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1. The following general problem is of interest. Let F be an irreducible algebraic
variety of degree d, in projective n -space P", defined over a field k; and suppose that K is
a finite extension of k with [K: k] prime to d. If F has a point defined over K, then does it
necessarily have a point defined over k?

It has been studied in various instances by several authors: see, for example, Cassels
[2], Coray [3, 4], Pfister [5], Bremner, Lewis, Morton [1]. Coray [3] shows that a quartic
curve F over Q may possess points in extension fields of Q of every odd degree greater
than one, but have no points in Q itself. Some further examples of this instance occur in
the paper of Bremner, Lewis, Morton, with the additional property that the curve F also
possesses points in every p-adic completion Qp of Q.

When the ground field is the function field k = Q(A) of transcendence degree 1, then
Bremner, Lewis, Morton again give (although rather as a rabbit from a hat) two examples
to show that a quartic curve F defined over k may possess points in extension fields of k
of every odd degree greater than one, but have no points in k itself. It is the purpose of
this note to give a method whereby an infinite family of such curves F may be produced
(of which the two examples of Bremner, Lewis, Morton are special cases).

2. From Coray [3] it follows that if the quartic curve F (of genus 3, when
irreducible) possesses a point in a cubic extension of k, then it will possess points in
extension fields of k of every odd degree greater than one. So it will suffice to produce a
family of curves having points in a cubic extension of k. We search for polynomial
identities of the following type:

(x3 + ax2 + bx + c)(x3-ax2 + bx - c)(x2 + d) = (x2 + e)4+Mx4+N. (1)

Such an identity implies that the diagonal form X4+MY4 + NZ4 = 0 representing a
quartic curve does indeed have zeros in the field defined by a root of the cubic polynomial
x3 + ax2+ bx + c. It will then remain to ensure that this cubic is irreducible, and that there
are no global points on the quartic curve.

Equating coefficients at (1) gives

d + 2b-a2 = 4e (2)

(3)

d(b2-2ac)-c2 = 4e3 (4)

-dc2 = e4+N (5)
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and eliminating d between (2), (4) gives

Thus

c = - a 3 + 2afe-4ae + A (6)

where

A2 = a 6 -4a 4 (b -2e) + a2(5b2-16be + 16e2) + (-2b3 + 4be2-4e3). (7)

Put now
k = ble, p(A) = A3-2A2 + 2 (8)

and
p = -2p(A)e/a2, cr = 2p(A) A/a3. (8')

Then (7) becomes

<x2 = p3 + (5A2-16A + 16)p2+8(A-2)(A3-2A2 + 2)p + 4(A3-2A2 + 2)2; (9)

and from (2)-(6), (8), (8')

b = -Aa2p/2p(A)

(A-2)p-±o-)/p(A)

(A-2)p)/p(A)

e = a2p/2p(A)

= 4p(A)2-8p(A)p-(3A2-8A + 6)p2-4p(A)o-

16p(A)4N/a8 = -32p(A)4- 96(A - 2)p(A)3p - 4(25 A2- 96A + 96)p(A)2p2

-8(5A3-26A2 + 48A-31)p(A)p3-(2A2-6A + 5)(2A2-2A-3)p4

+ 16[p(A) + (A-2)p]2p(A)cr. (10)

Now (9) represents the equation of an elliptic curve E over the field Q(A), and any point
of E defined over Q(A) gives rise via the maps (10) to an identity (1). For example, let A
be the point of E given by

A = (0,2p(A)). (11)

Then (M, N) = (-a4,0) and the associated quartic curve may be taken in the form
X 4 - Y4 = 0. Similarly - A = (0, -2p(A)) gives rise to the quartic curve X 4 + 3 Y 4 - 4 Z 4 =
0. These two curves, however, clearly possess points rational over Q(A) (indeed, over Q).
But consider instead the point 2A = (-A2, -4) on E; this gives rise to the example given
as III(a) in Bremner, Lewis, Morton [1]. Further, the point at infinity on E gives rise to
the example III(b).

3. If we let B be the point of E given by

B = (-A2+1,A2+1) (12)
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then

« „. . /4(A3-2A2+2) -2(A3-2A2 + 2)(A3 + A2-7A+9)\
\ (A- l ) 2 ' (A- l ) 3 /•

Denoting this point by P, it is easy to verify that P has infinite order in the group of
Q(A)-rational points of E.

REMARKS. It is well-known that the group of Q(A)-points on E is finitely generated; it
seems plausible that the rank of the group is 2 with generators A, B at (11), (12), but this
has not been specifically checked.

THEOREM. Let m € Z, m = 1 mod 9. Then the point mP of E gives rise in the manner
described above to a quartic curve T: X4 + MY4 + NZ4 = 0 which possesses no point defined
over Q(A), but does have a point defined over a cubic extension of Q(A).

Proof. The method is to localize at the prime ideal (A) of Q[A], thereby restricting
attention to the constant terms of all the polynomials.

Indeed, P specializes to the point

PO = (8,36)
on the curve

EO:S2 = R3+16R2-32R + 16. (14)

Considering the further reduction modulo 5, Po corresponds to the point

Po = (3,l)

on the curve

E0:s
2=r3+r2+3r+l.

Now 2P0 = (2,2); 3P0 = (0,1); 4P0 = (1, 4); 5P0 = (1,1), so that Po is of order 9 on Eo. It
follows that for keZ, then Qk = (9k + 1)PO = PO = (3, l)mod5. Such points Qk give rise to
quartic curves

r:X4 + MY" + NZA = 0 (15)

where from (10), with obvious notation, M0 = a4, N0 = a8 mod 5.

In particular, taking a non-zero mod 5, then

. (16)

Suppose now (x, y, z) is a point of (15) defined over Q(A), where x, y, z have no common
factor. Then specializing to A = 0 results in the rational identity

x4 + Moy
4 + Nozt = 0 (17)

which by (16) forces xo=yo = zo = 0. Then x, y, z are all divisible by A, a contradiction.
Thus F has no non-trivial Q(A)-point.

To show (15) has a point defined over a cubic extension of Q(A), it suffices to show
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from (1) that the corresponding cubic x3 + ax2 + bx + c is irreducible over Q(A). But from
(10), specializing to A = 0,

(a0, b0, co) = (ao, 0, ao)mod 5.

Now the cubic polynomial x3 + aox
2+ al is irreducible mod 5, and so x3 + ax2+ bx + c

is irreducible over Q(A).

4. Remark. Although (15) is locally insolvable at the prime (A), it is solvable
modulo p for those prime divisors p of M, N. For from (2)-(5)

M = (4e3 + c2)/d + (4c-d)d-6e2

N = -dc2-e4;

then on eliminating d:

(c2+e3)4+M(ce)4 =

and on eliminating c2:

These lift by Hensel's Lemma to p-adic solutions (at least, in the former instance, for
(ce,N) = l).

Finding an infinite family of examples where each member is everywhere locally
solvable, seems quite a difficult problem.
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