions induced from this elicited probability and find that our approximated subjective CDFs are much
“flatter” than the implied binomial distributions, demonstrating how our methodology can provide
a more nuanced understanding of beliefs.

Section 2 introduces and formalizes the theory of quantile price lists. Section 3 demonstrates how
to approximate an entire belief distribution after eliciting several quantiles. Section 4 compares our
methodology with other methods. Section 5 describes the design of our proof-of-concept experiment.
Section 6 reports the results of the experiment, and Section 7 concludes with a discussion focusing
on potential applications.

2. Theory

We begin this section by describing our procedure informally and discussing why and under what
conditions it elicits quantiles of a subjective belief. Our formal results follow this discussion.

2.1. Quantile price lists

To make the discussion of our procedure more concrete, suppose that we want to learn about a par-
ticipant’s belief about the distance between Los Angeles and San Diego. We have chosen this example
to demonstrate that we can elicit subjective beliefs about events that are not inherently random.
Ultimately, our methodology applies to eliciting beliefs about any quantity, random or not, as long as
it can be observed or verified.”

Let us start with a participant who is somewhat familiar with the geography of California. They
know that these cities are both in southern California and are not that far apart. Suppose that we ask
this participant if they would rather have $10 with a 75% chance or $10 if the distance between the
two cities is less than 1,000 miles. This participant believes that the distance is almost certain to be
less than 1,000 miles and chooses the latter option, since they believe that it will yield the $10 with
a nearly 100% chance. We can conclude that whatever the distribution of their belief F about the
distance between these two cities, it is the case that F(X < 1,000) > 0.75.

Now suppose that we continue asking questions like this, but where the second option pays condi-
tional on the distance being below 900, 800, 700, 600, 500, 400, and 300, respectively. In each case, the
participant chooses the second option. However, they conclude that the chance that the distance is
below 200 miles is less than 75% and, when asked to compare being paid $10 with a 75% chance and
being paid conditional on the distance being below 200 miles, they now choose the first option. From
these choices, we can conclude that for their belief F, F(X < 300) > 0.75 but F(X < 200) < 0.75.
Thus, whatever number x solves F(X < x) = 0.75 (the 75th quantile) must be between 200 and 300.
Gathering these questions into a list results in what we call a quantile price list, an example of which
is shown in Figure 1.

To find a different quantile, we repeat this exercise with a different objective lottery. For example,
if the same participant were asked to compare $10 with a 25% chance and $10 if the distance is below

Prelec 2004, Prelec et al. 2017, and Schmidt et al. (2022) discuss methods for eliciting beliefs about unobservable events.
In each of their methods, truth-telling is a feature of an equilibrium of a game where one’s own beliefs and the beliefs of others
are relevant in a player’s expected payoff.

*We account for the possibility of nonunique quantiles in the formal results in the following subsection.
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Option A

Option B

X $10 if Distance < 900

0 $10 with 75% chance

X $10 if Distance < 800

0 $10 with 75% chance

X $10 if Distance < 700

O $10 with 75% chance

X $10 if Distance < 300

O $10 with 75% chance

0O $10 if Distance < 200

X $10 with 75% chance

O $10 if Distance < 100

X $10 with 75% chance

3

Fig. 1. A quantile price list for the 0.75 quantile belief about the distance between Los Angeles and San Diego. The chosen
options indicate the 0.75 quantile of the participants’ belief is between 200 and 300.

200, they may well choose the latter option but switch to choosing the objective lottery when asked to
compare it to $10 if the distance is below 100. These pairs of choices imply that F(X < 200) > 0.25
but F(X < 100) < 0.25. We can conclude the 0.25 quantile of their subjective belief is between 100
and 200.

Notice that in these cases, we use the choices to bound the number x that would create an indiffer-
ence between some objective lottery that pays with probability p and an act that pays if the random
variable is below x. We interpret this x as being the p — th quantile of the participant’s belief. To
interpret this indifference as a quantile of the belief, we need to assume a few things about preferences:

If a participant is indifferent between a 75% chance of $10 and $10 if the random variable is below
250 but strictly prefers a 75% chance of $20 to $20 if the random variable is below 250, then we cannot
interpret 250 as the 0.75 quantile. This is because the number we would infer as the 0.75 quantile
appears to depend on whether $10 or $20 is the outcome. In this case, we cannot reliably infer a
belief using some arbitrarily chosen outcome for incentivizing the revelation of that belief. Thus, to
interpret the outcome of our procedure as identifying the quantile of a belief, we need to assume that
participants’ willingness to substitute between acts and objective lotteries does not depend on the
arbitrarily chosen outcome. We refer to this assumption as the replacement axiom.

Another way our procedure can fail to deliver a result that can be interpreted as the quantile of a
belief is if preferences over acts or objective lotteries are not monotone. For example, if a participant
is indifferent between a 75% chance of $10 and $10 if the random variable is below 250, but also
indifferent between a 50% chance of $10 and $10 if the random variable is below 300, then it is hard
to interpret either of these indifferences as generated by a coherent belief, since it implies that F would
have to be downward sloping. One way for this to happen is if preferences over acts do not respect the
monotonicity of events, so that an act can be strictly preferred to another even if it pays conditional
on an event that is “smaller” in terms of inclusion (such as X < 250 vs. X < 300). Another way to
obtain preferences like this is if preferences over objective lotteries are not monotonic in probabilities
(for instance, $10 with 50% chance is preferred to $10 with 75%). On the other hand, if both of these
monotonicity conditions are met, then the indifferences between acts that pay conditional on larger
events (in terms of inclusion) will occur at higher objective probabilities, and thus these indifferences
can be interpreted as belonging to some consistent distribution F. We refer to this pair of assumptions
as the act monotonicity and objective lottery monotonicity axioms, respectively.

The replacement axiom and the two monotonicity axioms are enough to ensure that we can use
indifferences to identify structure in preferences that can reasonably be interpreted as the quantiles
of an underlying belief distribution. However, to actually find that indifference, we will need one
more assumption, which has been latent in the discussion up until now. When we ask participants
to choose their favorite option from the relevant pair and incentivize it by randomly implementing
one of these choices, how do we know that their choice in each menu is their favorite? This requires
weak structure on the participants preferences over compound lotteries for the types of acts and
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objective lotteries used in this procedure. This axiom is known as statewise monotonicity, which is an
assumption required in any experimental economic procedure that asks participants to make multiple
choices and then randomly chooses one to implement (Azrieli et al., 2018).

2.2. Formal results

This section makes use of the following notation. The set of outcomes is £ = {a, b}. Throughout,
it is assumed a > b. X is a real-valued random variable with state space Q). A tail event E, is an
event of the form X < x. Simple lotteries are objective lotteries of the form S = (aop,bo (1 —p)),
where p € [0, 1]. Binary acts are acts of the form (a o E, b o E°) where E is an event in X and E° is the
complement of that event. Simple mixtures are compound lotteries that mix (potentially) objective
and subjective risk of the form M = (L, o py, L © p,, ..., L, o p,) where p; € [0,1] with 3" p; = 1,
and each L; is a simple lottery or a binary act. The set of all simple mixtures is /.

A quantile pricelist is a probability p (the quantile to be elicited), along with a sequence of n values
(%1, ..., x,) with x; > x;,,. The range of the quantile price list is [x,,, x,]|. The price list is constructed
by pairing a constant objective lottery o, = (aop,bo 1 — p) with a sequence of increasing binary
acts A, = (ao E,,boE;) (recall that tail events E, are events X < x;) to create n menus of the
form {op, Ax,}- To implement the price list, participants are asked to choose either the lottery or
the act from each menu. A menu is randomly chosen (according to any fixed distribution), and the
participant is rewarded with the lottery chosen from that menu.*

Assume participants have preference relation = over J( that is complete, transitive. We define
these additional axioms.

Axiom (1): Objective Lottery Monotonicity:

pzp e (acpbol—p)z(acp bol—p)

Axiom (2): Act Monotonicity:

E CE= (aoE,boE)x (aoE boEc).

Axiom (3): Continuity:

VE€Q,3Ipe€[0,1]:(acE,boE)~ (acp,bol—p).

Axiom (4): Replacement:

Foralla,a’,b,b": (a0 E,boE‘) ~ (aop,bol —p) <
(@’ oE, b/ o E°) ~ (a’ op,b’ o1 —p)

Axiom (5): Statewise Monotonicity:

L = Li< (Lyopy, s L 0 piy ooy Lo py) = (Ly 0 pyyeees Lyo piy oy Ly 0 )

We now formalize the discussion from the previous subsection. Under objective lottery mono-
tonicity, act monotonicity, continuity, and replacement, participants behave “as if” their preferences
are generated by a well-formed subjective distribution F.

Proposition 1. Under Axioms 1-4, there exists a unique CDF function F (invariant to the choice of a
and b) that solves (a oF(x),bol— F(x)) ~ (aoE,, boES). (Proof in Appendix Section 8.1.)

Let F(x) be the CDF that solves (a o F(x),bo 1 — F(x)) ~ (a o E,, b o ES) under the conditions of
Proposition 1. A p quantile of F(x) is any g that solves F(q) > p and F(q) < p. Such a g always exists

*It is common practice in experimental economics to select the “paying” menu uniformly; however, our theoretical results
hold for any fixed distribution. The higher the probability that a menu is chosen, the stronger the incentives are for the partici-
pant to choose correctly (according to their preferences) in that menu. Using a nonuniform distribution would thus strengthen
the incentives associated with some menus at the expense of others. This may be desirable if greater precision is needed in par-
ticular regions of the support. However, this would only be effective if participants understood how the menus are chosen,
increasing the complexity of the instructions. Healy and Leo (2025) discuss uniform and non uniform price lists and their
relationship to scoring rules for eliciting probabilities.
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but may not be unique. However, since F(x) is increasing, the set of p quantiles is an interval [g;, q;]-
On the other hand, if F(x) is strictly increasing every p quantile is unique (q; = g5 = ¢).

Call x; a switching-point for the p quantile if the participant chooses A, from {op, Ax,} but o,
from {op, Ay, }. Under the addition of statewise monotonicity, if a participant’s subjective distribu-
tion has a unique p quantile g, within the range of the quantile price list, then the participant’s choices
in the quantile price list will have a switching-point, and that switching-point reveals an interval that
must contain g,

The fact that a p quantile may not be unique poses a minor complication for elicitation. If the set
of p quantiles [g;, q,] spans multiple values of (xy, ..., x,,), then there is a range of values for which
the participant is indifferent between being paid according to the objective lottery o, and the binary
act A,. This can result in the multiple switching-points. In this case, however, any switching-point
identifies a p quantile.

Proposition 2. Under Axioms 1-5, for a quantile price list for the p quantile, if the set of p quantiles
41, qn] is such that q;, < x; and q; > x,, then there is at least one switching-point x; in the sequence
(x1, ..., X,) and for any switching-point, there is some X in [x;, x;, ] that is a p quantile of F. (Proof in
Appendix Section 8.2.)

3. Approximating beliefs via maximum entropy

Our procedure allows researchers to collect any set of quantiles. These quantiles can be interpreted
as points on the CDF of the participant’s underlying subjective belief distribution, or more precisely,
as intervals where these points must lie. However, we envision that researchers may want to extrapo-
late from the information collected by our methodology to calculate unobserved properties of these
distributions (such as moments or unelicited quantiles).

In some situations, researchers may want to fit a parameterized distribution that is specific to their
research context. Since the assumptions and procedures for this would depend on the particular
research questions, we will not elaborate on them here. Instead, in this section, we offer a proce-
dure to approximate the entire subjective belief that does not make any context-specific distributional
assumptions and uses only the information provided by our methodology.

To do this, we apply the principle of maximum entropy.” The principle of maximum entropy is
closely related to the principle of insufficient reason. A distribution that maximizes entropy subject
to constraints is the distribution that is least informative beyond the information encoded by those
constraints. More informally, the process determines which distribution uses known information and
only the known information.®

3.1. Characterization of the maximum entropy approximation

Suppose that a random variable X is known to be continuously distributed on {q, é] . Furthermore,

there are n quantile values {q, , q,,, ---, q,, } associated with the probabilities {p;, p,, ..., p,, }, with each
quantile value g, constrained to be within an interval: [lpn hp,-]' Without loss of generality, assume

p;i > pi_,- For convenience, let p, = 0 and p,,,; = 1. The fact that the distribution has support [q, ﬁ}

>The principle of maximum entropy was first formalized in Jaynes 1957a, Jaynes 1957b. We are unaware of the use of
maximum entropy in a similar context (estimating a subjective belief distribution), but the principle has been used for inference
elsewhere in economics (see Scharfenaker and Yang 2020 for a review) and in models of decision-making (see Kirman et al.
2023 for a recent example).

®We note that the principle of insufficient reason might be applied at a higher level, directly to the researchers’ knowledge of
the participant’s potential subjective belief. However, since this application yields a distribution over distributions rather than
a distribution, which is our goal, we sidestep the issue and find the maximum entropy subjective distribution directly.
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L !
0.7 lo75s ——— ho7s :
0.50 loso «—— N0 ;
0.25 lo2s «——= hoas ;

Fig. 2. Constraints created by elicited quantiles. Each quantile is constrained to be within an interval represented by the
horizontal line segments. The CDF of the participants subjective belief distribution must pass through these line segments

=h

., = 4- The other values of [, , h,, are determined
n+1 i i

Pnv1

can be represented by [, = h, = qand|
by our elicitation methodology.

We wish to find the distribution F and the associated density f that maximizes the entropy func-
tion h(f) = jq1 I —f(x)In(f (x))dx subject to the n restrictions l,, < qp, < hy,. These constraints can

be interpreted geometrically to restrict F to be in the set of all increasing functions from {q, q] to

[0, 1] that pass through the horizontal line segments represented by each pair [1, , b, ]. This is shown
in Figure 2.

Of course, the maximum entropy distribution must have some value for each gp,- Proposition 3
shows that between these points, whatever they are, the maximum entropy distribution F is a simple
piecewise linear interpolation of the quantiles g, . If the quantiles were known exactly, rather than
constrained to be within some interval, this would be a full characterization of the maximum entropy
distribution. An example of this is shown in Figure 3 for known quantiles {qq »5, q0.50, 90.75} -

Proposition 3. Assume that for each of {p,, p,, ..., p,} wherep;, > p;, the p; quantile of a distribution

is restricted to be equal to the value q;. Among all distributions over the range |q,q| that meet these n

quantile restrictions, the distribution F that maximizes entropy is a piecewise linear CDF connecting the
points

((51, O>, (@p,s21) s (@p,o22) 5 -5 (G, Pn) (a, 1)) (Proof in Appendix Section 8.1.)

Notice that Proposition 3 does not fully characterize the maximum entropy distribution sub-
ject to the quantile intervals elicited by our methodology. However, it greatly simplifies the
problem of finding this distribution. Although maximizing entropy in general is an infinite-
dimensional optimization problem, Proposition 3 simplifies the problem to one of finding the
values of g, ...,q, , for which F constructed from the piecewise linear interpolation of the
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Fig. 4. An example of the maximum entropy CDF through the constraints imposed by elicited quantile intervals for
90.25> 90.505 90.75

points (g, O), (qpl,pl) , (qu,pz) s ey (qpn,p,,) , (ﬁ, 1) maximizes the entropy function h(f) =

qu —f (x)In(f (x))dx.

~ The problem can be solved efficiently with generic nonlinear optimization packages. Figure 4
shows the maximum entropy distribution subject to the quantile intervals shown in Figure 2. In this
case, g »5 and g 5o are maximized at corner solutions, while g ;5 is maximized at an interior. The first-
order conditions on each quantile ensure that whenever the maximum entropy function involves an
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interior solution for some quantile, the density is constant and equal on both sides of that quantile
and, therefore, F does not have a kink at that quantile.

3.2. Approximating moments

Once we have approximated beliefs using the maximum entropy distribution F, it is possible to
estimate properties of a belief that have not been observed. As an example, suppose that we want
to calculate the belief about the mean of X. This can be done using the CDF and the fact that
EX) = [ O:o 1 — F(x)dx. Thus, the mean of the approximated distribution can be calculated by

the following sum.
/qu (P_1> dx + /qu (Pz_lh) dx + ...
q 9p, — ﬂ 9, 9p, — 9p
9pn—1 B ™ Gpus 9pn 17 9p,

For our experiment, where we elicit q,s, qo50, and gg-s, this sum simplifies to the following
expression for the approximated mean in terms of g, g and the quantiles:

(1)

1 — 1
3 (ﬂ + Q> 3 (d0.25 + go.50 + Go.75) )

4. Comparison to other methodologies

The choice of methodology to elicit subjective beliefs involves two main decisions: what to elicit and
how to elicit it. It is possible to elicit any aspect of beliefs (Lambert et al., 2008).” The decision of
what to elicit ultimately depends on the information required by the research question. We propose
eliciting quantiles as a flexible way to gather information about a real-valued distribution when the
required information is about the distribution itself rather than about the probabilities of particular
events. For example, if a researcher wants to know the probability that a participant believes that the
value of a random variable is greater than some fixed quantity, it is appropriate to elicit a probability.
If a researcher wants to know the values that a participant believes are in the upper and lower 5% tails
of a distribution, then quantiles are more appropriate.

Itis also possible to elicit moments of a real-valued subjective distribution. However, in contrast to
quantiles, moments are not a fundamental part of a distribution but are derived from it. Furthermore,
moments may not exist for certain extreme distributions. More practically, because moments are
not event-based but rather a summary of the entire distribution, the incentives involved in eliciting
moments are more complex than those for eliciting quantiles. This also makes them harder to com-
municate to participants when researchers want to tell participants exactly what they are eliciting.
An exception to this is a situation like that in our experiment, where beliefs about a moment can be
directly inferred, under some assumptions, from the elicitation of a probability.

Moments, unlike quantiles, cannot always be elicited in isolation. For example, it is impossible
to elicit the variance of a subjective distribution without learning about the mean (Lambert et al.,
2008). Finally, as we demonstrate, if information about moments is required, these values can be
approximated from the elicited quantiles. For these reasons, we believe that it is often more appro-
priate to elicit quantiles rather than moments when research questions depend on information about
real-valued subjective distributions.

For research questions that specifically require the elicitation of moments and where the researcher
is not satisfied with estimating these from the elicited quantiles, scoring rules can be used. Scoring

"Not all aspects can be elicited directly and must either be inferred through directly elicited quantities or elicited along with
other quantities used in their calculation.
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rules are a flexible way to elicit quantities of a distribution. Participants provide their estimate of
the target value, such as the mean, which is then compared to the truth or a sample from the true
distribution. It is possible to tailor the scoring rules to elicit a wide range of information about a
distribution (Gneiting & Raftery, 2007, Lambert, 2019). In experimental economics, it is common
to “binarize” scoring rules to eliminate the effect of risk preferences on biasing elicited beliefs. In
binarized scoring rules, the probability of a reward, rather than the value of the reward, changes
with the accuracy of the reported beliefs (Savage, 1971, Hossain & Okui, 2013, Harrison et al.,
2014).

Researchers convinced by our arguments on eliciting quantiles may still be skeptical that eliciting
quantiles using price lists is the best solution. Like moments and probabilities, quantiles can also be
elicited using scoring rules. However, unlike our price list methodology, scoring rules require partic-
ipants to provide their beliefs about the target quantities directly. This may be more cumbersome for
participants, since the scoring rules do not provide any guidance on how to discover these values. For
example, Eyting and Schmidt (2021) propose eliciting quantiles with the following language (in this
case, to elicit the 0.75 quantile): “What do you say is X if underestimation is four times more costly
than overestimation?” Although this is incentive compatible, participants are left to determine how
to arrive at X that maximizes their utility under this rule. Even if researchers tell participants what
they are eliciting, such as in Dustan et al. (2022), who tell participants their incentives are designed
to elicit the median of their belief, participants must still arrive at what their belief about the median
is without any guidance. In contrast, our price list methodology leverages the event-based nature of a
quantile and allows participants to “discover” their belief through a series of simpler questions about
event probabilities.

Baillon 2008 proposes an elegant alternative approach to eliciting subjective distributions that
also focuses on the event-based nature of quantiles and only uses comparisons between subjective
bets (and not objective lotteries). In principle, an incentive-compatible procedure that avoids such
comparisons would eliminate the need for the objective lottery monotonicity axiom and allow a
weakening of the replacement axiom needed for the incentive compatibility of quantile price lists.
As Baillon points out, this would be especially valuable in the presence of ambiguity aversion where
objective lottery comparisons will tend to underestimate participant’s beliefs about the probability of
events.

The Baillon 2008 procedure involves first finding the median by eliciting the value g 5, such that
a participant is indifferent between a bet that pays if X < g, 5o and a bet that pays if X > g, 5. In
Baillon’s terminology, X > g .50 and X < g 50 are a pair of exchangeable events. That is, a pair with
equal probability. The procedure then subdivides these events into further exchangeable events. For
example, a second round of subdivision determines the 0.25 and 0.75 quantiles. This procedure can
be iterated again, thus eliciting seven evenly spaced quantiles, and so on.

To elicit g, the procedure asks participants to choose the bet they prefer between X < x and
X > x for some starting value x and then proceeds by bisecting the remaining interval iteratively.
For example, when eliciting a quantile on the support [0, 100], the participant would first be asked to
compare bets on X > 50 and X < 50. If they choose X > 50 they would then be asked to compare
X > 75and X < 75. This process is iterated until the remaining interval is within a desired level
of precision. To incentivize this, some choices are implemented at random. Subsequent quantiles are
determined by bisecting the resulting subdivided intervals. For example, if the first round of bisection
determines that g, 5 = 60, then g5 will be elicited by a similar bisection process on the interval
(60, 100].

In contrast to our procedure, Baillon acknowledges that this mechanism is not incentive com-
patible since the options in each menu depend on the responses of the participant in the previous
menus. This is true both within the bisection rounds used to elicit a particular quantile and between
quantiles. To see why this causes problems for incentive compatibility, consider a simplified version
of the procedure that uses only three comparisons to determine quantiles on the interval [0, 100],
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with one comparison chosen at random for payment. Suppose a participant’s belief has zero mass on
the intervals [0, 10] and [70, 100] and is uniform on the interval [10, 70]. The median of their belief
is 40. If the participant “tells the truth” about their preferences, they will choose the bet X < 50 over
X > 50, then X > 25 over X < 25, then X > 37.5 over X < 37.5. Their expected probability of
winning the randomly chosen bet is approximately 65%. However, if they choose the bets X > 50
and then X < 75 and then X < 62.5 their expected probability of winning the randomly chosen bet
is approximately 74%.

Furthermore, our procedure allows us to pinpoint precise quantiles. In contrast, the subdivision
of exchangeable events often requires several subdivisions (and thus elicitations) to approximate a
particular quantile. For example, our procedure can elicit the 0.90 quantile with one price list. To
come close to this with the exchangeable event procedure would require three rounds of subdivision:
first eliciting the 0.50, then the 0.75 then the 0.875 quantile. The complexity of each elicitation appears
to be about the same as our price lists. In this sense, even if one can overcome the non-incentive
compatibility of the exchangeable event procedure, the benefit of avoiding objective lotteries can come
at a large cost in terms of elicitation time.

A final alternative to approximating the CDEF, as we propose, is to approximate the probability
density function. This can be done by partitioning the support and eliciting participants™ beliefs
about the probability of each set in the partition. The earliest use of this method to our knowledge
is Kabus 1976. One common methodology based on this approach is to have participants “build”
a histogram by putting tokens into bins. An early example can be found in Van Noortwijk et al.
1992. Incentivizing truthful elicitation of the probability of each bin can then be achieved with
any incentive-compatible elicitation for a probabilistic belief. For example, Harrison et al. (2015)
incentivize each bin using a quadratic scoring rule. However, it would also be possible to incen-
tivize each bin using a binarized scoring rule, multiple price list, or Becker-DeGroot-Marschak
(BDM) and randomly pick a bin for payment. Peeters and Wolk 2019 incentivize the allocation of
tokens into bins through a two-player “Colonel Blotto” game where players are awarded either pro-
portionally to their share of tokens in the bin containing the realized event or in a winner-take-all
manner.

We believe that this is a reasonable alternative to our methodology when the goal is to measure
a distribution precisely, here using many bins. However, when eliciting a distribution more coarsely,
the information the procedure reveals is heavily dependent on the bins chosen and the belief of the
participant. For example, in the experiment described in Section 5, we elicit quantiles of participants’
beliefs about the number of students, out of 20, who “passed” a math task, but suppose instead that
we had elicited their beliefs about the probability that this number was in each of the ranges (bins)
0-6, 7-13, 14-20. Suppose that a participant was confident about the difficulty of this task, putting all
the mass in the bin 0-6. We would learn nothing further about the shape of that participant’s belief
distribution within this bin.

In contrast, when eliciting the three quantiles 0.25, 0.50, and 0.75, as we do in our experiment,
we would still learn about the shape of that participant’s belief distribution within the 0-6 bin. For
example, they might reveal a 0.25 quantile of 2, 0.50 quantile of 3, and 0.75 quantile of 5. In essence,
our procedure can pinpoint the collection of information about the shape of a distribution without
assumptions about where the mass of the distribution is located.

In conclusion, we believe that eliciting quantiles with price lists is a simple, intuitive, and practical
approach, especially when the research focus is on understanding particular aspects of participants’
real-valued subjective belief distributions. The flexibility of quantile elicitation, in contrast to the
complexities and limitations associated with moments, makes it a superior choice in many research
scenarios. Furthermore, the use of price list methodologies, as opposed to more complex scoring
rules, further simplifies the elicitation process, making it more accessible to participants in com-
plex scenarios. These benefits highlight the potential “behavioral incentive compatibility” of our
methodology in addition to theoretical incentive compatibility (Danz et al., 2022).
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5. Proof-of-concept experiment

In this section, we present the design of our proof-of-concept experiment. We first give an overview
and discuss the purpose of the experiment before turning to the finer details.

5.1. Experiment overview

The event that the participants considered in our experiment is the number of students who passed or
failed a math task. We elicited three quantiles of the subjective belief distributions of the participants,
0.25,0.50, and 0.75, as well as their belief about the probability that a randomly chosen student passed
the math task. Under the assumption that a participant views the performance of each student on
the math task as independent and has a point belief p about the probability that a randomly chosen
student passed, their subjective belief about the number of students who passed should be binomial
with mean 20 * p. We refer to this as their mean belief below.

Using the methodology presented in this paper, we can compare the directly elicited shape of par-
ticipants’ subjective beliefs (using the quantiles) to the implied binomial shape. We emphasize that
our goal is not to compare the performance of eliciting quantiles with the performance of eliciting
a probability or mean. Instead, our experiment is intended to demonstrate how eliciting quantiles
using our methodology can provide a more nuanced view of participants entire subjective belief and
potentially shed light on the underlying assumptions implying a binomial subjective belief. In addi-
tion, we randomly varied whether we elicited quantiles or the mean first. Using the two treatments,
we can determine whether reporting the mean belief before or after quantile beliefs leads to greater
consistency across the four elicitations.

5.2. Experiment details

Before the experiment, 20 Ohio State students completed a math task similar to the task developed
in Niederle and Vesterlund 2007. Each student was shown a sequence of five two-digit numbers. The
students had five minutes to correctly calculate the sum of as many sets of two-digit numbers as they
could. For each correctly answered math problem, they received $1. The students also received a $5
show-up fee. The performance of these students on the math task is the basis of the main experiment.

We categorized each of the 20 students according to how many math problems they correctly
answered. Table 1 shows the distribution of correctly answered math problems for the students. If a
student correctly answered at least 13 math problems, we classified them as “passing” the math task.
If they answered any number less than thirteen of the math problems correctly, we categorized them
as “failing” the math task. We chose this categorization prior to running the experiment. All students
who participated in the math task knew that their answers would be seen later by other participants,
but did not know about the categorization of success. We chose not to disclose the categorization to
the students in order to not change their performance goal on the task.

For the main experiment, we used the number of students who passed the math task as our sub-
jective event of interest. Participants in the main experiment were also recruited through the Ohio
State Experimental Economics Laboratory. Anyone who participated in the previous math task was
excluded from participation in the main experiment. We chose to do both the math task and the
experiment in person at the Ohio State laboratory so that the participants in the experiment would
have some baseline facts they could use to form beliefs about the students’ performance in the math
task. Experiences in Ohio State math classes or general perceptions of the math abilities of university
students are facts that could be used by our participants to form their beliefs about other students’
performances on the prior math task.

The participants were first informed about the math task and given an example of the math prob-
lems. The participants then told us their beliefs about the students’ performance on the math task.
Their beliefs were elicited through their switching-points on four separate multiple price lists (MPLs).
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Table 1 Distribution of correctly answered math problems for the 20 students in our experiment.

# of Problems correct # of Students
(2,4] 4
[5,7] 7
[8,10] 5
(11,12] 2
13+ 2

Three of the four MPLs were quantile price lists targeted at the 0.25, 0.50, and 0.75 quantiles. The fourth
MPL elicited participants’ beliefs about the probability that a randomly chosen student passed. This
MPL is not part of our methodology but has been used extensively in experimental economics. It is
based on the logic of the BDM mechanism originally proposed to elicit willingness-to-pay by Becker
et al. 1964. The concept of using this method for eliciting beliefs was described by Savage 1971 and
first implemented by Grether (1981). In this context and to our knowledge, Holt and Smith 2016 were
the first to represent this BDM in the multiple price list format.

In our experiment, each MPL consisted of 21 rows. In all MPLs, a single switching-point was
enforced. In each row, there were two options, Option A and Option B. Participants decided which
of the two options they preferred in each row. The right-hand side of each quantile price list, or Option
B, was constant. For the 0.25 quantile, Option B was “$10 with a 25% chance” in each row. For the
0.50 quantile, Option B was “$10 with a 50% chance” in each row. For the 0.75 quantile, Option B
was “$10 with a 75% chance”. The left-hand side, or Option A changed in each row. Option A in the
first row of all three quantile price lists was “310 if < 20 people passed.” In each row, the number of
people who succeeded in the math task decreased by 1 down to “$10 if 0 people passed” in the 21st
row. An example of the 0.25 quantile price list is shown in Figure 5.

The fourth MPL elicited the participants’ beliefs about the probability that a randomly chosen
student passed the math task. The right-hand side of this MPL, or Option B, was constant across all
rows: “$10 if one randomly chosen subject passed.” The left-hand side, or Option A, changed in each
row. Option A in the first row was “$10 with a 100% chance.” In each row, the probability that the
participants received $10 in Option A decreased by 5% down to “$10 with a 0% chance” in the 21st
row. The exact MPL used is shown in Figure 6. Since we use the probability elicited from this MPL to
infer the mean beliefs of the participants, we refer to it as the mean MPL below.

Participants were randomly assigned to one of two treatments that differed only in the order of the
four MPLs. In the mean-first treatment, the mean MPL was shown first. In the mean-last treatment,
the three quantile price lists were shown first. In both treatments, the order of the three quantile price
lists was randomized at the participant level.

One of the four MPLs was randomly chosen to determine payment. For the randomly chosen
MPL, a row was then randomly chosen. The participant’s choice in that row was used to determine
the final payment. If the chosen option was winning $10 with a certain probability (Option B for
quantile price list and Option A for mean MPL), a 100-sided die was rolled. If the number on the die
was lower than or equal to the probability stated in that row, the participant won $10. If the chosen
option was winning $10 depending on how the students performed in the math task (Option A for
quantile price lists and Option B for mean MPL), the actual performance of the students was used to
determine payment. For the three quantile price lists, if the number of participants who actually suc-
ceeded was less than or equal to the number stated in the row, the participant won $10. For the mean
MPL, a student was randomly chosen from the math task. If this student succeeded, the participant
won $10.

The math sessions took approximately 15 minutes, and the average payment was $7.40. A total
of 158 participants were recruited for the main experiment. Seventy-one participants were randomly
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Would you rather have:

(Option A or |Option B
Q. [$10 if < 20 people passed or  [$10 with a 25% chance
2. [$10 if < 19 people passed or  |$10 with a 25% chance
Q3. [$10 if < 18 people passed or  |$10 with a 25% chance
Q4. [$10 if < 17 people passed or  |$10 with a 25% chance
as. |$10 if < 16 people passed or  [$10 with a 25% chance
ae. |$10 if < 15 people passed or |$10 with a 25% chance
a7. |$10 if < 14 people passed or |$10 with a 25% chance
Qs. [31 0 if < 13 people passed or |$10 with a 25% chance
Q9. [31 0 if = 12 people passed or l$10 with a 25% chance
Qto. [$1 0 if < 11 people passed or  |$10 with a 25% chance
a11. [$10 if < 10 people passed or  [$10 with a 25% chance
a1z, [$10 if < 9 people passed or  |$10 with a 25% chance
a13. [$10 if < 8 people passed or  [$10 with a 25% chance
Q14. [$10 if < 7 people passed or  [$10 with a 25% chance
a1s. [$10 if < 6 people passed or |$10 with a 25% chance
ate. [$10 if < 5 people passed or |$10 with a 25% chance
Q17. [$10 if < 4 people passed or  [$10 with a 25% chance
a18. [$10 if < 3 people passed or |$10 with a 25% chance
Qits. [$1 0 if < 2 people passed or |$10 with a 25% chance
Q20. l$1 0 if = 1 people passed or  |$10 with a 25% chance
az21. |$10 if = 0 people passed or |$10 with a 25% chance

Fig. 5. Screenshot of the 0.25 quantile price list used in our experiment

assigned to mean-first and 87 participants were randomly assigned to mean-last. The experiment took
10 minutes, and the participants received a $5.00 show-up fee plus an average payment of $3.29. The
full experimental instructions can be found in the Online Appendix.

6. Results

In this section, we report the results of our experiment. We begin by discussing belief consistency,
we then provide some summary data on the elicited quantiles, compare means approximated from
quantile data to directly elicited means, and finally compare the the shape of distributions using our
methodology to the binomial distributions constructed from the directly elicited means under the
assumption of independence.

6.1. Consistency

We first examine whether the beliefs of each participant can be justified by some subjective belief
distribution. In order for this to be true, the quantile beliefs of a participant must be monotonically
increasing. This means that their 0.25 quantile is less than or equal to their 0.50 quantile, which is less
than or equal to their 0.75 quantile. Since this must be true for our maximum entropy approximation
(see Section 3.1) to work appropriately, we exclude participants who do not have monotonic beliefs
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Would you rather have:

IOption A or IOption B
Qt. |$1D with a 100% chance or |$10 if one randomly chosen subject passed
Q2. 1$10 with a 95% chance or $10 if one randomly chosen subject passed
Q3. |$10 with a 90% chance or $10 if one randomly chosen subject passed
Q4. |$10 with a 85% chance or [$10 if one randomly chosen subject passed
Qs. |$10 with a 80% chance or  [$10 if one randomly chosen subject passed
6. |$10 with a 75% chance or $10 if one randomly chosen subject passed
Q7. '$10 with a 70% chance or  [$10 if one randomly chosen subject passed
Qs. |$10 with a 65% chance or  [$10 if one randomly chosen subject passed
Q9. |$10 with a 60% chance or $10 if one randomly chosen subject passed
Q10. |$10 with a 55% chance or $10 if one randomly chosen subject passed
Q1. |$10 with a 50% chance or [$10 if one randomly chosen subject passed
Q12, |$10 with a 45% chance or  [$10 if one randomly chosen subject passed
@13. [$10 with a 40% chance or  [$10 if one randomly chosen subject passed
Q14 |$10 with a 35% chance or  [$10if one randomly chosen subject passed
Q1s. |$10 with a 30% chance or [$10 if one randomly chosen subject passed
a16. [$10 with a 25% chance or  [$10 if one randomly chosen subject passed
Qi7. |$10 with a 20% chance or  [$10 if one randomly chosen subject passed
Q1. |$10 with a 15% chance or [$10 if one randomly chosen subject passed
Q1e. |$10 with a 10% chance or  [$10if one randomly chosen subject passed
Q20. |$10 with a 5% chance or |$10 if one randomly chosen subject passed
Q21. |$10 with a 0% chance or |$10 if one randomly chosen subject passed

Fig. 6. Screenshot of the MPL from our experiment used to elicit beliefs about the probability a randomly chosen
participant passed the math task

from all analyses.® Of those with monotonic beliefs, we have also excluded participants who always
chose the objective lottery in all rows of the three quantile price lists. This requires choosing a lottery
with a 75% chance of winning $10 over a guaranteed chance of winning $10, which is an indication
of misunderstanding.” We refer to beliefs that are not excluded as “consistent.”

In total, 73% of the participants have consistent beliefs. The proportion of participants with con-
sistent beliefs is not significantly different between the mean-first and mean-last treatment. 69.01%
of the mean-first and 75.86% of the mean-last participants have consistent beliefs. A chi-squared test
for the difference of these proportions is not significant with a p-value of .346. It does not seem that
allowing participants to report their mean first or last substantially changes their ability to report
beliefs that are consistent with an increasing subjective CDE

6.2. Summary data-quantiles

As our main motivation for the experiment is to demonstrate our methodology, we now report sum-
mary results for the three quantile price lists. A switching-point provides a range of possible quantile

#0f the participants with non-monotonic beliefs, only three participants’ elicited quantiles are strictly decreasing. The rest
(91%) are non-monotonic in only one of the three quantile elicitations, e.g., a response of 5 for the 0.25 quantile, 4 for the 0.50
quantile, and 7 for the 0.75 quantile. Although these choices could result from failures of objective lottery monotonicity or act
monotonicity, we believe that they are more likely to be genuine errors. Future research is warranted on whether additional
training or examples in the experimental instructions could help eliminate these errors. A heavy-handed approach would be
to present the quantile elicitations in increasing order (or all together) and enforce weakly increasing switching-points.

°Only nine participants always chose the objective lottery in all rows across all three quantile price lists.
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0 2 4 6 8 10 12 14 16 18 20
Number of Students that Passed Math Task

Fig. 7. Box plots for each of the elicited quantiles. The points used for each plot are the values of the quantiles in the
relevant participant’s maximum entropy distribution. The shaded region represents the 50% probability interval for each
quantile

beliefs. In our quantile price lists, the difference between each row is one student. Thus, a switching-
point in the 10th row represents a range of 10-11 for the relevant quantile. Figure 7 shows a summary
of the beliefs of all participants for each quantile elicited. For each quantile and participant, instead
of plotting the full range, we have chosen a single point within the range. The belief chosen is the
point in the range that maximizes the entropy of the CDF approximation (see Section 3.1).!° We use
this throughout this section whenever we need a point estimate of a participant’s quantile belief. The
shaded region of Figure 7 provides a 50% probability interval for the approximated CDFs. In other
words, for any quantile, 50% of participants’ approximated CDFs fall within the shaded region.

The 50% probability regions for each quantile are almost completely distinct, with very little over-
lap. There is a substantial amount of consistency, especially at the aggregate level. Furthermore, most
participants make choices indicating they have some subjective uncertainty about the task. Only 4%
of the participants have the same switching point in all three quantile price lists. Interestingly, the
0.75 quantile has a tighter range than the other quantiles. Most of the participants have a belief in the
range of 14 to 16 for the 0.75 quantile. The interquartile ranges of beliefs elicited for the other two
quantiles are double this size, with much wider whiskers.

6.3. Comparing distributions

Using a participant’s elicited quantiles, we approximate their entire subjective belief distributions
using the maximum entropy procedure presented in Section 3.1. We can compare this approximated
CDF with the induced binomial distribution using their directly elicited mean. An example compar-
ing the approximated CDF with the induced binomial CDF for a participant in our data is shown
in Figure 8.

We can compare these distributions in different ways. First, we focus on comparing the means
of the approximated and induced binomial distributions. Recall that the directly elicited mean is
determined from the mean MPL by assuming that a participant believes that student performance
is independent. Under this assumption, the mean number of students who pass is twenty times the

' As our ranges are quite small, the choice of what point to use does not have a big impact on our results. Using the midpoint
or upper/lower bounds of this range does not result in notable differences in this analysis.
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Fig. 8. The approximated (maximum entropy) subjective belief distribution (solid line) using the quantile price lists and the
induced binomial CDF (dotted line) using the mean MPL for Participant Id 23 in our experiment
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Fig. 9. Histograms of the difference between the elicited mean (using the mean MPL) and the approximated mean (using
the quantile price lists and maximum entropy approximation) for each participant by treatment

elicited probability that a randomly chosen student passes. The approximated mean is instead cal-
culated from the approximated subjective belief distribution using Equation (2). Figure 9 shows a
histogram of the difference between the elicited mean and approximated mean for each participant
in the two treatments.

For the mean-first treatment, the average difference is -2.12, and for the mean-last treatment, the
average difference is -1.29. The treatments are not significantly different in this respect nor in terms of
the distance (average squared difference) between the elicited and approximated means."! However,

"Wilcoxon rank-sum test for the differences between the mean-first and mean-last treatments (between subjects) is not
significant (p-value .5357). This is a between-subject test of the two distributions shown in Figure 9, comparing our two treat-
ments. The average distance is 33.93 for the mean-first treatment and 20.701 for the mean-last treatment (pooled average:
26.34). The Wilcoxon rank-sum test of these distances is also not significant (p-value .1847).
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Fig. 10. Histograms of the difference between the elicited 0.25 and 0.75 quantiles and the respective quantile of the
induced binomial distribution for each participant. The value used for the elicited quantile of each participant is the value in
their maximum entropy distribution

there is a significant but slight tendency for the approximated mean to underestimate the directly
elicited mean. The average pooled difference (-1.64) is significantly different from zero."?

We now compare the shape of the induced binomial distribution with the directly elicited quantiles
and the maximum entropy approximation constructed using these quantiles. Recall that, assuming a
participant views the performance of each student on the math task as independent and has a point
belief about the probability that a randomly chosen student passed, their belief about the number who
passed should be binomial. However, even if participants believe that the performance of students is
independent, their actual subjective beliefs may be flatter than binomial if they have higher-level
uncertainty. For example, they may be uncertain about how difficult the math task really is. This
would induce a distribution rather than a point belief about the probability that a randomly chosen
student passed.’

We first compare only our directly elicited 0.25 and 0.75 quantiles with the induced binomial
distribution quantiles for each participant. Figure 10 shows the histograms of these differences. We
find that the 0.25 quantile is below and the 0.75 quantile is above the binomial baseline for 44% of the
participants. This corresponds with a strong tendency for participants to have “flatter” than binomial
beliefs. This pattern also holds between treatments.'

To investigate the apparent flatness of beliefs further, we now compare the distances between
the approximated (maximum entropy) CDFs and the induced binomial CDFs. To measure this
distance, we numerically integrate the squared horizontal difference between the CDFs. If the approx-
imated CDFs are close to binomial, the distance will be close to 0. For reference, a perfectly linear
approximated CDF with the three elicited quantiles at 5, 10, and 15, respectively, has a distance of
approximately 13.26 from a binomial distribution with the same mean. The theoretical upper bound
on the distance of these distributions is 400.

We do not find evidence that the timing of the mean MPL affects our distance measure between
the approximated and induced binomial distributions.'® Because of this, Figure 11 shows a histogram
of this distance measure for each participant, pooled across treatments.

“The t-test indicates that the average pooled difference is significantly different from zero with a p-value of .0004.

“For instance, if a participant has a beta-distributed belief about the probability that a randomly chosen student passed,
then their belief about the number of students who passed would have a beta-binomial distribution.

“Wilcoxon rank-sum tests result in p-values of .5394 and .5621, respectively.

"Wilcoxon rank-sum test for the difference in these distributions has a p-value of .3113.
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Fig. 11. Histogram of the distance (integral of squared horizontal difference) between the maximum entropy CDF
(approximated from the elicited quantiles) and the binomial CDF (induced by the probability elicited in the mean MPL) for
each subject pooled across treatments

We find that the majority of participants have a distance between their approximated and induced
binomial distributions that is less than 35. However, there is a large spike (23.5% of participants)
between 10 and 14, suggesting that many participants have approximated CDFs that are close to
linear.'® This suggests that distributions approximated from the elicited quantiles are flatter and more
linear than the implied underlying binomial belief distribution. This is consistent with participants
having higher-level uncertainty about the difficulty of the math task.

Together, these results show that eliciting just a mean belief may not be sufficient in this context
to understand the entire subjective belief distribution. Ultimately, eliciting different quantiles of the
belief distribution gives a fuller understanding of a participant’s beliefs, and we hope our analysis
and discussion in this section demonstrates how our methodology can help researchers elicit richer
information about beliefs that might be useful in their research.

7. Discussion

In this paper, we propose a robust and straightforward methodology for eliciting subjective real-
valued beliefs. Our methodology allows practitioners to pinpoint aspects of beliefs that are relevant
to their research question and to build a picture of participants entire belief distributions by eliciting
several quantiles.

Given the flexibility of this methodology, there are potential applications in many areas of eco-
nomics. One potential application is to obtain the tails of a belief distribution. In many situations,
models predict similar central tendency but large differences in tails. Using our methodology, the
tails of the distributions can be easily elicited to test these hypotheses. For example, beliefs about
men and women are often compared on average, where important differences may be in terms of the
shape or variances of distributions. The greater male variability hypothesis suggests that men are often
more variable across traits than women (Thoni & Volk, 2021, Thoni et al., 2021). Since variance (as
a moment) is not elicitable on its own (see Lambert et al., 2008), our methodology likely represents
the simplest way to test hypotheses in terms of beliefs about this type of difference.

1850-878
359-378
Although only 6% of participants have perfectly linear beliefs.
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Another potential application is to obtain richer beliefs that can be used for forecasting. For
example, two experts might have beliefs about future inflation that are similar in terms of their
mean but significantly different in terms of shape. Our methodology allows researchers to capture
the full knowledge and uncertainty of experts on important indicators. Similarly, the potential of
extreme events often drives-decision making in agriculture and insurance, and our methodology
allows researchers to easily learn about these extreme beliefs by focusing on quantiles in the tail.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/eec.2025.
10023.
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