
Proceedings of the Edinburgh Mathematical Society (2001) 44, 103–110 c©

ON Q-DERIVED POLYNOMIALS

E. V. FLYNN

Department of Mathematical Sciences, Mathematics and Oceanography Building,
University of Liverpool, Peach Street, Liverpool L69 7ZL, UK

(Received 26 July 1999)

Abstract It is known that Q-derived univariate polynomials (polynomials defined over Q, with the
property that they and all their derivatives have all their roots in Q) can be completely classified subject
to two conjectures: that no quartic with four distinct roots is Q-derived, and that no quintic with a triple
root and two other distinct roots is Q-derived. We prove the second of these conjectures.
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1. Q-derived polynomials

If a (univariate) polynomial, defined over Q, and all its derivatives have all of their roots
in Q, then we say that the polynomial is Q-derived. We say that a polynomial is of type
pm1,...,mr if it has r distinct roots, and each mi is the multiplicity of the ith root. We
further note that the property of being Q-derived is always preserved by replacing q(x)
by rq(sx + t) for any constants r, s, t ∈ Q, with r, s 6= 0, and so we can take q(x) to be
monic, and can map any two roots to 0 and 1. We say that two Q-derived polynomials
q1(x) and q2(x) are equivalent if q2(x) = rq1(sx + t), for some constants r, s, t ∈ Q,
with r, s 6= 0, and we shall only consider those polynomials which are distinct modulo
any such transformation. In [1], the problem of classifying all Q-derived polynomials has
been reduced to showing the following two conjectures.

Conjecture 1.1. No polynomial of type p1,1,1,1 is Q-derived.

Conjecture 1.2. No polynomial of type p3,1,1 is Q-derived.

Indeed, the following theorem is presented in [1].

Theorem 1.3. If Conjectures 1.1 and 1.2 are true, then all Q-derived polynomials are
equivalent to one of

xn, xn−1(x− 1), x(x− 1)
(
x− v(v − 2)

v2 − 1

)
, x2(x− 1)

(
x− 9(2w + z − 12)(w + 2)

(z − w − 18)(8w + z)

)
,

for some n ∈ Z+, v ∈ Q, (w, z) ∈ E0(Q), where E0 : z2 = w(w − 6)(w + 18) is an elliptic
curve of rank 1.
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For Conjecture 1.2, we let q(x) be a Q-derived polynomial of type p3,1,1, which we may
take to be in the form q(x) = x3(x − 1)(x − a), for some a ∈ Q with a 6= 0, 1. Then, as
observed in [1], the discriminants of the quadratics q′′′(x), q′′(x)/x and q′(x)/x2, must
all be rational squares. This implies that a satisfies

b21 = 4a2 − 2a+ 4, b22 = 9a2 − 12a+ 9, b23 = 4a2 − 7a+ 4, (1.1)

for some b1, b2, b3 ∈ Q. Using the transformation a = (X − 3)/(X +3), bi = Yi/(X +3)3,
for i = 1, 2, 3, gives the genus 5 curve

F1 : Y 2
1 = 6(X2 + 15), Y 2

2 = 6(X2 + 45), Y 2
3 = X2 + 135. (1.2)

The curve F1, by the map (X,Y1, Y2, Y3) 7→ (X,Y1Y2Y3/6), covers the genus 2 curve

C1 : Y 2 = (X2 + 15)(X2 + 45)(X2 + 135). (1.3)

In order to find all polynomials of type p3,1,1, it is sufficient to find all of F1(Q). Indeed,
it is sufficient to find all members of C1(Q) that are images of the map (X,Y1, Y2, Y3) 7→
(X,Y1Y2Y3/6) from F1(Q) to C1(Q). The Jacobian J of C1 is isogenous over Q to Ea ×Eb,
where

Ea : Y 2 = (z + 15)(z + 45)(z + 135),

Eb : Y 2 = (15z + 1)(45z + 1)(135z + 1),

}
(1.4)

both of which have rank 1, so that J(Q) has rank 2. This makes the Chabauty techniques
in [5] and Chapter 13 of [2], based on [3], not directly applicable, since they require the
rank of J(Q) to be less than the genus of the curve. A natural technique would now be
to find the collection of covering curves induced by the isogeny from Ea × Eb to J , as
in [6] and [11]. We find that F1 is a member of this covering collection, and so we are
no closer to finding F1(Q).

We shall exploit the fact that C1 is of the form Y 2 = (X2 − k)(X2 − rk)(X2 − r2k),
which means that, as well as (X,Y ) 7→ (−X,Y ), there is also the involution (X,Y ) 7→
(−rk/X, rk√−rkY/X3) on the curve, from which we can derive another isogeny to the
Jacobian of C1. In § 2 we will describe how to find equations for a covering collection of
curves induced by this isogeny. In § 3 we shall see that the resulting collection of curves
for C1 allows us to find C1(Q) and hence prove Conjecture 1.2.

2. Curves of the form Y 2 = (X2 − k)(X2 − rk)(X2 − r2k)

We consider the curve of genus 2

C : Y 2 = F (X) = (X2 − k)(X2 − rk)(X2 − r2k), r, k ∈ Q, k 6= 0, r 6= 0,±1,
(2.1)

with Jacobian J . We shall assume for simplicity that k, rk and −rk are non-squares.
We shall use ∞+, ∞− to denote the points on the non-singular curve that lie over the
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singular point at infinity on C; they correspond to Y/X3 taking the values 1 and −1,
respectively. Both ∞+ and ∞− are in C(Q), since the coefficient of X6 is a Q-rational
square. Following Chapter 1 of [2], any member of J(Q) may be represented by a divisor
of the form P1+P2−∞+−∞−, where P1, P2 are points on C and either P1 and P2 are both
Q-rational or P1 and P2 are quadratic over Q and conjugate. For convenience, we shall
abbreviate such a divisor by {P1, P2}. This representation gives a 1–1 correspondence
with J(Q), except that everything of the form {(x, y), (x,−y)} must be identified into a
single equivalence class O, which serves as the group identity in J(Q).

The map (X,Y ) 7→ (−X,Y ) is an involution on C, and the function X2 is invari-
ant under this map. There are then maps θ1 : (X,Y ) 7→ (X2, Y ) and θ2 : (X,Y ) 7→
(1/X2, Y/X3) from C to the elliptic curves

Ea : y2 = (x− k)(x− rk)(x− r2k),

Eb : y2 = (−kx+ 1)(−rkx+ 1)(−r2kx+ 1),

}
(2.2)

respectively, generalizing (1.4). As in [11], these induce the isogeny θ∗
1 +θ∗

2 : Ea ×Eb → J .
The map (X,Y ) 7→ (−rk/X, rk√−rkY/X3) is also an involution on C; we first find

the quotient of C by this map. First note that the functions

U =
X +

√−rk
−X +

√−rk , V =
8
√−rkY

(X − √−rk)3 , (2.3)

are, respectively, negated and left invariant by the involution. They give a Q(
√−rk)-

defined birational transformation between C and the curve:

V 2 = −2k(U2 + 1)((r + 1)2U4 − 2(r2 − 6r + 1)U2 + (r + 1)2). (2.4)

We are now in the same situation as in (2.2) and can use the maps (U, V ) 7→ (U2, V )
and (U, V ) 7→ (1/U2, V/U3), both of which map (2.4) to the elliptic curve

E : v2 = −2k(u+ 1)((r + 1)2u2 − 2(r2 − 6r + 1)u+ (r + 1)2), (2.5)

defined over Q. Viewing E as being defined over Q(
√−rk), let A be the Weil-restriction

of E over Q. As a group, we can uniquely represent each member of A(Q) as a pair
[P1, P2] ∈ E(Q(

√−rk)) × E(Q(
√−rk)), where P1 and P2 are conjugates under

√−rk 7→
−√−rk. The maps ψ1 : (X,Y ) 7→ (U2, V ) and ψ2 : (X,Y ) 7→ (1/U2, V/U3) from C to E ,
induce the isogeny φ = ψ∗

1 + ψ∗
2 : A −→ J . This is essentially the same type of isogeny

described after (2.2), except composed with the isomorphism of Jacobians induced by
the birational transformation between C and (2.4). Furthermore, one can check directly
that ψ1 and ψ2 are conjugates under

√−rk 7→ −√−rk, so that φ is defined over Q. We
shall require the injective homomorphism (a special case of [8])

µ : J(Q)/φ(A(Q)) −→ K∗/(K∗)2 × Q∗/(Q∗)2

: {(X1, Y1), (X2, Y2)}
7→ [(X1 −

√
k)(X1 + r

√
k)(X2 −

√
k)(X2 + r

√
k), (X2

1 − rk)(X2
2 − rk)],


 (2.6)
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where K = Q(
√
k). Now let (X,Y ) ∈ C(Q), and suppose that we have completely found

J(Q)/φ(A(Q)) = {D1, . . . , Dn} and µ(Di) = [di, ei], for i = 1, . . . , n. (2.7)

Then, for some i, {(X,Y ),∞+} = Di in J(Q)/φ(A(Q)) and so

µ({(X,Y ),∞+}) = [(X −
√
k)(X + r

√
k), X2 − rk] = [di, ei].

If we now define

x = 2X/(X2 − rk), (2.8)

which is invariant under our involution (X,Y ) 7→ (−rk/X, rk√−rkY/X3), then

rkx2 + 1 = x2(X2 + rk)2/4X2 ∈ (Q∗)2,

did̄i(−(r − 1)2kx2/4 + 1) = did̄ix
2(X2 − k)(X − r2k)/4X2 ∈ (Q∗)2,

diei((r − 1)
√
kx/2 + 1) = dieix

2(X2 − rk)(X −
√
k)(X + r

√
k)/4X2 ∈ (K∗)2.



(2.9)

Regarding r, k, di, ei as constants, and setting the first left-hand side to a variable
squared, yields a curve of genus 0 over Q. Doing the same with the product of the first
two left-hand sides yields a curve of genus 1 over Q, and the product of the first and third
left-hand sides yields an elliptic curve over K. We summarize the above in the following
lemma.

Lemma 2.1. Let C : Y 2 = (X2 − k)(X2 − rk)(X2 − r2k), r, k ∈ Q, k 6= 0, r 6= 0,±1,
let J be the Jacobian of C, let E : v2 = −2k(u+1)((r+1)2u2 −2(r2 −6r+1)u+(r+1)2),
regarded as defined over Q(

√−rk), and let A be the Weil-restriction of E over Q. Let
φ be the isogeny from A to J induced by the map (and its conjugate) from C to E
given by (X,Y ) 7→ (X +

√−rk)2/(−X +
√−rk)2, 8√−rkY/(X − √−rk)3), and let µ be

the injective homomorphism from J(Q)/φ(A(Q)) to K∗/(K∗)2 × Q∗/(Q∗)2 given by
(2.6), where K = Q(α) and α =

√
k. Suppose that J(Q)/φ(A(Q)) = {D1, . . . , Dn}, and

µ(Di) = [di, ei] for i = 1, . . . , n. Let (X,Y ) ∈ C(Q) and let x = 2X/(X2 − rk) ∈ Q. Then
{(X,Y ),∞+} = Di for some i ∈ {1, . . . , n} and there exist y, y1 ∈ Q and y2 ∈ K such
that

G : y2 = rkx2 + 1,

Ei,1 : y2
1 = did̄i(rkx2 + 1)(−(r − 1)2kx2/4 + 1),

Ei,2 : y2
2 = diei(rkx2 + 1)((r − 1)αx/2 + 1).


 (2.10)

This gives a strategy for trying to find all members of C(Q). One first performs a Galois
descent to try to find a complete set of representatives D1, . . . , Dn for J(Q)/φ(A(Q)).
Then, for each i ∈ {1, . . . , n}, one hopes to find only finitely many x ∈ Q which satisfy
all of G, Ei,1 and Ei,2, for some y, y1 ∈ Q and y2 ∈ K.
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3. Solution of the case p3,1,1

Recall from § 1 that it is sufficient to find F1(Q), where F1 is as in (1.2). We first find
J(Q)/φ(A(Q)), where, as usual, J is Jacobian of C1, the curve (1.3) covered by F1.

Lemma 3.1. Let C1 be the curve Y 2 = (X2+15)(X2+45)(X2+135) with Jacobian J
and A, φ, µ as in Lemma 2.1, and let α =

√−15. Then J(Q)/φ(A(Q)) is given by

D1 = O, D2 = {(α, 0), (−α, 0)}, D3 = {(
√−45, 0), (−√−45, 0)}, D4 = D2 +D3,

D5 = {(3, 432),∞+}, D6 = D5 +D2, D7 = D5 +D3, D8 = D5 +D4,

whose images under µ are

[d1, e1] = [1, 1], [d2, e2] = [30, 1], [d3, e3] = [−3, 1],

[d4, e4] = [−10, 1], [d5, e5] = [54 + 6α, 6], [d6, e6] = [45 + 5α, 6],

[d7, e7] = [−18 − 2α, 6], [d8, e8] = [9 + α, 6].


 (3.1)

Proof. The images in (3.1) were obtained by applying the definition of µ in (2.6);
they are all distinct members of K∗/(K∗)2 × Q∗/(Q∗)2. It was shown in [1] that J(Q)
has torsion group generated by D2, D3 and has rank 2 (the latter being immediate from
the fact that each of Ea(Q), Eb(Q) in (1.4) has rank 1). Thus, J(Q)/2J(Q) is generated
by D2, D3, D5 and one further generator. Recall also from [7] that if for some c, we let
θ1, . . . , θ6 be the roots of H(X) = F (X + c), and find that

h(X) =
∏

(X − θiθjθk − θ`θmθn)

is square-free and has no Q-rational root, then {∞+,∞+} 6∈ 2J(Q). The product in the
definition of h(X) is taken over the 10 unordered partitions of the six roots θ1, . . . , θ6 of
H(X) into two sets of three. Applying this to H(X) = F (X+1) gives h(X) of degree 10
with factors:

x2 − 176x− 35 456, x2 + 184x− 2336, x2 + 124x+ 125 344,

x2 + 364x+ 154 624, x2 + 304x+ 671 104,

and so {∞+,∞+} 6∈ 2J(Q). Hence D2, D3, D5, {∞+,∞+} generate J(Q)/2J(Q),
with {∞+,∞+} = O in J(Q)/φ(A(Q)). Hence D2, D3, D5 generate J(Q)/φ(A(Q)),
as required. Note that D1, . . . , D8 are simply the eight elements of the Boolean group
J(Q)/φ(A(Q)) generated by D2, D3, D5. �

We are now in a position to apply Lemma 2.1 and determine all of F1(Q).

Lemma 3.2. Let F1 : Y 2
1 = 6(X2 + 15), Y 2

2 = 6(X2 + 45), Y 2
3 = X2 + 135, and let

(X,Y1, Y2, Y3) be an affine member of F1(Q). Then (X,Y1, Y2, Y3) = (±3,±12,±18,±12).

Proof. We can apply Lemma 2.1 with r = 3, k = −15, α =
√−15, K = Q(α)

and [d1, e1], . . . , [d8, e8] as in (3.1). Let (X,Y ) ∈ C1(Q) be in the image of the map
(X,Y1, Y2, Y3) 7→ (X,Y1Y2Y3/6) from F1(Q) to C1(Q), and let x = 2X/(X2 − rk) ∈ Q.
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Then {(X,Y ),∞+} = Di in J(Q)/φ(A(Q)) for some i ∈ {1, . . . , 8}. First note that
we can dismiss the cases i = 1, 2, 3, 4, since then X2 + 45 = ei = 1 in Q∗/(Q∗)2,
contradicting Y 2

2 = 6(X2 + 45).
For each of i = 5, 6, 7, 8, the curve Ei,1 of (2.10) is a rank 1 elliptic curve over Q, and

so is of no help. For i = 6, it is sufficient to find all x ∈ Q and y2 ∈ K such that (x, y2) is
a point on E6,2 : y2

2 = 6(45 + 5α)(−45x2 + 1)(αx+ 1). The 5-adic norm | · |5 has a unique
extension to K; note that |α|5 = 5−1/2 and any w ∈ K∗ satisfies |w|5 = 5r/2 for some
r ∈ Z. If |x|5 > 1, then |x|5 = 5s for some s ∈ Z+, since x ∈ Q, giving |x|5 > 5; therefore
6(45+5α)(−45x2 +1)(αx+1) has 5-adic norm 5−5/2|x|35 = 5(6s−5)/2, and so cannot be a
square in K. If |x|5 6 1, then 6(45 + 5α)(−45x2 + 1)(αx+ 1) ≡ 6 · 45 ≡ −3α2 (mod α3).
This is also a non-square in K, since −3 is not a quadratic residue mod α. We can
similarly discard the case i = 7.

For i = 5, it is sufficient to find all x ∈ Q and y2 ∈ K such that (x, y2) is a point on

E5,2 : y2
2 = 6(54 + 6α)(−45x2 + 1)(αx+ 1). (3.2)

Applying standard descent techniques [4,8–10], we find that E5,2(K) has rank 1 and is
generated by the 2-torsion point (−1/α, 0) and the point P1 = (1/6+α/30, 24) of infinite
order. Since the rank of E5,2(K) is less than the degree of K, we can apply the technique
in [6] as follows. First note that 5P1 is in the kernel of reduction mod 11, so we define

Q1 = 5P1, where P1 = (1/6 + α/30, 24),

S = {∞, (−1/α, 0),±P1, (−1/α, 0) ± P1,±2P1, (−1/α, 0) ± 2P1},

}
(3.3)

so that

every P ∈ E5,2(K) can be written as P = S + nQ1, for some S ∈ S, n ∈ Z. (3.4)

Since Q1 is in the kernel of ·̃, the reduction map mod 11, we must have P̃ = S̃. So, if
P has Q-rational x-coordinate, then S̃ must have F11-rational x-coordinate. Computing
the members of S mod 11, we find that this is true only for

S = ∞, (−1/α, 0)±P1 = ±(−1/3, 12+12α), (−1/α, 0)±2P1 = ±(1/9,−12−4α/3),

and so these are the only S ∈ S we need to consider. We make the following five claims.

Claim k. n = 0 is the only n ∈ Z for which Rk + nQ1 has Q-rational x-coordinate,
where k = 1, . . . , 5, and R1 = ∞, R2 = (−1/3, 12 + 12α), R3 = (−1/3,−12 − 12α),
R4 = (1/9,−12 − 4α/3), R5 = (1/9, 12 + 4α/3). We shall give only a sketch for proving
these five claims, since the detailed steps are similar to those in [6]. Letting φRk

(n) denote
the x-coordinate of Rk + nQ1 for k = 2, 3, 4, 5 and the reciprocal of the x-coordinate of
Rk + nQ1 for k = 1, we know from [6] that φRk

(n) can be written as a power series in n
defined over Z11[α]. For each k, write φRk

(n) = φ
(0)
Rk

(n) + φ
(1)
Rk

(n)α, where each of φ(0)
Rk

,
φ

(1)
Rk

is in Z11[[n]]. The resulting power series φ(1)
Rk

may be computed mod 113 using the
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equations in [6], and are as follows:

φ
(1)
R1

(n) = O(n2) ∈ Z11[[n]], φ
(1)
Rk

(n) = O(n) ∈ Z11[[n]], for k = 2, 3, 4, 5;

φ
(1)
R1

(n) ≡ 9 · 112n2 (mod 113),

φ
(1)
R2

(n) ≡ 68 · 11n+ 5 · 112n2 (mod 113),

φ
(1)
R3

(n) ≡ 53 · 11n+ 5 · 112n2 (mod 113),

φ
(1)
R4

(n) ≡ 35 · 11n+ 8 · 112n2 (mod 113),

φ
(1)
R5

(n) ≡ 86 · 11n+ 8 · 112n2 (mod 113).




(3.5)

For each k, if Rk + nP1 has Q-rational x-coordinate, then φ(1)
Rk

(n) = 0. Since the leading
coefficient of each power series has 11-adic norm strictly greater than all subsequent
coefficients, it is clear that n = 0 is the only solution in each case, which proves all
five claims, and so x = ∞,−1/3, 1/9 are the only possibilities. Since x = 2X/(X2 −
rk) = 2X/(X2 + 45), the corresponding values of X are ±√−45, −3 ± 6i, 3 and 15.
Of these, only 3, 15 ∈ Q. Substituting X = 3 into the equation of C1, we see that
Y 2 = (32 +15)(32 +45)(32 +135) = 186 624, which has solutions Y = ±432. Substituting
X = 15 gives Y 2 = 23 328 000, which does not have a Q-rational solution for Y . It follows
that (X,Y ) = (3,±432) are the only two points on C1 corresponding to the case i = 5.
Note that, had we wished, we could have used curve G in (2.10) mod 11 as an alternative
way of eliminating R2 and R3. An almost identical argument, also 11-adic, shows that
(X,Y ) = (−3,±432) are the only two points on C1 corresponding to the case i = 8.

Having considered all cases i = 1, . . . , 8, we conclude that the only members of C1(Q) in
the image of the map (X,Y1, Y2, Y3) 7→ (X,Y1Y2Y3/6) from F1(Q) to C1(Q) are ∞+, ∞−,
(±3,±432). Therefore, all affine (X,Y1, Y2, Y3) ∈ F1(Q) have X = ±3, as claimed. �

We can now achieve our aim of proving Conjecture 1.2.

Theorem 3.3. No polynomial of type p3,1,1 is Q-derived.

Proof. Recall from § 1 that we can take our polynomial to be of the form q(x) =
x3(x − 1)(x − a), for some a ∈ Q with a 6= 0, 1, satisfying (1.1) for some b1, b2, b3 ∈ Q.
The map from (1.1) to F1 is a = (X − 3)/(X + 3), bi = Yi/(X + 3)3, for i = 1, 2, 3. We
have shown in Lemma 3.2 that the only possible values of X are ±3,∞; these correspond
to a = 0,∞, 1, which are precisely the degenerate values of a for which q(x) is not of
type p3,1,1. �

Note that we have not determined C1(Q), since this was not required for proving
Conjecture 1.2. In fact, it is straightforward to add to the above arguments, using the
isogeny defined after (2.2), to show that C1(Q) = {∞+,∞−, (±3,±432)}. The short
postscript file at ftp://ftp.liv.ac.uk/pub/genus2/qderived/appendix.ps gives the proof.

We finally observe that, if we were to imitate the above approach to Conjecture 1.1, we
would first take our polynomial of type p1,1,1,1 to be of the form x(x−1)(x−a1)(x−a2).
The equations analogous to (1.1) would be of the form in ri(a1, a2) = b2i , where each ri is
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a polynomial over Q. We would therefore need to find all Q-rational points on a surface,
and the techniques used here would not be applicable.
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