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TRUTH AND COLLECTION
BARTOSZ WCISLO

Abstract.  Answering a question of Kaye. we show that the compositional truth theory with the
full collection scheme is conservative over Peano Arithmetic. We demonstrate it by showing that countable
models of compositional truth which satisfy the internal induction or collection axioms can be end-extended
to models of the respective theory.

§1. Introduction. The area of axiomatic truth theories, studies extensions of
foundational axiomatic systems such as Peano arithmetic (PA), elementary
arithmetic, or Zermelo—Frinkel set theory with axioms expressing that a fresh unary
predicate T'(x) defines the set of true sentences.

One of the most basic such theories is the theory of compositional truth over PA,
called CT"." Its axioms state that the truth predicate satisfies Tarski’s compositional
conditions for the arithmetical language. It turns out that the Tarski’s axioms
themselves constitute a conservative extension of the base theory, even though
usually a theory is significantly stronger than a subtheory for which it can formulate
a truth predicate.

In a line of research started by [1, 2] and discussed thoroughly in [3] the following
question has been explored: What axioms can be added to CT ™ so as to make the
resulting theory nonconservative? The “line” dividing conservative truth principles
from the nonconservative ones has been dubbed by Ali Enayat the Tarski Boundary
and the problem of systematically investigating the conservativity of truth-theoretic
extensions has been called the Tarski Boundary Problem.

The principles under investigation come roughly in two flavours: either they are of
purely truth-theoretic nature, for instance stating that a disjunction of an arbitrary
finite size is true iff one of the disjunct is, or they are general principles studied in the
context of arithmetical theories, for instance, fragments of the induction scheme.

In the subsequent research these principles turned out to be either conservative or
equivalent exactly to the scheme of Ag-induction for the full language including the
truth predicate. Thus, the Tarski Boundary Problem seems to admit a much more
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2 BARTOSZ WCISLO

structured answer than one could expect. This is a very surprising phenomenon,
since prima facie the principles under investigation seem completely unrelated.

The topic of axiomatic truth has been classically studied as a part of the theory
of models of PA, as a study of so-called satisfaction classes. A satisfaction class
S in a model M of PA is a subset of M? which satisfies Tarski’s compositional
conditions. They were introduced in the PhD thesis [13], preceded by related ideas
in [18]. They are supposed to explore how we can endow nonstandard elements of
a model M which are viewed from its point of view as arithmetical formulae with
well-defined semantics. From this perspective more important than conservativity
of truth-theoretic principles is the question whether in a given model of PA one can
find a satisfaction class enjoying additional good properties.

One of the most pressing questions concerning the Tarski Boundary problem
which was left open has been posed by Kaye.”> It asks, whether in any countable
recursively saturated model of PA, we can find a full satisfaction class satisfying
collection. Equivalently, is CT™ with the full collection scheme for the extended
language, but with no induction whatsoever, a conservative extension of PA? Results
about the purely arithmetical counterpart of this question supported the intuition
that the answer should be positive: If we add the full collection scheme to PA™,
the theory of positive parts of ordered semirings, the resulting extension is IT;-
conservative, as noted in [8, Exercise 7.7].

In this article, we answer Kaye’s question in the positive. In fact, following the
original conjectural proof strategy, we show that any countable model of PA can
be elementarily extended to an w,-like model which carries a full satisfaction class
(or, equivalently, which expands to a model of CT ). We achieve this, in turn, by
showing that any countable model of CT  satisfying an additional axiom of the
internal induction (or collection) has an end-extension. The proof of this fact, a
technical crux of our work, is based on techniques from [15], where a partial answer
to Kaye’s question has been provided, combined with the copying technique from a
novel construction of satisfaction classes presented by Pakhomov in his note [16].?

§2. Preliminaries. This article concerns truth theories over (PA). Truth theories
result by adding to arithmetic a fresh predicate 7(x) with the intended reading
“x is the Godel code of a true (arithmetical) sentence” and axioms guaranteeing
that T actually displays truth-like behaviour. Crucially for our purposes, PA can
formalise syntax, so actually postulating the existence of such a truth predicate
makes sense. The details of the coding of syntax can be found in any textbook
on formal arithmetic, for instance in [8]. Across the article, we will use a number
of formalised syntactic notions. Sometimes, we introduce them without definition,
since most of the notation seems self-explanatory. However, we explain all these
notions in the Appendix. A comprehensive introduction to truth theories may be
found in [7] and an extensive treatment of the Tarski Boundary problem may be
found in [3].

21t was stated explicitly in the presentation [9]. but we are not aware of the author stating it in print.
3The note has not been published, but the ideas contained there were discussed in the presentation
[17] available at the Internet address given in the references with a permission of the author.
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TRUTH AND COLLECTION 3

In the presentation, we will use a number of conventions to improve readability:

e We will refer to objects which are codes of first-order formulae by variables
., ...

o We will refer to objects which are codes of terms by s. ¢, ...

o We will refer to the codes of sequences of terms by 5.7, ...

o We will systematically confuse the syntactic operations and the operations on
the codes.

e We will use some formulae denoting syntactic notions as if we they were
constants denoting sets. So if 4(x) is such a formula we will write, for instance,
3x € 4 ¢(x) instead of Ix (A4(x) A ¢(x)).

e Moreover, we will sometimes use provably functional formulae as if they were
actual function symbols. Thus, for instance, we will write A(¢ A y) instead
of “for any z if z is the unique result of joining ¢ and w with a conjunction
symbol, then A(z).”

2.1. Truth theories. Let us introduce the main theories of our interest.

DerFiNITION 1. By CT™ (Compositional Truth) we mean the theory in the
arithmetical language £pa extended with one unary predicate 7'(x) whose axioms
are the axioms of PA along with the following compositional clauses:*

1. Vx(T(x) — Sent,gPA(x)).

2. Vs.t € ClTermg,, (T(s =) =s°= l").

3. Vg € SentBCPA<Tﬁ¢ = ﬁm).

4. Yo,y € Sentpr(T(¢ Aw) = Té A Tx,y).

5. V¢ € FormEAVv IS Var(T3v¢(v) = EIxT¢>(§)).

6. V5.1 € ClTermSeq ., V¢ € Form p, (s_° =1° = To(35) = ngS(t_)).

The last clause, called the regularity axiom states that the truth of a sentence does
not depend on the exact terms which are used in it, but rather on the values thereof.
In the proof, we will actually need a stronger regularity condition which we will
discuss in Section 2.4.

One of the fundamental facts about CT™ is that it does not have any arithmetical
content extending PA.

THEOREM 2 (Kotlarski-Krajewski—Lachlan). CT is conservative over PA.

A number of additional conditions can be imposed on the truth predicate so that
the resulting theory remains conservative. One of the most notable is that we can
assume that every formula ¢ € Form,, . considered separately, satisfies induction.

4F0rm£PA (x) is the formalised notion for the set of arithmetical formulae: FormfplA means that there
is at most one free variable; the formula x € Var means that x is a code of a variable; Sent ¢, (x) means
that x is a code of an arithmetical sentence; ClTerm ,, refers to the codes of closed arithmetical terms,
and ClTermSeq, to the sequences of such terms. If s is a closed term, s° denotes its value (which,
again, can be formalised in PA for the arithmetised version of terms). Finally, for any x, by x we mean
(a code for) a canonical term whose value is x. say S ... S 0.

X times
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4 BARTOSZ WCISLO

DEFINITION 3. By the internal induction axiom (INT) we mean the following
statement:

Vo € FormgA(qu(O) AVX(T(x) = TH(S(x))) — TngzS(i)).

By compositional axioms this is equivalent to saying that all induction axioms
are true. Perhaps somewhat surprisingly, this also yields a conservative extension
of PA. This result was originally announced in [12]. A proof, by different, model
theoretic methods announced in [6], can be found in the longer, unpublished, and
privately circulated manuscript [5]. Another argument, now purely proof-theoretic,
has been presented in [14] (where it is proved that one can extend CT with an
arbitrary statement of the form “all instances of the axioms scheme I' are true”
while still keeping the theory in question conservative. It is easy to check that the
compositional axioms allow us to derive our version of the internal induction from
the statement that all the induction axioms are true).

THEOREM 4 (Kotlarski-Krajewski-Lachlan). CT + INT is conservative over PA.

2.2. Models of PA. This article will make use of some classical theory of models
of PA. Let us now review some basic facts of this area. The standard references are
[8] (introductory) and [10] (more advanced), where the proofs of the theorems stated
here, and much more, can be found. The first result which we will use repeatedly is
the resplendence of recursively saturated models.

DerINITION 5. We say that a model M is resplendent if for any second-order
formula ¢(X) with a single second-order variable with all quantifiers ranging over
first-order variables and possibly with first-order parametres, if ¢(X) is consistent
with the elementary diagram of M (where ¢(X) is viewed as a first-order sentence
with a fresh predicate X), then there exists 4 C M such that (M, A) = ¢(A4).

The notion of resplendence is very rich in consequences and yet, resplendent
models of strong theories are rather easy to find in nature.

THEOREM 6 (Barwise-Schlipf, Ressayre). Every countable recursively saturated
model of PA is resplendent.

End-extensions of models of truth theories play a crucial role in our article. They
are also a very classical thread in the theory of the models of PA.

DerINITION 7. Let M C N be models of PA. We say that N is an end-extension
of M iff for any ¢ € N \ M and an arbitrarya € M, N | a < c. We denote this by
M C, N (or M =, N if this is in fact an elementary extension). If M # N, we call
the extension proper.

We will also use a more sophisticated variant of extensions.

DEerINITION 8. Let M <, N. We say that N is a conservative extension of M iff for
any formula ¢, possibly with parametres from », there exists a formula y, possibly
with parametres from M, such that for any ¢ € M,

N k= ¢(a)iff M |= y(a).

Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 04 Oct 2025 at 22:52:34, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10112


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10112
https://www.cambridge.org/core

TRUTH AND COLLECTION 5

The presence of parametres from N is a crucial requirement in the above definition.
Without them, the conclusion would follow trivially by elementarity. One of the key
facts from the model theory of PA states that conservative-extensions exist (in fact,
conservative extensions automatically have to be end-extensions).

THEOREM 9 (MacDowell-Specker; Gaifman). Let M be an arbitrary model over
a countable signature satisfying the induction scheme for the full language and all
axioms of PA. Then M has a proper elementary conservative end-extension N.

The statement and the proof of the above result can be found in [10, Theorem
2.2.8].> An important class of models are x-like models, of which we will need a
special case.

DEeriNITION 10. Let M | PA. We say that M is an w;-like model if |M| = Ny,
but any proper initial segment of M is countable.

The proof of the existence of w;-like models is the prototype for the argument
presented in this work.

THEOREM 11. Let M |= PA be an arbitrary countable model. Then there exists an
elementary w;-like end-extension M <, N.

Proor. By repeatedly using Theorem 9, we can construct a sequence of countable
models M, a < w; such that for any a < f,

M, <. M/g.

Let N =,<, Ma. Then N |=PA as a union of an clementary chain. N has
cardinality 8;, and for an arbitrary proper initial segment /, there exists an element
a € N, such that a ¢ I. Let a < w; be any ordinal such that a € M,,. Then, since
N is an end-extension of M., I C M, and hence it is countable. This shows that NV
is wq-like. =

In our article, we will use a technical condition on cuts of models of PA.

DEerINITION 12. Let M |= PA. We say that a subset 7 of M is a cut of M if the
following conditions hold:

eForanya € I andanyb <a.b e M.
e For any a € I, the successor of a belongs to 1.

Cuts in models of arithmetic are a classical subject of intensive study in which a
number of their structural properties were isolated. In our argument, we will isolate
anew, very weak, regularity condition, whose definition we postpone until Section 4.

2.3. Truth predicates and satisfaction classes. In the literature, there are two
competing treatments of the truth-like notions. The first one, more traditional,
originates in the theory of models of PA and speaks of satisfaction classes which
are treated primarily as subsets in models of arithmetic. The other stems from

5Note that the authors use the following convention: “model” means precisely “a model of a theory
over a countable signature satisfying the induction scheme for the full language and all axioms of PA”
as explained on p.1 of the cited source.
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6 BARTOSZ WCISLO

discussions in philosophical logic and speaks of truth theories which are treated
primarily in the axiomatic manner.

Intuitively, a satisfaction class in a model M = PA, should be a set S of pairs
(¢, ), where ¢ is an arithmetical formula in the sense of the model and « is a
¢-assignment such that, collectively, the pairs in S satisfy Tarski’s compositional
conditions. However, we are often interested in such classes where S is only required
to work for some subset of formulae in the model. This, however, makes the
notion of a satisfaction class somewhat subtle. In particular, the exact definition
of a satisfaction class in not quite consistent between different authors. Below, we
present the version from [20] which, we believe, captures various uses of the notion
most smoothly.

DEFINITION 13. Let M = PA.letS € M2, andlet € Form,, (M ). We say that
S is compositional at ¢ if for any o € Asn(¢), (¢.a) € S iff one of the following
conditions hold:®

e There exist s, # € Term g, (M) such that ¢ = (s = 7) and s* = 1%,

e There exists y € Form,, (M) such that ¢ = -~y and (y.a) ¢ ¢.

e There exist .5 € Formg,, (M) such that ¢ =y Vy and (y.a) €S or
(n.a)cS.

e There exist y. 7 € Form,, (M) such that ¢ = w A and both (y. ) € S and
(n.a)cS.

e There exists y € Form,, (M) and v € Var such that ¢ = Joy and S(¢. o)
holds iff S(w. B) holds for some f ~, a i.e., B € Asn(y) such that f(w) is
equal to a(w) for all w different from v (which is not required to be in the
domain of j8).

e There exists y € Form,, (M) and v € Var such that ¢ = Voy and S(¢. o)
holds iff S (., #) holds for all f ~, a.

We say that a set S C M? is a satisfaction class if there exists a set D C
Form,, (M) such that

e D is closed under taking direct subformulae.

e For any ¢ € D, S is compositional at ¢.

e For any ¢ € D and any a € Asn(¢), either (¢, ) € S or (—¢.a) € S.

e Forany ¢ € Formg,, . if there exists an  such that (¢. ) € S or (—¢. ) € S,
then ¢ € D.

We call the maximal set D satisfying the above conditions a domain of S, denoted
dom(S). If the domain D of S is the whole set Form,, (M ). we say that S is a full
satisfaction class.

Unfortunately, it turns out that in the absence of some form of induction, the
connection between truth predicates and satisfaction classes is not as clear-cut as
one could hope. A discussion of that phenomenon may be found in [20]. However,
the distinction between truth and satisfaction classes trivialises if we assume that
certain regularity properties holds and the truth value of a formula does not depend

The expression Term,,, refers to the arithmetised definition of arithmetical terms; x € Asn(y)
means that y is a term or formula and x is a y-assignment, i.e., a function whose domain is the set of free
variables of y.
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TRUTH AND COLLECTION 7

on the choice of specific terms, but rather on their values and it does not depend on
the choice of the specific bound variables. We will present the exact assumptions on
truth and satisfaction classes in question in the next section.

2.4. Syntactic templates and regularity. As we mentioned before, in the main
proof we will need a technical condition on the regularity of the constructed
truth and satisfaction classes. We will now spell out those. admittedly tedious,
technicalities. Similar considerations played the same role in our previous works,
such as [15] or (in a somewhat different formulation) in [20].

DEerFINITION 14, Let ¢ be an arbitrary formula. By the syntactic template of ¢, we
mean the unique formula ¢ such that:
1. ¢ differs from ¢ only by term substitution and renaming bound variables.
2. There are no complex terms in ¢ (i.e., terms containing function symbols)
which contain only free variables.
. The formula ¢ contains no closed terms.
. Every free variable occurs in ¢ at most once.
. Every bound variable in ¢ is quantified over only once.
. The choice of free and bound variables is such that ¢ is the minimal formula
satisfying the above conditions.
If a = i/, we say that ¢ and y are syntactically similar. We denote this relation by
¢~y
In essence, a syntactic template represents the pure syntactic tree of a formula in
which all the terms which involve no bound variables were erased and replaced by
single variables. Terms which appear under quantifiers are essential for a formula,
so we do not modify these.

EXAMPLE 15. Let ¢ := = (S(x +5(0)) =y x z) .
Then in ¢, we replace the term S(0) with a free variable v, and since the term

S(x + v) has only free variables, we replace it with a free variable, say vo. Similarly,
we replace y x z with a free variable, say v;. Thus, we obtain:

AN N AW

~

¢ := —=(vo = v1).
EXAMPLE 16. Let ¢ := Vxdy x = y + y. Then, the syntactic template of ¢ is q§:
Ywodw; wyg = w; + wi,

where wy and w; are chosen so as to minimise the formula. Notice that we do not
simplify any terms, since they all contain only bound variables.

ExampLE 17. Let
¢ = 3IxVy(x + (y x 0) = S(0) + (x x (z x v))).

Then the ¢ should satisfy the following conditions:

o The constant 0 and the term S (0) should be replaced with distinct free variables,
say wgp, wi.

"Note that in the examples below S below denotes the successor function. We will also use the same
symbol for satisfaction classes, but not in a single expression.
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8 BARTOSZ WCISLO

e The term z x v as a complex term with all variable free should be replaced with
a single variable (which we will call w,).

e The term x x (z x v) should be replaced with x x w,. Note that this is not
further replaced with a single variable, since x is not free. Similarly, in w; 4+ x x
(z x v), the addition should not be simplified any further, since one of terms
occurring on the right hand side is not free.

Applying these rules, we obtain:
¢ = JuoVoi(vo + (v1 X wo) = wy + (vo X wa)).
where the variables v;, w; are chosen so that the resulting formula is minimal.

One of the reasons to introduce syntactic templates is because, as already
mentioned, we would like to work with satisfaction classes and the connection
between satisfaction and truth classes is not quite as neat, as one could expect and
some regularity assumptions seem to be required to actually ensure that actually
the two notions coincide. Below, ¢[a] is the sentence obtained by substituting the
numeral o (v) for every instance of the variable v in the formula ¢.

DEFINITION 18. Let M |= PA. Let ¢. y € Formg,, (M). let o € Asn(¢). and let
B € Asn(y). We say that the pairs (¢, «) and (y, B) are syntactically similar iff
¢ is syntactically similar to w and there exist sequences of closed terms 5,7 €
ClTermSeq ,, (M) such that:

° 5% = t° (the terms in both sequences have the same values).
e ¢(5) differs from @[] only by renaming bound variables.
e ¢(1)(= (1)) differs from w[f] only be renaming bound variables.

—
=
-
=
<]

e}

airs (¢, o), (v, B) are syntactically similar, we denote this fact with

(¢.a) ~ (w.B).

The above notion is actually much simpler than the definition suggests. In essence,
we want to say this: Given a formula ¢, we may look at its pure syntactic tree
represented by ¢. In ¢, we will see some free variables. If o is a ¢-assignment, it will
actually decide the values of these variables in a unique way. Then the similarity of
pairs (¢, @) ~ (w. B) means that ¢ and w have the same pure syntactic tree and o,
yield the same assignment of the free variables of in the formula representing that
tree.

ExampLE 19. Let

¢ :=x=S5(0)
v = SSS(0) = y.

Let a be a ¢-assignment such that

a(x) = 3.
Let f be a w-assignment such that

Bly) =2.
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TRUTH AND COLLECTION 9

Then (. a) ~ (. B). Indeed, we have ¢ = i equal to:
vo = vy
and if § = 7 = (SSS(0). SS(0)), then:
$(3) = ¢lal = wIp] = (7).
ExaMPLE 20. Let
¢ :=3xVy (x + (y x S(S(0))) = z x (5(0) + 5(0)))
w =320 (2 + (v x (u +w)) = S(S(S(5(0))))).
Let o € Asn(¢) be an assignment such that
a(z) = 2.
Let f € Asn(y) be an assignment such that
Blu)=1.p(w) = 1.
Then (4. @) ~ (. B). Indeed. this is witnessed by ¢ = i equal to:
JvgVvy (vo + v X wy = wl).
and sequences 3, 7 such that:
5 = (5(5(0)). 5(5(0)) + (S(0) + S(0)))
= (S(0) + 5(0). S(S(5(5(0)))))-
Then
(5) = Fug¥ur (v + (v1 x S(5(0))) = S(5(0)) + (S(0) + 5(0)))
¢la] = 3xVy (x + (v x S(5(0)) = S(5(0)) + (5(0) + 5(0)))
which differ only by renaming bound variables. Moreover,
w (1) =3woVor (vo +v1 x (S(0) + S(0)) = S(S(S(5(0)))))
w1 =3zVv (z + (v x (S(0) + S(0))) = S(S(S(5(0))))).
which differ only by renaming bound variables.

As we already mentioned, we want to restrict our attention to classes for which
good regularity properties hold.

DEerFINITION 21. Let (M, S) be a satisfaction class. We say that S is syntactically
regular if for any ¢,y € Formg,, (M) and a € Asn(¢). f € Asn(y) if (¢.a) ~

(w, B). then
(p.a) € Siff (w.B) € S.

Let (M. T) = CT . We say that T is syntactically regular if for any ¢,y €
Sent ¢, (M) if (¢.0) ~ (w.0) (note that @) is the empty function and can be treated
as a trivial assignment),

peTiffy el
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10 BARTOSZ WCISLO

Under these regularity assumptions, we can actually make a straightforward
connection between truth predicates and satisfaction classes.

PROPOSITION 22. Let M = PA and let S be a full syntactically regular satisfaction
class on M. Let

T ={¢ € Sentr, (M) | (¢.0) € S}.

Then (M. T) = CT and, moreover, T is syntactically regular.
Conversely, suppose that (M. T) = CT™ and that T is syntactically regular. Let

S ={(¢.a) € M* | ¢ € Formy,,(M).a € Asn(¢). and pla] € T}.

Then S is a full syntactically regular satisfaction class.

If S and T are interdefinable in the way postulated in the above proposition, we
say that S is a satisfaction class corresponding to T and that T is a truth predicate
corresponding to S. A slightly different statement, in which we used weaker regularity
assumptions appeared as [20, Proposition 15]. The definition of syntactic regularity
formulated in this work assumes that a syntactically regular satisfaction class is
closed under renaming bound variables (equivalently, under a-conversion). This is
not needed to obtain the above correspondence, but will be used in the proof of
the main theorem. However, some regularity assumptions apparently are needed in
order to obtain the above simple correspondence as discussed in the cited article.

Crucially for our article, we have the following.

PROPOSITION 23. Let M |= PA be a countable recursively saturated model. Then
there exists T C M such that (M, T) = CT + INT and T is syntactically regular.
Moreover, the same holds for CT 4+ INTColl.

This fact appeared as[15, Theorem 23]. The proof of this fact was strictly speaking
omitted, but the proofis a (completely straightforward) modification of an argument
which appeared there with a precise comment on what modification is needed.

§3. The conservativity of collection. In this section, we present the strategy for
the proof of conservativity of the compositional truth predicate with the collection
axioms, relegating the demonstration of the crucial technical results to next sections.
Let us start with a basic observation already suggested by Kaye as the main tool for
the argument we present in this article.

PROPOSITION 24.  Suppose that M |= PA is an w,-like model and that S C M is an
arbitrary subset. Then the expansion (M, S) satisfies the full collection scheme.

PrOOF. Let ¢ be an arbitrary formula in the language £Lps expanded with the
symbol S. Fix any a € M and suppose that

(M, S) EVx <ady ¢(x.p).
Let f : M — M be a function such that for any x € M which is smaller than «,
(M.S) E o(x. f(x)).

8Note that below S refers to the satisfaction class, not the successor function. We will not have to
refer explicitly to successor function anymore.
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TRUTH AND COLLECTION 11

Since M is w;-like model, the interval [0, a] is countable. Therefore, the image
f110, a]| cannot be cofinal in M. This means that there exists b € M such that
f110,a]| € [0, b]. In particular,

(M. S) EVx<ady<bo(x.y).
Since ¢ was arbitrary, (M, S) is a model of the full collection. —

As a matter of fact, our argument for conservativity of collection follows exactly
the path suggested by the above result.

THEOREM 25. Let M |= PA be an arbitrary countable model. Then, there exists

an w-like elementary extension M’ = M and a full syntactically regular satisfaction
class S ¢ M.

The main goal of the article is to prove Theorem 25. One obvious potential strategy
for a proof would be to show that for an arbitrary countable model (M, T) |
CT . one can find a proper end-extension (M', T’) =, (M, T'). However, this direct
strategy cannot quite work, since as demonstrated by [19], countable models of CT~
do not necessarily have end-extensions.

THEOREM 26 (Smith). For any countable recursively saturated model M = PA,
there exists T C M such that (M, T) = CT and there is no (M',T') 2, (M, T)
satisfying CT .

The proof uses the following result which can be found in [19, Theorem 3.3].

THEOREM 27 (Smith). Let M be a countable recursively saturated model of PA.
Let A C M be an arbitrary set such that the expansion (M, A) is recursively saturated
in the expanded language. Then there exist T C M and ¢(v) € Form%}m such that

(M, T) = CT and
A={xeM | (M.T)E To(x)}.
Now, we can prove theorem 26.

PrOOF. Let M = PA be countable and recursively saturated. Pick any ¢ € M in
the nonstandard part. Then there exists a bijection between [0, a] and M. We claim
that there exist an expansion (M, T') = CT and a formula ¢(x. y) € Form,, (M)
such that the following hold:

o (M.T) EVx <adly To(x,y).
o (M.T) =Vy3lx <a Te(x,y).

In order to see that such a T exists, fix an arbitrary @ € M and an arbitrary 4 C M
which is a bijection between the initial segment [0, @] and the whole model such
that (M, A) is recursively saturated (such an A exists by the resplendence of M).
Then by Theorem 27, the set 4 can be captured under the truth predicate by some
¢ € Formg,, (M).

Notice that by the compositional axioms, these conditions can be equivalently
rewritten as:

o (M.T) =T (Vx < ad yp(x.p)).
o (M.T) =T (VyIx <aTo(x.y)).
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12 BARTOSZ WCISLO

Now, suppose that (M', T’) D, (M, T) satisfies CT . Thenin (M’. T"), ¢ defines a
bijection between [0, a]” "and M’ under the truth predicate. Moreover, this bijection

extends the one defined in (M. T'). However this is impossible, since [0, a]” =
[0,a]™.but M # M’'. =

Notice that in the above example, we used the fact that collection was violated
for a formula of the form T¢(x, y). One can wonder whether this is in fact the only
possible obstruction to the existence of end-extensions. It turns out that the answer
to this question is indeed positive. For simplicity, we will first prove the end-extension
result under slightly stronger assumptions, which we will relax in Section 5.

THEOREM 28. Let (M, T) |= CT + INT be a countable model with T syntactically
regular. Then there exists a proper end-extension (M, T) C, (M',T') = CT + INT
satisfying the syntactic regularity condition.

The proof of the above result is the heart of this work. We will present it in the
next section. Before we do, let us draw our main corollary.

THEOREM 29. Let M |= PA be an arbitrary countable model. Then there exists an
elementary extension M < M’ such that M’ is w:-like and there exists T C M’ for
which (M',T) = CT".

ProoF. Fix an arbitrary countable model M = PA. Let M, = M be a countable,
recursively saturated model of PA. By resplendence, we can find an expansion of
My to a model (M, Ty) = CT +INT with Ty syntactically regular. We define
inductively a sequence of countable models (M, T, ), a < w satisfying CT 4 INT
as follows:

o (Myy1.Toi1) De (My. Ty) is an arbitrary proper end-extension satisfying

CT + INT.

o (M;.T;) = Uy</1(Mys T,) for limit 4.

The models at successor steps can be constructed by Theorem 28, so we only
have to check that the induction hypotheses can be maintained in the limit steps.
However, it can be checked in a straightforward manner that the compositional
clauses of CT are preserved in the unions of models. Also notice that over CT ,
the internal induction is equivalent to a IT;-sentence saying “all the instances of the
arithmetical induction scheme are true”, so it is also preserved at the limit steps. -

We can now complete the main line of the argument.
THEOREM 30. CT  + Coll is conservative over PA.

ProoOF. It is enough to show that for an arbitrary arithmetical sentence ¢, if
PA + ¢ is consistent, then CT™ + Coll + ¢ is consistent.

Suppose that PA + ¢ is consistent and take any countable model M |= PA + ¢.
By Theorem 29, there exists an elementary w, -like extension M’ > M with a subset
T C M’ such that (M’ T) = CT . By Proposition 24, (M’, T') is actually a model
of CT + Coll. By elementarity, M’ |= ¢. so (M’, T') witnesses the consistency of
CT + Coll + ¢. o

Actually, since our methods really rely on the countability of the models involved
in the construction, it is unclear whether we can show the existence of k-like models
of CT™ for an arbitrary k.
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TRUTH AND COLLECTION 13

QUESTION 31. Let M |= PA be an arbitrary countable model and let k be an

arbitrary cardinal. Does there exist a k-like model M’ —, M which expands to a
model of CT?

§4. End-extensions of satisfaction classes. In this section, we will prove the main
result. As we mentioned in the previous section, the key step is to prove that
the countable models of CT™ + INT always have end-extensions. For the technical
convenience, in this section we will switch to the language of regular satisfaction
classes. By Proposition 22, in our framework they directly correspond to the models
of CT  satisfying full regularity.

The structure of argument will be divided into two main parts:

e First we show that given a countable model M of PA carrying a full regular
satisfaction class which satisfies the internal induction, we can end-extend it to
amodel M’ with a partial satisfaction class whose domain includes all formulae
with the syntactic depth in M and such that M is a nicely behaved cut of M’.

e Then we prove that if a countable model M’ has a partial satisfaction class
whose domain consists of formulae with the syntactic depth in a certain nicely
behaved cut, then in M’ we can find a full satisfaction class. Moreover, internal
induction can be preserved in this extension.

The next two sections will be devoted to those two main steps of the proof. In
particular, wee will make precise the requirements we impose on the cuts in question.

4.1. Stretching Lemma. In this part, we will discuss the first of the main steps
in the end-extension theorem. The key ideas of this subsection appeared already in
[15]. However, since we will need to extract some additional information from the
construction, we will present here the full proof.

As we already mentioned, we will need to impose certain regularity conditions
on the cuts arising in our construction. The exact choice of the condition is rather
subtle.

DEeFINITION 32. Let I C M = PA be a nonstandard cut. We say that [ is locally
semiregular in M if for any nonstandard a € I and any function f :[0,a] - M
coded in M, there exist a nonstandard ¢’ < a and b € I such that the following
condition holds:

SI0.a" TN T € [0.5].

A word of comment is certainly in place. One of the conditions on cuts, classically
investigated in the theory of models of PA, is semiregularity. We say that a cut /
is semiregular in M if for any function f coded in M with the domain [0, «] for
some a € I, the set of thhe values f (i) such that /(i) € I is bounded in I. Local
semiregularity wekens this condition, demanding instead that the function f can be
restricted to a nonstandard initial segment so that the bounding condition holds.

Admittedly, this is a somewhat technical requirement. However, the choice of
this exact condition will be crucial in Section 5, since we were not able to show
the main end-extension result from that part which would guarantee any stronger
regularity requirements on cuts. On the other hand, any weaker conditions known
in the literature do not seem to suffice to perform the copying construction of
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14 BARTOSZ WCISLO

Theorem 34. However, let us remark that we actually do not need the notion of local
semiregularity in the context of the internal induction. In Lemma 33, we can obtain
a stronger conclusion that the elementary extension we obtain is conservative and
we can assume in Theorem 34 that the cut / is a model of PA such that M is its
conservative extension. However, this would not really simplify the argument in any
substantial way, so we decided to prove it in the greater generality. Nevertheless, the
reader who is confused by the notion of local semiregularity may completely ignore
it in this section and instead think of conservative extensions. Let also us add that
we were also not able to find any condition previously known in the literature which
would be equivalent to our new notion.

LemMa 33 (Stretching Lemma). Let M |= PA be a countable model and let S C
M? be a full regular satisfaction class satisfying the internal induction. Then there
exists a proper end extension (M, S) C (M, S") such that:

o S’ is a regular partial satisfaction class.

e Forany ¢ € Formy,,(M'). ¢ € dom(S’) iff dp(¢) € M

o S’ satisfies the INT.

o The extension M <, M' is elementary and M is a locally semiregular cut of M'.

Proor. Fix a model (M., S) as above. For any ¢ € Formg,, (M). let Sy be the
set:

Sy ={a | (¢.a) € S}.

Consider the model (M. Sy) s . By the INT, this model satisfies full induction.
Since M is countable, the signature of the expanded model has only countably many
symbols. Thus by MacDowell-Specker Theorem, there exists a proper conservative
elementary end-extension

(M. Sg)pem <o (M, Sqlb)qSEM-

Now, let S’ C (M')? be defined by the following condition: (¢.a) € S’ iff there
exists a pair (. ) such that:

o (y.p) ~(¢. ).

sy cM.

* Sy, (f) holds.

In other words, we take a union of sets Sj, and close it under syntactic similarity.
We can then check that by elementarity of the extension (M’, S;)(pe » and by the
regularity of S, the constructed set S’ is a regular satisfaction class satisfying internal
induction. The syntactic regularity of S’ follows directly by construction.

We have to check that M is a locally semiregular cut of M’. (In fact, we will simply
verify that conservativity implies semiregularity). Let

f:00.a] = M’

be a function coded in M’. We want to check that for any b € M, there exists
¢ € M such that the values of f | M are bounded by c. Since f is coded in M’,

If ¢ is a formula in the sense of M, then by dp(¢) we mean the height of the syntactic tree of ¢
(where we do no count the complexity of terms).
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TRUTH AND COLLECTION 15

by conservativity of the extension (M. Sg)gpem < (M'. S;)gem. the set f N M is
definable in the former structure. However, since this model satisfies full induction in
the expanded language, the values of (f | [0, ]) N M have to be bounded in M.

‘We will discuss in Section 5 how internal induction can be eliminated from the
above argument.

4.2. Copying Lemma. In the previous section, we have shown how to extend a
satisfaction class “upwards” so that it is still defined for all the formulae in the
original model. In this section, we will discuss the essentially novel part of our
argument: we will show how, under additional model-theoretic assumptions, we can
extend a satisfaction class defined on a cut of formulae to the whole model. Our
argument crucially uses ideas introduced by Fedor Pakhomov in his construction of
a satisfaction class presented in his unpublished note [16]."°

THEOREM 34 (Copying Lemma). Let M = PA be a countable model. Let I C M
be a locally semiregular cut in M. Suppose that there exists a syntactically regular
satisfaction class S C M? whose domain consists of formulae with depth in 1. Then
there exists a full regular satisfaction class S’ D S. Moreover, if S satisfies internal
induction, then S’ also satisfies it.

PrOOF. Let, M, I, S be as in the assumptions of the theorem. Let D be the set of
all formulae in M whose syntactic depth isin 7 (i.e., D is the domain of .S). We will
construct a function f : Formg,, (M) — D satisfying the following conditions for
any ¢, y € Formg,, and any v € Var(M):

e fID=

o Forany ¢.y if ¢ ~ y. then f(¢) ~ f ().

-f(ﬂ¢>)=ﬁf( ).

flonw)=r1(@)Af(y).
flovy)=r1(g)V fiy).
f(Bvg) =3vf(9).

. f(Vv¢) Vuf (o).

We will define inductively a sequence of partial functions satisfying the above
conditions for a given formula and its subformulae laying at certain depth of the
syntactic tree. We will make sure that the functions will be compatible between
different formulae and then we will glue them together.

For a formula ¢ € Formg,, (M) and a € M. let U(¢. a) be the set of formulae
w such that w ~ v’ for some ' located at most at the depth « in the syntactic tree
of ¢.

Fix an enumeration (¢;)ic, of Formg, (M). We will define a sequence of
nonstandard elements of M, ayp > a; > a; ... and functions f, f1, ... such that each
function f; satisfies the following conditions:

10The construction described in the note was discussed in the Autumn 2020 in the talk [17] seminar
“Epistemic and Semantic Commitments of Foundational Theories.” The slides and the recording of the
talk are available at the seminar webpage given in the bibliography.
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16 BARTOSZ WCISLO

o fi:Ul(¢i.a;) — Formg,, (M).

o If i <k, then f; [ U(gi.ar) NU(¢k.ax) = fi | Ulgi.ar) N U(gy. ax).

e f; commutes with quantifiers and connectives in the sense postulated for f.

o /i | D=1d.

o If ¢ ~ . then f(¢) ~ fi(y).
Notice that we do not require that fo C f| C f; or that the functions f; agree on
the whole common domain. Finally, we will set:

(@)= fi(e).

where ¢; = a (so i is the index of the template of ¢ in our enumeration).

Let us check that f defined in this way indeed satisfies our conditions. It is
enough to check that f preserves syntactic operations, since the other conditions
follow directly by assumption on the functions f;. We will check the condition
for conjunction, the others being similar or completely analogous. So let us fix
formulae ¢, w. Suppose that ¢ ~ ¢p. w ~ @1, ¢ Ay ~ ¢,,. Letn = max(k, [, m). Let
U = U(¢)m= an) N U(¢k, an)v U, = U(¢mv an) N U(¢17 an)‘ Then

fk rUl:fmrUl

and
JiT U= fum ] Us.

In particular f(¢) = f.(¢). f(v) = f(w) and the claim follows, since f,,
preserves the syntactic structure. So it is enough to construct the sequences ( /). (a;)
as above. We will also construct an auxiliary sequence (c;) of the elements of M.

Let ag be an arbitrary element of the cut /. The construction of f is very similar
to the construction of functions f;; in the successor steps, so we will go directly
to that case indicating the (small and obvious) differences whenever they appear in
the proof.

Let a := a,, be an arbitrary nonstandard element of 7 such that:

Ay
a,1+12“"+1 < 7

Let ¢ := ¢, 1. Now, consider the set U (¢, a). Since a € I, by local semiregularity
of this cut we can conclude that (possibly after replacing @ with a smaller element
a’ which we will for simplicity still denote @) there exists ¢ := ¢, € I such that all
subformulae of ¢ which occur at the depth a in its syntactic tree of have themselves
syntactic depth either < ¢ or notin 1."

Consider the following relation <:

¢y
iff there exists a coded sequence of formulae:

&o.¢1.-...¢)

" This is the only place where we use local semiregularity. The reader can verify that the existence
of a’ and ¢ satisfying the above conditions easily follows from the assumption that M is a conservative
extension of / and both are models of PA.
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TRUTH AND COLLECTION 17

such that & = ¢, &, = » and for any i, &; is a direct subformula of &;;; and ¢; €
U(¢.a).In other words, ¢ <l # means that ¢ is a subformula of # as can be witnessed
using only formulae from U (¢, a).

We want to define the function f := f,; : U(¢.a) — Formg,, (M) so that it
commutes with the syntactic operations. We actually will need a small technical
definition. Let us say that a formula { € U(¢, a) is weakly minimal with respect
to < if it has a direct subformula which is not in U(¢, a). Such formulae can be
different from <-minimal formulae in the case their main operator is binary, one of
the formulae is in U(¢. a), and the other is not.

It is enough to define the function f on the set weakly minimal formulae
from U(¢.a) and then extend the definition to the whole U(¢,a) by induction
(applied internally in the model). In this manner, we will obtain a function £,
commuting with all connectives and quantifiers, whenever a formula and all its
direct subformulae are in the domain. -

Now pick any weakly <J-minimal formula y. We consider two cases.

Case I There exists k < n + 1 such that w € dom(f). Then we set f(y) =
f«(w), where k is the maximal such index. (When we construct the function 1. we
simply omit this step.)

Case II Otherwise, let f (w) be the formula w with every subformula at the level
¢ in the syntactic tree replaced with the sentence 0 = 0.

As mentioned before, the function f* can be then uniquely extended to the set
U(¢. a) by induction on < performed in the model M. So it is enough check that
the sequence of functions ( f,) defined above satisfies our requirements.

It is clear by definition that for all n, f, is defined on U(¢,.a,) and that it
preserves the syntactic operations. We need to check that these functions are the
identity when restricted to D, that they are congruent with respect to ~, and that
they satisfy the agreement condition.

4.3. The identity condition. We prove by induction on n that f, [ D =id. The
initial case will be very similar to the induction step, so we only present the latter.

Fix any formula w € D N U(¢,; 1. a,.1) and first assume that y is <-minimal. If
v € dom(f}) for some k < n, then f,,1(v) = f;(w), where [ is the maximal index
for which v € dom(f;). Then by induction hypothesis f;(y) = w which proves the
claim.

If w ¢ dom(fy) for k < n, then f,.(w) is the formula y with any subformula
at the syntactic level ¢, | replaced with a sentence 0 = 0. However, by construction
any formula with the syntactic depth from I which belongs to U(¢,1,a,,1) has
syntactic depth strictly less than ¢, 1, so in fact the described substitution is trivial
and f,.1(w) = w. Then it is enough to observe that on nonminimal formulae £,
is defined by induction on < which clearly preserves the identity condition, since the
set D is closed under subformulae.

4.4. The congruence condition. We check by induction on n that for any w,7 €
dom(f5) if y ~ 5. then £ () ~ f,(n).
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18 BARTOSZ WCISLO

Suppose that w.n are weakly minimal in U(¢,.a,). First suppose that y ¢
dom( f) for some k < n. Notice that the set U (¢y. ay ) is closed under ~, so in such
case both ¢ and y are in dom( ) and by induction hypothesis, f,(w) ~ f.(n).

If, on the other hand. w.n ¢ dom(f) for any k < n, then f,(w) and f,(y) are
defined by substituting 0 = 0 for any subformula at the syntactic depth ¢ in these
formulae. Notice that if y ~ #, then their syntactic trees were equal up to term
substitutions and renaming bound variables. In such a case, those trees with 0 = 0
substituted for all formulae at the depth ¢ will still be equal.

Now., we can check by induction that f, is a congruence with respect to ~ on the
whole U(¢,. a,) by induction on <, applied internally.

4.5. The coherence condition. We want to check that if i < k, then

fiTU(gi.ar) N U(gr.ar) = fic 1 Ui ax) N U (. ay).

We can inductively assume that the desired equality holds for any j < i:

filU(gi.a)) NU($r.a;) = f; 1 Ulgi.a;) N U(¢;.ay).

Fix any ¢ € U(¢;.ar) N U(¢y. ar). Consider any weakly minimal v € U(¢y. ax)
which is <-below ¢ in U(¢y, ax).
Now, observe that any <I-chain in U (¢y. a;) has at most

a 2%

elements, since for any ~-representative # of ¢y, there are at most that many
subformulae of # in U(¢y. a;) (since they form a tree with at most binary branches
of height at most ay ). Since a;2% + a; < a;, all such weakly minimal formulae w
are in U(¢;. a;) and. in fact in U(¢;. a;) for any j < k. Now, by construction, for
any such formula y we have:

fk(l//) = fn?(vl):

where m > i is the greatest index smaller than k such that w € U(. a,). In
particular, by the above remark

Ve U(Qsm-,am) N U(¢[7a171)'

Hence, by induction hypothesis,

fm(l//) :fi(l//)e

and, consequently,

fk(l//) = fm(l//) = fl(l//)

Since f(¢) is uniquely determined by the values on weakly minimal formulae which
are <-smaller than ¢ in U(¢y, a;) and as we have just argued, all such chains are
also contained in U(¢;, a;), we conclude that

fi(@) = fi(8).

This concludes the proof of the coherence clause and therefore of Theorem 34.
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TRUTH AND COLLECTION 19

4.6. The proof of the main theorem. In this section, we will put together the
findings of the two previous parts in order to prove Theorem 28, showing that any
countable model of CT™ + INT has an end-extension.

PROOF OF THEOREM 28. As in the formulation of the theorem, let (M, T') = CT +
INT be a countable model. Let S be a full regular satisfaction class corresponding
to 7. By Lemma 33, there exists a proper end-extension

(M.S) c. (M".S")

such that S’ is a regular partial satisfaction class whose domain consists of formulae
with depth in M with M being a locally semiregular cut in M’. Morevoer, the
obtained satisfaction class satisfies INT.

Now by Theorem 34, there exists S” O S’ such that (M’, ") is a full syntactically
regular satisfaction class with the internal induction. Let T’ be a truth class
corresponding to S”. Then (M’, T') = CT + INT is a desired end-extension.

§5. Internal collection. In the previous sections, we have shown that for any
complete consistent theory in £Lps extending PA. there exist a model M satisfying
that theory which features a full truth class satisfying the full collection scheme.

However, the fact that we needed to use the internal induction as a vehicle for
obtaining end-extensions seems to be an artefact of our argument rather than
genuine necessity, especially since internal induction does not seem to follow from
full collection. Therefore, it is natural to ask, whether an analog of Theorem 28
holds for some weaker theories. A natural candidate for such an analog seems to be
the principle of the internal collection.

DEerFINITION 35. By the internal collection axiom (INTColl), we mean the
following principle:

Vo € Form%}iAVa (Vx <ady To(x.y) —» 3bVx<aldy<b Tqﬁ(ﬁ,l)).

Mimicking the usual proof that induction implies collection, we can show using
compositional conditions that the INT entails the INTColl. In particular, both are
conservative over PA.

As we already mentioned, internal induction can indeed be replaced with internal
collection in our argument.

THEOREM 36. Let (M, T) |= CT + INTColl be a countable model. Then there
exists an end-extension (M, T) C, (M'.T") = CT + INTColl.

The proof of the theorem is entirely parallel to the argument for internal induction.
The only place in our argument in which internal induction was actually used was
to assure in the proof of Stretching Lemma 33 that in the end extension (M, T) C,
(M', T') we can arrange M to a locally semiregular cutin M’. We actually invoked a
significantly stronger fact. By using MacDowell-Specker Theorem, we assured that
we produced a conservative end-extension of models

(M. Sg)pem =<e (M, S(;)qﬁeM’
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and concluded that M is a semiregular cut in M’. Unfortunately, if (M, S) satisfies
only internal collection, in general the model (M. Sy)secr Will not satisfy full
induction, so MacDowell-Specker theorem cannot be applied. This is where we
turn to local semiregularity. It is a weaker condition which can be arranged in the
context of INTColl and which fully suffices for our proof.

In the proof of Theorem 36, we will use more than just slicing having an extension.
The following result by Smith [19, Theorem 3.1], will play a crucial role.

THEOREM 37. Let M |= PA and let S be a full satisfaction class on M. Let ¢ €
Formg,,(M). Let

Sy ={a € Asn(¢) | (¢.a) € S}.
Then the expansion (M, Sy) is recursively saturated.

As an immediate corollary, we see that the slicing (M, Sy)secp of a model with
a full satisfaction class satisfies a good deal of saturation. Let us give this kind of
saturation a handy name.

DEerINITION 38. Let M be an arbitrary model. We say that M is locally recursively
saturated if any recursive type p in which only finitely many symbols from M are
used is realised in M.

COROLLARY 39. Let M be a countable model with a full satisfaction class S
satisfying the internal collection. Then the slicing (M, Sy)pem is a locally recursively
saturated structure in a countable language satisfying the full collection scheme.

Proor. This is an immediate corollary to Theorem 37. If we expand M with any

finite set of predicates Sy, .....Sy,. the resulting structure is recursively saturated
since these predicates can be defined from one predicate S,, using the arithmetical
coding of tuples. =

It seems that the use of coding was in fact not necessary in the above argument
and we could simply reprove Smith’s result directly for finite tuples of predicates.
Now we are ready to state the analog of MacDowell-Specker Theorem which works
in the context of the local collection.

THEOREM 40. Let M be a countable locally recursively saturated model over a
countable signature which satisfies PA and the full collection scheme. Then there exists
a proper elementary end-extension M <, M’ such that M is a locally semiregular cut
of M'.

In the proof, we will use a simple observation which is very far from new or
original. It states the equivalence between the collection scheme and the so-called
regularity scheme.

LeMMA 41 (Compression lemma). Let M be a model in a language with a linear
ordering < without a largest element, which satisfies the full collection scheme. Let ¢
be a binary formula, let a € M, and suppose that there exist arbitrarily large y € M
such that for some x < a., ¢(x,y) holds. Then there exists xo < a such that ¢(xq. y)
holds for arbitrarily large y € M.
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Proor. Using the same notation as in the statement of the lemma, assume that
for an arbitrarily large elements y, there exists an x < a with ¢(x, y). Suppose that
for any x < a there exists z € M such that for any y > z, —~¢(x, z) holds. Let:

w(x,z) = Vy(y >z ﬂ¢(x,y)).

By assumption, for any x < a, there exists z € M such that M = y(x,z). By
collection, there exists b such that for any x < a, there exists z < b for which
M = y(x,z). In particular for any x < a and any y > b,

M | —¢(x. ).
contrary to our assumptions. —
Now we are ready to prove the main result of this section.

Proor oF THEOREM 40. The proof is an elaboration of the omitting types
argument. Let M be a countable model satisfying full collection and let ay, a1, ... be
an enumeration of its elements. Let ¢ be a fresh constant. We fix an enumeration
of all sentences ¢y, ¢, ... in the language expanded with constants ¢y, cj, ... and
dp. di. .... We assume that the constants ¢;, d; do not appear in the sentences ¢;, for
Jj < i. The constants ¢; are intended as Henkin constants. The constants d; will play
a slightly different role as bounds which allow us to satisfy the local semiregularity
condition.

We construct a chain of theories 7;.i < w. At each step we will construct
auxiliary theories 7}, T?, T?. T*. Throughout the construction, we assume that all
the theories are finite except for the addition of finitely many families of sentences
of the form:

d>a:aeM.

Each such family includes all parameters ¢ € M and at each step, we add such
families only for finitely many d. In effect, we can state of finitely many elements
that they are above M.

Let T, be ElDiag(M) together with all the sentences of the form ¢ > a, a € M.
Now suppose that we have defined a theory 7. -

Step 1. In order to construct T}, consider the sentence ¢;. If T; + ¢; is consistent,
we let 7! be that theory. If not, let 7! = T; + —¢;.

Step 2. In order to construct 77, consider again the sentence ¢;. If it was not
added to the theory constructed in the previous step, let 77 be equal to 7' If it was,
and it has the form vy (v), we add the sentence w(c;) to our theory. Note that c;
does not appear in 7; by our bookkeeping assumption.

Step 3. In the third step, we check whether the set of sentences of the form
ci>a,aeM
is consistent with 72. If yes. then we let 7 be obtained from 7 by adding this set.
Otherwise, there exists some b € M such that
T? b ¢; <b.

We claim that there exists d € M such that T? is consistent with the sentence ¢; = d.
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Suppose otherwise. By assumption 77 is EIDiag(M ) together with finitely many
types of the form ¢; > a.a € M together with finitely many additional formulae. By
considering the minimum of the elements c¢; and coding the whole tuple as a single
element, we can assume without loss of generality that Ti2 extends ElDiag(M) by a
single formula (¢, ¢;) and a single theory ¢ > @ : @ € M. (The constant ¢; could be
of course also eliminated. but we keep it for the clarity of the rest of the argument.)
By assumption 77 |- ¢; < b for some b € M.

Now, suppose that a theory 7 > a : a € M + ElDiag(M) + y(¢, ¢;) proves for
any d € M that ¢; # d. Notice, however, that this implies that forany d < b € M,
there exists ¢ € M such that:

MEt>a— —y(t.d).
Then, by Compression Lemma, there would exists a single element r € M for which:
M EVx>rvy <b-y(x,y).

However this contradicts our assumption on . Therefore, there exists in M an
element d < b such that for any a, we can find 1 € M with:

MEw(t.d)Nt>a.

Let us pick any such d and set 77 := T? + ¢; = d.

Step 4. Finally, we want to ensure local semiregularity. Suppose that ¢; is a
sentence expressing that some ¢, k < i codes a function with the domain [0, «] for
some a € M. Specifically,

¢ =Vx < aEI!y((x,y> € ck).

In the rest of the argument, let us denote ¢, with f for cleaner presentation. We will
also replace (x, y) € f with the more usual notation f(x) = y and treat f(x) as if
it were an independent term.

Claim. There exists ¢’ < a and b € M such that the following theory is consistent
(which clearly ensures local semiregularity):

T,-3+Vx<a’((f(x) <bV f(x) >d,~))+d,~ >p:pEM.

We begin with a bit of notation. Recall that 77 extends ElDiag(M ) with a sentence
n(co. ....ci.do. ..., d;_1) and finitely many sets of sentences of the form cj.di>q.q €
M . By considering the minimum of all the parameters and via coding of tuples, we
may assume that T,.3 extends ElDiag(M ) simply with a theory of the form:

n(f.t)+t>q:qcM,

where 7 is a single formula. Notice that by assumption #( £, t) implies that / codes
a function with the domain [0, ¢] in the sense explained above.
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Now, let us say that an interval [0, r] eventually visits an interval [b, p] if the
following holds:

ANVg > NVt, f3x < r(;y(t,f)/\t> g— f(x)e [b,p]).

We denote it with &(r, b, p).

Subclaim. There exists a nonstandard ag € M such that for some B, [0, a¢] does
not eventually visit any interval [b, p] with b > B.

To prove the Subclaim, notice first that for any n € w, there exists B for which
&(n, b, p) does not hold for any b > B. Indeed, if no such B exists, then by
successively taking intervals which are located higher up in the model, there exists a
family of intervals

[bo. po] < [b1. p1] < ... <[bu, pn] < [Bu+1. Put1]

such that [0, n] eventually visits all these intervals. However, this is impossible by
the pigeonhole principle, since the image of [0, n] under f cannot intersect n + 2
disjoint sets.

Now, we have just shown that the following set of formulae is a type over M (with
the free variable v):

ABYb.p > B =E(v,b.p) Av>n:n € w.

This type actually uses only finitely many symbols from the signature, so by local
recursive saturation, it is realised in M. By fixing a’ as an element realising this type,
we prove the Subclaim.

We are now ready to prove the claim. Let a’ be any element satisfying the subclaim
with a bound B. Fix any p, ¢ € M. We claim that there exist ¢, f, d; € M such that:

M):n(l,f)/\d,—>p/\l>q/\Vx<a’<(f(x)<B+1\/f(x)>d,-))

Indeed. by assumption there is no interval I above b such that [0, a’] eventually visits
I. In particular, there exist arbitrarily large ¢ such that #(¢, /) holds and

Vx<a f(x)¢[B+1,p+1].

By fixing any such f and 7> ¢, and setting d; = p+ 1, we find our desired
interpretation of these three constants in M such that our fixed finite portion of
the theory is satisfied. Let T*(=: T;), be the theory:

T} +vx<d'((f(0) <tV f(x)>d))+di > p:pe M.

with a’ chosen as in the proof and b’ := B + 1. (If ¢; was not of the specific form
considered, of course we set 7 = T?.)

The rest of the argument is completely routine. Let 7,, = |J,,, Ti. Consider the
Henkin model N given by T,. In the step for the theories 77, we have ensured
that every element of N is either greater than all the elements of M or one of these
elements. In the fourth step, we have ensured that any function on a domain bounded
in M which is definable in N can be restricted to one which has all values either
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smaller than a fixed element of M or greater than a fixed element of N which ensures
local semiregularity.

In the above proof, we have used the specific facts that our models admit some
degree of saturation which also involved some coding of functions. Admittedly, all
these assumptions seem somewhat tangential to the main idea of the stated result.
In fact, one could imagine another property which makes sense in a more general
context. Let M be any model over the signature with a binary symbol < interpreted
as a linear order. Let 7 be an initial segment of M. We say that I has a gap property
in M if for any formula ¢(x, y) and any a € I, if

M E=Vx < a3y ¢(x.p).
then there exist b € I, ¢ € M such that
M EVx<ady ¢p(x.y)AN(y<bVy>c).

Itis an interesting question whether any countable model in a signature with a linear
order satisfying full collection has an elementary end-extension with a gap property.
However, we were unable to obtain our result in this generality.

§6. Questions. There are some natural questions which we were trying to settle
in this article, but which we had to leave open. Let us sum them up.

1. We have shown that any countable model of CT~ with internal collection or
internal induction end-extends to a model of the same theory. Our argument
crucially uses countability of the model. It seems that a more general proof
would need to be much more specifically tailored to the case of truth predicates,
since MacDowell-Specker Theorem fails to work in this greater generality.

Let M = CT + INT(INTColl) be an arbitrary model. Does it have an end-
extension satisfying CT + INT(INTColl)?

2. With the end-extension results limited to countable models, we are only able to
produce w1-like models of this theory, in contrast to the general case of models
of PA. It seems highly doubtful that w; has indeed such a distinguished status
in this context.

Let k be an arbitrary infinite cardinal. Let M |= PA be a countable model
(alternatively, a model of cardinality < k). Does there exist a k-like model
M' = M which expands to a model of CT ?"?

3. Our main proof in section 5 shows that if M is a countable model of a theory
in a countable language which extends PA and features full collection, then it
can be end-extended in such a way that it is locally semiregular in the larger
model. However, it seems unlikely that this property really depends on anything
else but collection (or that we really have to replace semiregularity with local
semiregularity). In particular, the use of coding of sets seems to be a technical
artefact of our argument. When coding is removed, semiregularity or its local

12 Ali Enayat has pointed out that a partial answer is provided by [4, Theorem 1.5], based on classical
results of Chang and Jensen. If « is a cardinal such that x where k<¥ = x or O, holds and U is a
consistent theory in a countable language proving full collection, then U has a ™ model. By taking the
theory ElDiag(M ) + CT~ + Coll, we see that under certain set-theoretic assumptions for any countable
M = PA, some J-like elementary extensions will exist for 2 > .
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version no longer make sense and one has to reword the whole statement which
we propose to do in terms of the gap property. It seems likely that collection
itself is sufficient to provide end-extensions in which the original model satisfies
this modified claim.

Let M be a countable model in a signature with a linear order satisfying full
collection. Does there exist an elementary end-extension M’ ~, M such that M
satisfies the gap property in M'?

Appendix — a glossary of technical notions. In the article, we used a number of
formalised syntactic notions. For the convenience of the reader, let us gather them
in a single glossary.

e Asn(x, y) is a formula naturally representing the relation “x is a term or a
formula and y is an x-assignment, that is, a function whose domain is the set
of free variables of x.”

e ClTerm,, (x) is a formula naturally representing the set of closed terms of
Lpa.

e ClTermSeq ¢, (x) is a formula naturally representing the set of coded sequences
of closed terms of Lpa.

o dp(x) is a formula naturally representing the syntactic depth of a formula x.
It is a binary relational formula which is provably functional and thus written
using the fucntional notation, in accordance with our conventions.

e Formg,, (x) is a formula naturally representing the set of arithmetical
formulae. By Form=!(x) we mean the set of formulae with at most one variable
free.

e Sentp,, (x)is a formula naturally representing the set of arithmetical sentences.

e 1°, 1 If ¢ is (a code of) an arithmetical term and « is a r-assignment, then by
1* or ¢(a) we mean the formally computed value of 7 under a. If CITerm ¢, (7)
holds and « is an empty assignment, we write ¢° instead.

e Var(x) is a formula representing the set of first order variables. Since variables
have no structure, this means that Var(x) defines an infinite set which whose
members are treated as the Godel codes of variables under our fixed coding.

e a ~, f.If a and f are two assignments which are equal except, possibly, at a
single variable v, we denote this with o ~,, 3.
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