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Abstract We construct an unfolding path in Outer space which does not converge in the boundary,
and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric
arational R-tree T. We also show that T admits exactly two dual ergodic projective currents. This is the
first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.

1. Introduction

For the once-punctured torus, the Thurston compactification of the Teichmüller space

by projective measured laminations coincides with the visual compactification of the

hyperbolic plane. In this case, every geodesic ray has a unique limit point, and the

dynamical behavior of the ray in moduli space is governed by the continued fraction of
its limit point. For hyperbolic surfaces of higher complexity, Teichmüller space with the

Teichmüller metric is no longer negatively curved [Mas75, MW95] (or even Riemannian),

and the Thurston boundary is no longer its visual boundary [Ker80]. More surprisingly,
geodesic rays do not always converge [Len08, LLR18].

For hyperbolic surfaces of higher complexity, another interesting phenomenon is

the existence of nontrivial simplices in the Thurston boundary which correspond to
measures on nonuniquely ergodic laminations. Particularly interesting is the case when
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the underlying lamination is minimal and filling, also called arational. Constructions
of nonuniquely ergodic arational laminations have a long history and typically used

flat structures on surfaces [Vee69, Sat75, KN76, Kea77]. A topological construction was

introduced in [Gab09]. In [LLR18], Leininger, Lenzhen and Rafi combined this topological
approach with some arithmetic parameters akin to continued fractions. This allowed them

to show that it is possible for the full simplex of measures on a nonuniquely ergodic

arational lamination to be realized as the limit set of a Teichmüller geodesic ray.

In this paper, we take the above construction into Culler–Vogtmann’s Outer space
[CV86]. A Thurston-type boundary for Outer space is given by the set of projective classes

of minimal, very small Fn-trees [CM87, BF94, CL95, Hor17] and the action of Out(Fn)

extends continuously to the compactified space. The analogue of arational laminations
are arational trees ; for example, trees dual to arational laminations on a once-punctured

surface fall into this category. There are other examples, such as trees dual to minimal

laminations on finite 2-complexes that are not surfaces, called Levitt type; and yet others,
called nongeometric, that do not come from the latter two constructions. The nonuniquely

ergodic phenomenon for laminations has two natural analogues for Fn-trees: one in terms

of length measures on trees, giving rise to nonuniquely ergometric trees [Gui00] and the

other in terms of currents, giving nonuniquely ergodic trees; see [CHL07]. It is an open
problem to determine whether these two notions coincide. An example of a nonuniquely

ergometric arational tree of Levitt type, modeled on Keane’s construction, was given in

[Mar97]. In this paper, we construct the first nongeometric example of an arational tree
that is neither uniquely ergodic nor uniquely ergometric.

In Outer space, the analogue of Teichmüller metric is the Lipschitz metric and that of

Teichmüller geodesics are folding paths. However, unlike Teichmüller geodesics, a folding
path in Outer space has a forward direction, reflecting the asymmetry of the Lipschitz

metric. Even though the boundary of Outer space is not a visual boundary, a folding path

always converges along its forward direction. Our main result is that this nice behavior

does not persist in the backward direction; in fact, in the backward direction, folding
paths can behave as badly as Teichmüller geodesics. Define an unfolding path in Outer

space to be a folding path with the backward direction. Our main result, as follows, is a

direct analogue of the results of [LLR18].

Theorem 1.1. There exists an unfolding path in Outer space of free group of rank 7 which
does not converge to a point in the boundary of Outer space. In fact, the limit set is a

1-simplex consisting of the full set of length measures on a nongeometric and arational tree

T. Moreover, the set of projective currents dual to T is also a one-dimensional simplex.

In particular, T is neither uniquely ergometric nor uniquely ergodic.

We use the framework of folding and unfolding sequences. Every such sequence tracks
the combinatorics of an appropriate folding path, resp. unfolding path, in Outer space.

An infinite folding sequence has a naturally associated limiting tree in the boundary of

Outer space and an unfolding sequence has a naturally associated algebraic lamination,
called the legal lamination. The graphs in the folding sequence can be given compatible

metrics, which are then used to parametrize the different length measures supported on

the limiting tree. Compatible edge thicknesses on the graphs of the unfolding sequence

https://doi.org/10.1017/S1474748023000488 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000488


Limit sets of unfolding paths in Outer space 2367

parametrize the different currents with support contained in the legal lamination. The lat-
ter can then be used to study the currents dual to the trees in the limit set of the unfolding

sequence. See [NPR14] or our Section 3 for definitions and more precise statements.

Modeling the construction of [LLR18] on a five-holed sphere, the folding and unfolding
sequences we consider come from explicit sequences of automorphisms of the free group

of rank 7. More explicitly, fix a nongeometric fully irreducible automorphism on three

letters and extend it to an automorphism φ of F7 by identity on the other four basis

elements. Also, let ρ be a finite-order automorphism of F7 that rotates the support of
φ off itself. For an integer r, set φr = ρφr. Given a sequence (ri)i≥1 of positive integers,

define a sequence of automorphisms by

Φi = φr1 ◦ · · · ◦φri .

From (Φi)i, we get an unfolding sequence using the train track map induced by φri , and

from (Φ−1
i )i we get a companion folding sequence. The parameters (ri)i play the role

of the continued fraction expansion for the limiting tree of the folding sequence, and
adjusting them produces different types of trees and behaviors of the unfolding sequence.

In particular, we show that if the sequence (ri)i satisfies certain arithmetic conditions

and grows sufficiently fast, then the limiting tree is arational, nongeometric, nonuniquely

ergodic and nonuniquely ergometric. Moreover, the limit set of the unfolding sequence
is the full simplex of length measures on the tree. We refer to Theorem 10 for the full

technical statement.

To see how the parameters (ri)i come into play, it is informative to look at the sequence
of free factors Ai =Φi(A), where A is the support of φ. The Ai’s are the projection of the

folding sequence to the free factor complex FF7. By our construction, Ai and Ai+1 are

disjoint (meaning F7 =Ai ∗Ai+1 ∗Bi for some Bi), but Ai,Ai+2 are not, and ri measures
the distance between the projections of Ai−2 and Ai+2 to the free factor complex of Ai.

Morally, if ri’s are sufficiently large, then (Ai)i forms a quasi-geodesic in FF7. Hence,

by [BR15, Ham16], the limiting tree of the folding sequence is arational. In addition, we

show that the tree is nongeometric. To get two currents on the tree, we take loops in the
Ai’s, which correspond to currents on Fn and take projective limits of the odd and even

subsequences. Nonunique ergometricity of the tree follows a similar principle.

Although our construction is general in spirit, the case of rank 7 is already fairly
involved, and some computations used computer assistance. One issue is that there is

no known algorithm to tell if a collection of free factors has a common complement. This

issue appears in the proof of arationality of the limiting tree that led to the peculiar
looking arithmetic conditions on the parameters; see Section 5.

Outline

• In Section 2, we review some background material, including train track maps,
Outer space, currents, length measures and arational trees.

• In Section 3, we discuss folding and unfolding sequences. We relate length measures
on a folding sequence with the length measures on the limiting tree when it is
arational. We also define the legal lamination for an unfolding sequence and state
a result from [NPR14] relating the currents supported on the legal lamination with
those of the unfolding sequence.
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• In Section 4, we discuss our main construction to generate from a sequence (ri)i
of positive integers a sequence of automorphisms of F7. The associated transition
matrices for these automorphisms have block shapes which we use to analyze their
asymptotic behavior. From each sequence of automorphisms and their inverses, we
get a folding and unfolding sequence of graphs of rank 7 induced by their train
track maps.

• In Section 5, we show that under the right conditions on (ri)i, the folding sequence
converges to a nongeometric and arational tree T in boundary of Outer space of
rank 7. To show arationality, we project the folding sequence to the free factor
complex and show it is a quasi-geodesic.

• In Section 6, we study the behavior of the unfolding sequence. The main result is
that if the sequence (ri)i grows sufficiently fast, then the legal lamination of the
unfolding sequence supports a 1-simplex of projective currents.

• In Section 7, we show that if the sequence (ri)i grows sufficiently fast, then the
limiting tree of the folding sequence supports a 1-simplex of projective length
measures. In particular, the limiting tree is not uniquely ergometric.

• In Section 8, we relate the legal lamination of the unfolding sequence to the dual
lamination of the limiting tree of the folding sequence. This shows the limiting
tree is not uniquely ergodic.

• In Section 9, we show that the unfolding sequence limits onto the full simplex of
length measures on the limiting tree of the folding sequence, and thus does not
have a unique limit in the boundary of Outer space.

• In Section 10, we collect the results to prove the main theorem.
• In Section A, we prove a technical lemma about convergence of products of

matrices.

2. Background

Let Fn be the free group of rank n. We review some background on train track maps,

Outer space, laminations, currents, arational trees and the free factor complex.

2.1. Train track maps

We recall some basic definitions from [BH92]. Identify Fn with π1(Rn,∗), where Rn is
a rose with n petals. A marked graph G is a graph of rank n, all of whose vertices

have valence at least three, equipped with a homotopy equivalence m : Rn →G called a

marking.

A length vector on G is a vector λ ∈ R
|EG| that assigns a positive number, that is, a

length, to every edge of G. The volume of G with respect to λ is the total length of all

the edges of G. This induces a path metric on G where the length of an edge e is λ(e).

A direction d based at a vertex v ∈G is an oriented edge of G with initial vertex v. A
turn is an unordered pair of distinct directions based at the same vertex. A train track

structure on G is an equivalence relation on the set of directions at each vertex v ∈ G.

The classes of this relation are called gates. A turn (d,d′) is legal if d and d′ do not belong
to the same gate, it is called illegal otherwise. A path is legal if it only crosses legal

turns.
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A map f : G→G′ between two graphs is called a morphism if it is locally injective on

open edges and sends vertices to vertices. If G and G′ are metric graphs, then we can

homotope f relative to vertices such that it is linear on edges. Similarly, for an R-tree T,
a map G̃→ T from the universal cover of G is a morphism if it is injective on open edges.

To a morphism f : G→G′ we associate the transition matrix as follows: Enumerate the

(unoriented) edges e1,e2, · · · ,em of G and e′1,e
′
2, · · · ,e′n of G′. Then the transition matrix

M has size n×m and the ij-entry is the number of times f(ej) crosses e′i, that is, it is

the cardinality of the set f−1(x)∩ej for a point x in the interior of e′i. If f is in addition

a homotopy equivalence, then f is a change-of-marking.
A homotopy equivalence f : G → G induces an outer automorphism of π1(G) and

hence an element φ of Out(Fn). If f is a morphism, then we say that f is a topological

representative of φ. A topological representative f : G→G induces a train track structure

on G as follows: The map f determines a map Df on the directions in G by defining
Df(e) to be the first (oriented) edge in the edge path f(e). We then declare e1 ∼ e2 if

(Df)k(e1) = (Df)k(e2) for some k ≥ 1.

A topological representative f : G→G is called a train track map if every vertex has at
least two gates, and f maps legal turns to legal turns and legal paths (equivalently, edges)

to legal paths. Equivalently, every positive power fk is a topological representative. If f

is a train track map with transition matrix M, then the transition matrix of fk is Mk

for every k ≥ 1. If M is primitive, that is, Mk has positive entries for some k ≥ 1, then

Perron–Frobenius theory implies that there is an assignment of positive lengths to all the

edges of G so that f uniformly expands lengths of legal paths by some factor λ> 1, called

the stretch factor of f.
If σ is a path (or a circuit) in G, we denote by [σ] the reduced path homotopic to σ

(rel endpoints if σ is a path). A path or circuit σ in G is called a periodic Nielsen path if

[fk(σ)] = σ for some k ≥ 1. If k = 1, then σ is a Nielsen path. A Nielsen path that cannot
be written as a concatenation of nontrivial Nielsen paths is called an indivisible Nielsen

path, denoted INP.

The following lemma is an important property of train track maps. For a very
rudimentary form, see [BH92, Lemma 3.4] showing that INPs have exactly one illegal

turn, and for a more involved version see [BFH97] (some details can also be found in

[KL14, Proposition 3.27, 3.28]). We will need it for the proof of Lemma 4.8 and include

a proof here.

Lemma 2.1. Let h : G → G be a train track map with a primitive transition matrix.

There exists a constant R> 0 such that for any edge path γ, either

1. the number of illegal turns in [hR(γ)] is less than that of γ, or

2. γ = u1v1u2v2 . . . un, where each ui is a legal subpath, possibly degenerate, and each

[hR(vi)] is a periodic INP.

Proof. Let λ > 1 be the stretch factor of h, and equip G with the metric so that h
uniformly expands the length of every legal path by λ. It goes back to the work of

Thurston (see [Coo87]) that there is a constant BCC(h), called the bounded cancellation

constant for h, such that if αβ is a reduced edge path, then [h(α)][h(β)] have cancellation
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bounded by BCC(h). The existence of this constant is really a consequence of the Morse

lemma and the fact that h is a quasi-isometry. Define C =BCC(h)/(λ−1).

Here is the significance of C. To fix ideas, let us assume that γ has only one illegal turn,
so γ = αβ with both α,β legal. Say α has length |α| = C+ ε > C. Then h(α) has length

λ|α| and after cancellation with h(β) the length is ≥ λ|α| −BCC(h) = |α|+λε. Thus,

assuming [hi(γ)] still has an illegal turn, the length of the initial subpath to the illegal
turn has length growing exponentially in i, assuming it is long enough.

We now prove the lemma for paths γ = αβ with one illegal turn and with α,β legal.

Consider the finite collection of paths consisting of those with length at most C with
both endpoints at vertices or with length exactly C with only one endpoint at a vertex.

Let R be a number larger than the square of the size of this collection. If [hi(γ)] = αiβi

has one illegal turn (with αi,βi legal) for i= 1,2, · · · ,R, then by the pigeon-hole principle

there will be i < j in this range so that the C -neighborhoods of the illegal turns of [hi(γ)]
and [hj(γ)] are the same (if αi or βi has length < C this means αi = αj or βi = βj). We

can lift hj−i and γ to the universal cover of the graph and arrange that (the lift of) γ and

[hj−i(γ)] have the same illegal turn. Thus, hj−i maps the terminal C -segment of αi (or αi

itself) over itself (by the above calculation) and therefore fixes a point in αi and similarly

for βi. The subpath of [hi(γ)] between these fixed points is a periodic INP, proving the

lemma in the case γ has one illegal turn.
The general case is similar. Write γ = γ1γ2 · · ·γs with all γk legal and with the turn

between γk and γk+1 illegal. Also, assume that [hi(γ)] has the same number of illegal

turns for i = 1, · · · ,R. We can write [hi(γ)] = γi
1γ

i
2 · · ·γi

s with all γi
k legal and the turns

between them illegal. For each illegal turn corresponding to the pair (k,k+1), there will
be i < j in this range so that the C -neighborhoods of the illegal turn in [hi(γ)] and in

[hj(γ)] are the same. This gives fixed points of hj−i in γi
k and γi

k+1, and these fixed points

split γ into periodic INPs and legal segments, as claimed.

We will use the lemma in the situation that h has no periodic INPs, in which case the

conclusion is that whenever γ is not legal, then [hR(γ)] has fewer illegal turns than γ.

2.2. Outer space and its boundary

An Fn-tree is an R-tree with an isometric action of Fn. An Fn-tree T has dense orbits if

some (every) orbit is dense in T. An Fn-tree is called very small if the action is minimal,

arc stabilizers are either trivial or maximal cyclic and tripod stabilizers are trivial. We
review the definition of Outer space first introduced in [CV86].

Unprojectivized Outer space, denoted by cvn, is the set of free, minimal and simplicial

Fn-trees. By considering the quotient graphs, cvn is also equivalently the set of marked
metric graphs, that is, the set of triples (G,m,λ), where G is a graph of rank n with all

valences at least 3, m : Rn →G is a marking and λ is a positive length vector on G. By

[CM87], the map of cvn → R
Fn given by T 	→ (‖g‖T )g∈Fn

, where ‖g‖T is the translation
length of g in T, is an inclusion. This endows cvn with a topology. The closure cvn in

R
Fn is the space of very small Fn-trees [BF94, CL95]. The boundary ∂cvn = cvn− cvn

consists of very small trees that are either not free or not simplicial.
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Culler Vogtmann’s Outer space, CVn, is the image of cvn in the projective space PRFn .

Elements in CVn can also be described as free, minimal, simplicial Fn-trees with unit

covolume. Topologically, CVn is a complex made up of simplices with missing faces,

where there is an open simplex for each marked graph (G,m) spanned by positive length
vectors on G of unit volume. The closure CVn of CVn in PR

Fn is compact and the

boundary ∂CVn =CVn−CVn is the projectivization of ∂cvn.

The spaces cvn and CVn and their closures are equipped with a natural (right) action
by Out(Fn). That is, for Φ ∈Out(Fn) and T ∈ cvn the translation length function of TΦ

on Fn is ‖g‖TΦ = ‖φ(g)‖T , where φ is any lift of Φ to Aut(Fn).

2.3. Laminations, currents and nonuniquely ergodic trees

In [BFH00], Bestvina, Feighn and Handel defined a dynamical invariant called the

attracting lamination associated to a train track map. In this article, we will consider

the more modern definition of a lamination as given in [CHL08a].

Let ∂Fn denote the Gromov boundary of Fn, and let Δ be the diagonal in ∂Fn×∂Fn.
The double boundary of Fn is ∂2

Fn = (∂Fn×∂Fn−Δ)/Z2, which parametrizes the space

of unoriented bi-infinite geodesics in a Cayley graph of Fn. By an (algebraic) lamination,

we mean a nonempty, closed and Fn-invariant subset of ∂
2
Fn.

Associated to T ∈ cvn is a dual lamination L(T ), defined as follows in [CHL08b]. For

ε > 0, let

Lε(T ) = {(g−∞,g∞) | ‖g‖T < ε,g ∈ Fn},

so Lε(T ) is a lamination and set L(T ) =
⋂

ε>0Lε(T ). Elements of L(T ) are called leaves.
For trees in cvn, L(T ) is empty.

A current is an additive, nonnegative, Fn-invariant function on the set of compact open

sets in ∂2
Fn. Equivalently, it is an Fn-invariant Radon measure on the σ-algebra of Borel

sets of ∂2
Fn. Let Currn denote the space of currents, equipped with the weak* topology.

The quotient space of PCurrn of projectivized currents (i.e., homothety classes of nonzero

currents) is compact.
For μ∈Currn, let supp(μ)⊂ ∂2

Fn denote the support of μ, which is in fact a lamination.

For T ∈ cvn and μ ∈ Currn, if supp(μ) ⊆ L(T ), then we say μ is dual to T. Denote by

Curr(T ) the convex cone of currents dual to T and by PCurr(T ) the set of projective

currents dual to T. PCurr(T ) is a compact, convex space and its extremal points are
called the ergodic currents dual to T. We say T is uniquely ergodic if there is only one

projective class of currents dual to T, and nonuniquely ergodic otherwise. In [CH16], the

authors show that if T ∈ ∂cvn has dense orbits, then PCurr(T ) is the convex hull of at
most 3n−5 projective classes of ergodic currents dual to T.

In [KL09], Kapovich and Lustig established a length pairing, 〈·,·〉, between cvn and the

space of measured currents Currn. They also showed in [KL10, Theorem 1.1] that for
T ∈ cvn and μ ∈ Currn, 〈T,μ〉= 0 if and only if μ is dual to T.

Given two trees T and T ′, we say a map h : T → T ′ is alignment-preserving if whenever

b ∈ T is contained in an arc [a,c]⊂ T , then h(b) is contained in the arc [h(a),h(c)].
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Theorem 2.2 [CHL07]. Let T,T ′ ∈ ∂CVn be two trees with dense orbits. The following

are equivalent:

• L(T ) = L(T ′).
• There exists an Fn-equivariant alignment-preserving bijection between T and T ′.

2.4. Length measures and nonuniquely ergometric trees

Since R-trees need not be locally compact, classical measure theory is not well suited
for them. In [Pau95], a length measure was introduced for R-trees. See [Gui00] for

details.

A length measure on an Fn-tree T is a collection of finite Borel measures λI for every

compact interval I in T such that if J ⊂ I, then λJ = (λI)|J . We require the length
measure to be invariant under the Fn action. The collection of the Lebesgue measures

of the intervals of T is Fn-invariant, and this will be called the Lebesgue measure of

T. A length measure λ is nonatomic or positive if every λI is nonatomic or positive. If
every orbit is dense in some segment of T, then T cannot have an invariant measure with

atoms. Further, if T is indecomposable, that is, if for any pair of nondegenerate arcs I and

J in T, there exist g1, . . . ,gm ∈ Fn such that I ⊂
⋃
giJ and giJ ∩gi+1J is nondegenerate,

then every nonzero length measure is positive (in fact, the condition of mixing [Gui00]

suffices).

Let D(T ) be the cone of Fn-invariant length measures on T, with projectivization

PD(T ), that is, the homothety classes of Fn-invariant length measures on T. PD(T ) is a
compact convex set and we will call its extremal points the ergodic length measures on T.

When T has dense orbits there are at most 3n−4 such measures for any T (see [Gui00,

Corollary 5.2, Lemma 5.3]) and D(T ) is naturally a subset of ∂cvn. In fact,

Lemma 2.3. [Gui00] If T ∈ cvn is indecomposable, then D(T ) is in one-to-one correspon-

dence with the set of isometry classes of Fn-invariant metrics on T, denoted XT ⊂ cvn.

Proof. Let λ ∈ D(T ) be a length measure on T. Consider the pseudo-metric dλ on T,

where dλ(x,y) = λ([x,y]) for x,y ∈ T . In fact, since T is indecomposable, dλ is a metric on

T. For the converse, let T ′ ∈XT . Then the pull back of Lebesgue measure on T ′ under
identity map id: T → T ′ gives a positive length measure on T.

We say T is uniquely ergometric if there is only one projective class of length measures

on T, which necessarily is the homothety class of the Lebesgue measure on T. It is called
nonuniquely ergometric otherwise.

2.5. Arational trees and the free factor complex

For a tree T ∈ cvn and a free factor H of Fn, let TH denote the minimal H -invariant

subtree of T (this tree is unique unless H fixes an arc). A tree T ∈ ∂cvn is arational if

every proper free factor H of Fn has a free and simplicial action on TH . By [Rey12], every
arational tree is free and indecomposable or it is the dual tree to an arational measured

lamination on a surface with one puncture. The arational trees of the first kind are either

Levitt type or nongeometric.
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Let AT ⊂ ∂CVn denote the set of arational trees with the subspace topology. Using
Lemma 2.3, define an equivalence relation ∼ on AT by ‘forgetting the metric’, that is,

T ∼ T ′ if T ′ ∈ PD(T ), and endow AT /∼ with the quotient topology. The following lemma

is implicit in [Gui00] and we include a proof for completeness.

Lemma 2.4. Let T,T ′ be arational trees. Then T ∼ T ′ if and only if L(T ) = L(T ′).

Proof. If T ∼ T ′, then the identity map id: T → T ′ is an alignment-preserving bijection.

Therefore, by Theorem 2.2, L(T ) = L(T ′).
If L(T ) =L(T ′), then by Theorem 2.2 there is an alignment preserving bijection f : T →

T ′. Pulling back the Lebesgue measure on T ′ induces a length measure on T, and the

corresponding metric dμ on T is isometric to T ′, so T ′ ∼ T .

The free factor complex FFn is a simplicial complex whose vertices are given by
conjugacy classes of proper free factors of Fn and a k -simplex is given by a nested

chain [A0] ⊂ [A1] ⊂ ·· · ⊂ [Ak]. When the rank n = 2 the definition is modified and

an edge connects two conjugacy classes of rank 1 factors if they have complementary
representatives. The free factor complex can be given a metric as follows: Identify each

simplex with a standard simplex and endow the resulting space with path metric. By

result of [BF14a], the metric space FFn is Gromov hyperbolic. The Gromov boundary

of FFn was identified with AT /∼ in [BR15] and [Ham16].
There is a projection map π : CVn → FFn defined as follows [BF14a, Section 3]:

for G ∈ CVn, π(G) is the collection of free factors given by the fundamental group of

proper subgraphs of G which are not forests. This map is coarsely well defined, that is,
diamFFn

(π(G)) ≤ K for some universal K. Note that if G,G′ belong to the same open

simplex of CVn, then π(G) = π(G′), so the projection of a simplex of CVn has uniformly

bounded diameter.

3. Folding and unfolding sequences

In this section we introduce (un)folding sequences and review some work of Namazi-

Pettet–Reynolds [NPR14].

A folding/unfolding sequence is a sequence

of graphs, together with maps fi : Gi → Gi+1 such that for any j ≤ i, fi−1 ◦ fi−2 ◦ · · · ◦
fj : Gj → Gi is a change-of-marking morphism. Equivalently, a sequence as above is
called a folding/unfolding sequence, if there exists a train track structure on each Gi

and fi−1 ◦ fi−2 ◦ · · · ◦ fj maps legal paths to legal paths. We allow the sequence to be

infinite in one or both directions. We assume that a marking on G0 has been specified,

so a folding/unfolding sequence determines a sequence of open simplices in Outer space.
Let Qi be the transition matrix of fi. A length measure for a folding/unfolding sequence

(Gi)a≤i≤b is a sequence (λi)a≤i≤b, where λi ∈ R
|EGi| is a length vector on Gi, and for

a≤ i < b,

λi =QT
i λi+1.
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In this way, fi restricts to a local isometry on every edge of Gi. When b <∞, a length
vector on Gb determines a length measure on the sequence. When the sequence is infinite

in the forward direction we denote by D((Gi)i) the space of length measures on (Gi)i,

and PD((Gi)i) its projectivization. Observe that the dimension of D((Gi)i) is bounded
by liminfi→∞ |EGi|.
A current for a folding/unfolding sequence (Gi)a≤i≤b is a sequence (μi)a≤i≤b, where

μi ∈ R
|EGi| is a length vector on Gi (but thought of as a vector of thicknesses of edges),

and for a≤ i < b, we require

μi+1 =Qiμi.

Likewise, when the sequence is infinite in the backward direction, we denote by

Curr((Gi)i) the space of currents on (Gi)i, and PCurr((Gi)i) its projectivization. The

dimension of Curr((Gi)i) is bounded by liminfi→−∞ |EGi|.

3.1. Isomorphism between length measures

In this section, we identify the space of length measures on a folding sequence with that
of the limiting tree when it is an arational tree.

Consider a folding sequence of marked graphs of rank n

Let G̃i be the universal cover of Gi, and let f̃i be a lift of fi. For any positive length

measure (λi)i ∈ D((Gi)i), we can realize (G̃i,λ̃i)i as a sequence in cvn, which can be

‘filled in’ by a folding path in cvn (see [BF14a] for details on folding paths). In particular,
(G̃i,λ̃i)i always converges to a point T ∈ ∂cvn. Furthermore, we have morphisms hi : G̃i →
T such that hi = hi+1f̃i+1. With respect to the length measure λ̃i, f̃i and hi restrict to

isometries on edges [BR15, Lemma 7.6].
Let (Ui)i be the sequence of open simplices CVn associated to the sequence (Gi)i.

Recall the projection map π : CVn →FFn is coarsely well defined on simplices of CVn.

We will say the folding sequence (Gi)i converges to an arational tree T if π(Ui) converges

to [T ] ∈ ∂FFn.

Proposition 3.1. Suppose a folding sequence (Gi)i converges to an arational tree T.

Then there is a linear isomorphism between D((Gi)i) and D(T ).

Proof. Fix a positive length measure (λi)i ∈ D((Gi)i) and let T ∈ ∂cvn be the limiting

tree of (G̃i,λ̃i) with corresponding morphism hi : G̃i → T . Recall from Section 2.5 that if
T is arational, then we can identify D(T ) with the subspace of Fn-metrics on T in ∂cvn.

We will let λ ∈ D(T ) be a length measure, and Tλ its image in ∂cvn.

By [BR15, Proposition 8.5], if π(Ui) converges to [T ′′] ∈ ∂FFn, then for any positive
(λ′

i)i ∈ D((Gi)i), (G̃i,λ̃
′
i) also converges to an arational tree T ′ ∈ ∂cvn, such that

[T ′′] = [T ′] = [T ]; in other words, T ′ = Tλ′ for some λ′ ∈ D(T ). This gives a linear map

D((Gi)i)→D(T ).
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Conversely, for any positive length measure λ′ ∈ D(T ), we can use the morphism hi to

pull back λ′ from T to a length measure λ′
i on G̃i. The fact that hi = hi+1f̃i+1 implies

(λ′
i)i ∈ D((Gi)i). Moreover, the sequence (G̃i,λ̃

′
i)i converges to Tλ′ ∈ cvn. This gives a

linear map D(T ) → D((Gi)i) which is the inverse of D((Gi)i) → D(T ) defined above.

This shows D((Gi)i)→D(T ) is an isomorphism.

Remark 3.2. A more general statement of Proposition 3.1 which doesn’t involve the

assumption that T is arational can be found in [NPR14, Proposition 5.4], but we will not
need such a general statement here.

3.2. Isomorphism between currents

In this section, we state an analogous result identifying the space of currents on an
unfolding sequence with the space of currents of a legal lamination associated to a

unfolding sequence. We record some definitions from [NPR14] first.

Consider an unfolding sequence of marked graphs of rank n

Denote the composition Fi = f1 ◦ · · · ◦ fi. Let ΩL
∞(Gi) denote the set of bi-infinite legal

paths in Gi. Define the legal lamination of the unfolding sequence (Gi)i to be

Λ =
⋂
i

Fi(Ω
L
∞(Gi))⊆ ΩL

∞(G0).

Use the marking on G0 to identify ∂2π1(G0) with ∂2
Fn. The preimage, in ∂2

Fn, of the lift

of Λ to ∂2π1(G0) is a lamination Λ̃. We denote by Curr(Λ) the convex cone of currents
supported on Λ̃, with projectivization PCurr(Λ).

An invariant sequence of subgraphs is a sequence of nondegenerate (i.e., not forests)

proper subgraphs Hi ⊂Gi such that fi restricts to a morphism Hi →Hi−1. We will need
the following theorem from [NPR14], which we will include a sketch of the proof for

completeness.

Theorem 3.3 (Theorem 4.4 [NPR14]). Given an unfolding sequence (Gi)i≥0 without an

invariant sequence of subgraphs and with legal lamination Λ, then there is a natural linear

isomorphism between Curr((Gi)i) and Curr(Λ).

Sketch of proof. The lamination Λ consists of biinfinite lines in G0 that lift to every
Gi. All such lines are legal, and we view Λ as a subset of (∂F)2 invariant under the

involution that flips the factors. An element in Curr((Gi)i) is a compatible sequence (μi)i,

where μi assigns a nonnegative weight to each edge of Gi. The compatibility condition
is that the transition matrix of Gi+1 → Gi takes the vector μi+1 to the vector μi. An

alternative way to describe compatibility is this. Let G̃i be the universal cover of Gi, and

let Fi+1 : G̃i+1 → G̃i be a lift of the folding map. The weights μi+1,μi lift to the edges of
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G̃i+1,G̃i. If e is an edge of G̃i, then F−1
i+1(e) is a finite collection of partial edges in G̃i+1,

and we complete them to edges, say e1,e2, · · · ,ek. The compatibility condition is

μi(e) = μi+1(e1)+μi+1(e2)+ · · ·+μi+1(ek)

Since Fi+1 is injective on the leaves of Λ, no such leaf passes through more than one

of the ej ’s. Let CylΛ(e) be the set of leaves of Λ that pass through e and similarly for

CylΛ(ej). Thus, we have

CylΛ(e) =
⊔
j

CylΛ(ej)

Define measure μ on the cylinder sets corresponding to edges:

μ(CylΛ(e)) = μi(e).

The compatibility condition states that this measure is additive. The assumption that

the sequence has no invariant subgraphs implies that cylinder sets corresponding to edges

form a basis for the topology on Λ. This allows us to extend μ to general cylinder sets
CylΛ(γ), where γ is a finite segment of Λ in G̃i. The key is that folding cannot identify

vertices in the same orbit. Thus, there is a uniform upper bound on the number of vertices

that map to the same vertex for any G̃j → G̃i. When γ is a segment, the preimages of γ
in G̃j , for j sufficiently large, will be contained in either single edges or concatenations

of two edges (see Lemma 8.2). By the above remark, the number of the length-2 paths is

bounded by the combinatorial length of γ times the number of vertices in Gj . While we

don’t have enough information from μj alone to assign measure to these cylinder sets,
we know their contribution goes to 0 as j → ∞. So for each j, we take the sum of the

measures of cylinder sets of the single edges in the preimage of γ. This is an increasing

and bounded sequence as j →∞, so we define μ(CylΛ(γ)) to be the limit, and this is the
only possible definition. It is now an exercise to check that μ induces a premeasure on the

semiring of cylinder sets CylΛ(γ). Carathéodory’s theorem then implies that μ extends

to a unique (Radon) measure on Λ, which finishes the proof.

4. Main setup

In this section, we will construct an unfolding sequence (τi)i and a folding sequence (τ ′i)i
in CV7 that intersect the same infinite set of simplices, which we will eventually use to

show the existence of a nonuniquely ergodic and ergometric tree. The construction is

done via a family of outer automorphisms. We will describe these automorphisms and
then analyze the asymptotic behavior of their train track maps.

4.1. The automorphisms

Let F7 = 〈a,b,c,d,e,f,g〉. Denote by x̄ the inverse of x∈F7. First, consider the map induced

on the three-petaled rose by the automorphism

θ : a 	→ b,b 	→ c,c 	→ ca ∈Aut(F3)
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and the map induced by the inverse automorphism

ϑ : a 	→ b̄c,b 	→ a,c 	→ b.

Using θ and ϑ to also denote the corresponding graph maps and using the convention that

a also denotes the initial direction of the oriented edge a, while ā denotes the terminal

direction, we have the maps Dθ3 and Dϑ3 given, respectively, as:

Observation 4.1. From the structure of the above maps, for n≡ 0 mod 3, Dθn =Dθ3

and Dϑn =Dϑ3.

Lemma 4.2. The map on the three-petaled rose labeled a,b,c induced by ϑ is a train track

map with respect to the train track structure with gates {a,c̄},{b,ā},{c,b̄}. Moreover, this

train track map does not have any periodic INPs.
The map on the three-petaled rose labeled a,b,c induced by θ is also a train track map

with respect to the train track structure with gates {a,b,c},{ā},{b̄},{c̄} and it has one

periodic Nielsen path (see [BF94, Example 3.4]).

Proof. The train track structure on the rose induces a metric on the graph coming from

Perron–Frobenius theory. Every INP has length at most twice the volume of the graph,

one illegal turn and the endpoints are fixed. Since there are only finitely many fixed points
in G, it is easy to enumerate all such paths and check if they are Nielsen. For periodic

INPs one knows that the period is bounded by a function of the rank of Fn [FH18], so

one can take a suitable power and check for INPs (though there are more efficient ways,

see [Kap19]). Coulbois’ train track package [Cou] for the mathematics software system
Sage [Sag] computes periodic INPs of train track maps.

Now, let φ ∈Aut(F7) be the automorphism:

a 	→ b,b 	→ c,c 	→ ca,d 	→ d,e 	→ e,f 	→ f,g 	→ g

and ρ ∈Aut(F7) be the rotation by four clicks:

a 	→ e,b 	→ f,c 	→ g,d 	→ a,e 	→ b,f 	→ c,g 	→ d.

Thus, φ is the extension of θ by identity, and ρ rotates the support of φ off itself.

Lemma 4.3. For any r ≥ 3, the map on the seven-petaled rose induced by φr = ρφr is a

train track map with respect to the train track structure with gates

{a,b,c},{d,e,f}
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and eight more gates consisting of single half edges. The transition matrix Mr has block
form (

0 I
Br 0

)
,

where I is the 4×4 identity matrix, and B is the transition matrix of θ:

B =

⎛⎝0 0 1

1 0 0

0 1 1

⎞⎠ .

Proof. By Observation 4.1, we only have to check the lemma for φ3,φ4,φ5, which can be

done by hand or using the train track package for Sage.

Lemma 4.4. For any r ≥ 3 and r ≡ 0 mod 3, the map on the seven-petaled rose induced
by ψr = (ρφr)−1 is a train track map with respect to the train track structure with gates

{a,e,ḡ},{b,d̄},{c,b̄},{d,c̄},{f,ē},{g,f̄},{ā}

The transition matrix Nr has block form(
0 Cr

I 0

)
,

where I is the 4×4 identity matrix, and C is the transition matrix of ϑ:

C =

⎛⎝0 1 0

1 0 1

1 0 0

⎞⎠ .

Proof. By Observation 4.1, we only have to check the lemma for ψ3, which can be done

by hand or using the train track package for Sage.

4.2. Asymptotics of transition matrices

Let θ, ϑ, φr, ψr be the maps defined in the last section. We now analyze the behavior of

the transition matrices Mr and Nr for φr and ψr, respectively.

Lemma 4.5. Let B be the transition matrix for θ, with Perron–Frobenius eigenvalue λB.

There exists a constant κB > 0 such that if r,s− r →∞, then

1

κBλs
B

MrMs → Y ,

where Y is an idempotent matrix of the form

Y =
(
u pu qu 0 0 0 0

)
with u=

(
0,u1,u2,u3,0,0,0

)T
and p,q > 0,

and
(
u1,u2,u3

)T
is a Perron–Frobenius eigenvector of B.
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Proof. There exists a Perron–Frobenius eigenvector x= (x1,x2,x3)
T for B and constants

p,q > 0 such that

P = lim
s→∞

Bs

λs
B

=
(
x px qx

)
.

We have

MrMs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1

Bs 0

0

0

0

0 Br

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=⇒ 1

λs
B

MrMs →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

P 0

0

0

0

0 0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The square of the limiting matrix above has a nonzero block where P is of the form

(px1+ qx2)P,

and zero elsewhere, so we set

κB = px1+ qx2 and (u1,u2,u3)
T =

1

κB
(x1,x2,x3)

T .

We have a similar statement for the matrices Nr.

Lemma 4.6. Let C be the transition matrix for ϑ = θ−1, with Perron–Frobenius

eigenvalue λC . There exists a constant κC > 0 such that if r,s− r →∞, then

1

κCλs
C

NsNr → Z,

where Z is an idempotent matrix of the form

Z =
(
0 v pv qv 0 0 0

)
with v =

(
v1,v2,v3,0,0,0,0

)T
and p,q > 0,

and (v1,v2,v3)
T is a Perron–Frobenius eigenvector of C.

Proof. We observe that the matrix NsNr has shape that is the transpose of the matrix

in Lemma 4.5, with powers of the PF matrix C forming the nonzero blocks:

NsNr =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0

Cs 0

0

0
0

0 Cr

1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For future reference, we also record the following. Let P = limr→∞Br/λr
B and

Q= limr→∞Cr/λr
C . Set
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M∞ = lim
r→∞

Mr

λr
B

=

(
0 0
P 0

)
and N∞ = lim

r→∞

Nr

λr
C

=

(
0 Q
0 0

)
.

Lemma 4.7. There are p,q,r,s > 0 such that

M∞Y =
(
y py qy 0 0 0 0

)
with y =

(
0,0,0,0,y1,y2,y3

)T
,

(y1,y2,y3)
T is a Perron–Frobenius eigenvector of B, and

ZN∞ =
(
0 0 0 0 z rz sz

)
with z =

(
z1,z2,z3,0,0,0,0

)T
,

and (z1,z2,z3)
T is a Perron–Frobenius eigenvector of C.

4.3. Folding and unfolding sequence

Consider a sequence of positive integers (ri)i≥1 and the sequence of automorphisms φri ,

with transition matrix Mri and φ−1
ri = ψri with transition matrix Nri . Let τi → τi−1

(resp. τ ′i−1 → τ ′i) be the train track map induced on the rose by φri (resp. ψri) as given

by Lemma 4.3 (resp. Lemma 4.4). Thus, we have an unfolding sequence

and a folding sequence

Let Φi = φr1 ◦. . . ◦φri and Φ−1
i =Ψi = ψri ◦. . . ◦ψr1 . Here, τ0 is a rose with petals labeled

by elements in {a,b,c,d,e,f,g} and hence for i≥ 1, τi is a rose labeled by {Φi(a), . . . ,Φi(g)}.
Also, τ ′0 is a rose labeled by {a,b,c,d,e,f,g}, so τ ′i is also a rose labeled by {Φi(a), . . . ,Φi(g)}.
Thus, for every i≥ 0, τi and τ ′i have the same marking but different train track structures.

In other words, they belong to the same simplex in CV7.

The next lemma studies the behavior of illegal turns in a path along the folding
sequence. This will be used in the proof of Proposition 5.10 to show that the limit tree

of the folding sequence is nongeometric.

Lemma 4.8. Let (ri)i≥1 be strictly increasing such that ri ≡ 0 mod 3 and r1 >R, where
R is the constant from Lemma 2.1. Let (τ ′i)i be the corresponding folding sequence. Then

for any edge path β in τ ′j with at least one illegal turn, the number of illegal turns in

[ψrj+3
ψrj+2

ψrj+1
(β)] is less than the number of illegal turns in β.
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Proof. By Lemma 4.4, the illegal turns in τ ′j are

{a,e},{a,ḡ},{e,ḡ},{b,d̄},{c,b̄},{d,c̄},{f,ē},{g,f̄}

and we have

{a,e}
ψrj+1−−−−→ {d,c̄}

ψrj+2−−−−→ {g,f̄}

{a,ḡ}
ψrj+1−−−−→ {d,c̄}

ψrj+2−−−−→ {g,f̄}

{b,d̄}
ψrj+1−−−−→ {e,ḡ}

{c,b̄}
ψrj+1−−−−→ {f,ē}

{d,c̄}
ψrj+1−−−−→ {g,f̄}.

Thus, for any illegal edge path β ⊂ τ ′j , one of β,ψrj+1
(β),ψrj+2

ψrj+1
(β) has an illegal

turn {x,y}, where x,y ∈ {e,f,g,ē,f̄,ḡ}.
Consider the automorphism ϑ and corresponding train track map h : R3 → R3 as in

Lemma 4.2. Then h does not have any periodic INPs. Since R is the constant from

Lemma 2.1, we get that one of [ψrj+1
(β)],[ψrj+2

ψrj+1
(β)],[ψrj+3

ψrj+2
ψrj+1

(β)] has fewer

illegal turns than β.

5. Limiting tree of folding sequence

In this section, we will show that for appropriate choices of (ri)i, the projection of the
folding sequences (τ ′i)i to the free factor complex FF7 is a quasi-geodesic and hence

converges to the equivalence class of an arational tree. We will also show that this tree is

nongeometric.

5.1. Sequence of free factors

Given a sequence (ri)i≥1, recall that Φi = φr1φr1 · · ·φri , where φr = ρφr. For convenience,

also set Φ0 = id. We have the folding sequence

where τ ′i is a rose labeled by {Φi(a), · · · ,Φi(g)}, and ψr = φ−1
r . From the markings, we can

associate τ ′i to an open simplex Ui in CV7. Consider a sequence of free factors Ai ∈ π(Ui),
where π : CV7 →FF7. For an appropriate sequence of (ri)i, we will see that (Ai)i is a

quasi-geodesic (with infinite diameter). The key will be Lemma 5.3 which is the main

goal of this section.
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We now consider the following explicit sequence of free factors. Let A0 = 〈d,e,f〉 be the
free factor in F7, and define

Ai := Φi(A0) = 〈Φi(d),Φi(e),Φi(f)〉.

Note that for any r,s,t > 0, the following holds:

A0 = 〈d,e,f〉
A1 = φr(A0) = 〈a,b,c〉
A2 = φsφr(A0) = 〈e,f,g〉
A3 = φtφsφr(A0) = 〈b,c,d〉.

(1)

Thus, for any sequence (ri)i,

Ai =Φi(A0) = Φi−1(A1) = Φi−2(A2) = Φi−3(A3). (2)

We say two free factors A and A′ are disjoint if (possibly after conjugating) Fn =

A ∗A′ ∗B for a (possibly trivial) free factor B, and A′ is compatible with A if it either

contains A (up to conjugation) or is disjoint from A.

Lemma 5.1. For any sequence (ri)i≥1, if |i− j| = 1, then Ai,Aj are disjoint, and if
|i− j|= 2 or 3, then they are distinct and not disjoint.

Proof. We see from Equation 1 that the statement of the lemma holds for A0,A1,A2 and

A3. Now, for i ≥ 1 and k ∈ {1,2,3}, by Equation 2, the pair Ai,Ai+k differs from A0,Ak

by the automorphism Φi, whence the lemma.

Recall the transition matrix Mr for φr, and the 3×3 matrix B whose power Br forms

a block of Mr. For each i≥ 1, let M i =Mi mod 2. By a simple computation, we see that

B7 = I mod 2. Thus, when i= j mod 7, M i =M j . We have the following lemma.

Lemma 5.2. Let V0 be the three-dimensional vector space of (Z/2Z)7 spanned by the
vectors (0,0,0,1,0,0,0)T ,(0,0,0,0,1,0,0)T ,(0,0,0,0,0,1,0)T . Then for all i≥ 0,

V0

⋃⎛⎝107⋃
j=0

M iM i+1 . . .M i+jV0

⎞⎠= (Z/2Z)7.

Proof. Since M i = M j whenever i = j mod 7, it is enough to verify the statement for

i ∈ {0, . . . ,6}. In these cases, we can check the validity of the statement using Sage with

the following code:
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Lemma 5.3. For any sequence (ri)i, if ri ≡ i mod 7, then 109 consecutive Ai’s cannot

be contained in the same free factor or be disjoint from a common factor.

Proof. For any i≥ 1 and k ≥ 0, let

Bi+k = φiφi+1 · · ·φi+kA0.
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Abelianizing and reducing mod 2, we have A0 ≡ V0, and Bi+k ≡M i · · ·M i+kV0. Thus, by
Lemma 5.2, the sequence {A0,Bi, . . . ,Bi+107} cannot be contained in the same free factor

or be disjoint from a common factor.

Now, consider any sequence (ri)i with ri ≡ i mod 7 so that Mri = M i for all i. Let

Ai = ΦiA0 = φr1 · · ·φriA0. Set Φ0 = id. For any i ≥ 1, by applying the automorphism
Φ−1

i−1, the sequence of free factors {Ai−1, . . . ,Ai+107} is isomorphic to the sequence

{A0,φriA0, . . . ,φriφri+1
· · ·φri+107

A0}.

The latter sequence after abelianization and reducing mod 2 is equivalent to the sequence
{A0,Bi, . . . ,Bi+107}. Thus, {Ai−1, . . . ,Ai+107} cannot be contained in the same factor or

be disjoint from a common factor.here

5.2. Subfactor projection

We will now use subfactor projection theory originally introduced in [BF14b] and further

developed in [Tay14] to show that (Ai)i is a quasi-geodesic for appropriate choices of

sequence (ri)i.
We first define subfactor projection and recall the main results about them. For G ∈

CVn and a rank ≥ 2 free factor A, let A|G denote the core subgraph of the cover of

G corresponding to the conjugacy class of A. Pulling back the metric on G, we obtain

A|G ∈CV(A). Denote by πA(G) := π(A|G)⊂F(A) the projection of A|G to F(A). Here,
CV(A) is the Outer space of the free group A and F(A) is the corresponding free factor

complex.

Recall two free factors A and B are disjoint if they are distinct vertex stabilizers of a
free splitting of Fn. If B is not compatible with A, then we say B meets A, that is, B and

A are not disjoint and A is not contained in B, up to conjugation. In this case, define the

projection of B to F(A) as follows:

πA(B) := {πA(G)|G ∈ CVn and B|G⊂G is embedded }

If B is compatible with A, then define πA(B) to be empty. If A meets B and B meets A,

then we say A and B overlap.

Theorem 5.4 [Tay14]. Let A,B,C be free factors of Fn. There is a constant D depending

only on n such that the following statements hold.

1. If rank(A) ≥ 2, then either A ⊆ B (up to conjugation), A and B are disjoint, or

πA(B)⊂F(A) is defined and has diameter ≤D.

2. If rank(A)≥ 2, B and C meet A and B is compatible with C, then

dA(B,C) = diamF(A)(πA(B)∪πA(C))≤D.

3. If A and B overlap, have rank at least 2 and C meets both, then

min{dA(B,C),dB(A,C)} ≤D.
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Theorem 5.5 (Bounded geodesic image theorem [Tay14]). For n≥ 3, there exists D′ ≥ 0

such that if A is a free factor with rank(A) ≥ 2 and γ is a geodesic of FFn with each

vertex of γ having a well-defined projection to F(A), then diam(πA(γ))≤D′.

We now prove the following lemma.

Lemma 5.6. For any K > 0, there exists a constant r= r(K) such that for any sequence
(ri)i≥1, if ri ≥ r for all i, then the following statements hold:

1. For any j ≥ 2, the projections of Aj−2 and Aj+2 to the free factor complex F(Aj)
are defined and the distance between them is at least K.

2. Let D be the constant of Theorem 5.4. If K > 3D, then for any i < j < k, if j− i≥ 2

and k− j ≥ 2, the projections of Ai and Ak to F(Aj) are defined and have distance

at least K−2D.

Proof. Recall for any r, φr = ρφr, where φ restricts to a fully irreducible outer

automorphism of 〈a,b,c〉. In particular, φ acts as a loxodromic isometry of the free factor

complex F(〈a,b,c〉), Thus, for any K, there exists r = r(K) such that for all s ≥ r, the
distance between φs(〈b,c〉) is at least K+2D away from 〈a,b〉 in F(〈a,b,c〉).
Now consider any sequence (ri)i with ri ≥ r for all i. By Lemma 5.1 and Theorem

5.4, the projections of Aj−2 and Aj+2 to F(Aj) are defined. Moreover, by Equation 2,
we see that, by applying an automorphism, the distance between projections of Aj−2

and Aj+2 in F(Aj) is the same as the distance between the projections of A0 = 〈d,e,f〉
and φrj−1

(A3) = 〈φrj−1
(b),φrj−1

(c),a〉 to F(A2) = F(〈e,f,g〉). Note that the rotation

ρ sends the free factor 〈a,b,c〉 to A2, thus inducing an isometry from F(〈a,b,c〉) to
F(A2). The projection of A0 to F(A2) is D-close to the factor 〈e,f〉 = ρ(〈a,b〉), and

the projection of φrj−1
(A3) to F(A2) is D-close to the factor ρφrj−1(〈b,c〉). Thus, the

distance in F(A2) of the two projections is at least K. This shows the first statement of the
lemma.

Now, fix K > 3D and let (ri)i be any sequence with ri ≥ r(K) for all i. We will prove

the second statement by inducting on l = k− i with the previous statement giving the
base case l= 4. Suppose we are given Ai,Aj,Ak with l= k− i > 4, j− i,k− j ≥ 2. We first

claim that projections of Aj+2,Aj+3, · · · ,Ak to F(Aj) are defined, that is, none of them

are equal to or disjoint from Aj . For suppose As is the first on the list that is equal to or

disjoint from Aj . By Lemma 5.1, we have 4≤ s− j < k− i. By induction, the projections
of both Aj and As to F(Aj+2) are defined and the distance between their projections is

≥K− 2D >D. Using statement 2 of Theorem 5.4, this implies that As and Aj cannot

coincide or be disjoint, proving the claim. By the same argument, we also have that the
projections of Ai,Ai+1, · · · ,Aj−2 to F(Aj) are all defined.

By the first statement of the lemma, we have dAj
(Aj−2,Aj+2)≥K. We now claim that

dAj
(Aj+2,Ak) ≤D. If k = j+3, then Aj+2 and Ak are disjoint, and the claim holds by

statement 2 of Theorem 5.4. If k ≥ j+4, then applying induction again to j, j+2 and

k, we see that Aj and Ak have well-defined projections to F(Aj+2) and dAj+2
(Aj,Ak)≥

K−2D>D. Now, the claim follows by the third statement of Theorem 5.4. By the same
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argument, we also see that dAj
(Ai,Aj−2) ≤ D. We now conclude dAj

(Ai,Ak) ≥K− 2D

by the triangle inequality.

We are now ready to prove the main results of this section.

Proposition 5.7. There exists R> 0 such for any sequence (ri)i≥1, if ri ≥R, and ri ≡ i

mod 7, then the sequence (Ai)i≥0 is a quasi-geodesic in FF7.

Proof. Let D be the constant of Theorem 5.4, and let D′ be the constant of Theorem
5.5. Fix K = 4D+D′. Let R = r(K) be the constant of Lemma 5.6. Let (ri)i≥1 be any

sequence with ri ≥ R and ri ≡ i mod 7 for all i. We will show that the sequence (Ai)i
goes to infinity with linear speed. More precisely, we will show that for any d > 0, if
k− i≥ 110d+4, then dFF7

(Ai,Ak)≥ d. Suppose not. Let γ be a geodesic between Ai and

Ak of length < d.

For every j ∈ {i+2, . . . ,k− 2}, there exists a free factor in γ that is compatible with

Aj . Indeed, if every free factor in γ meets Aj , then by Theorem 5.5, projection of γ to
Aj will be well defined and has diameter bounded by D′. However, by Lemma 5.6, the

projections of Ai and Ak to F(Aj) has distance at least K−2D >D′.
By the pigeonhole principle, there exists a vertex B of γ compatible with at least 110 free

factors among {Ai+2, . . . ,Ak−2}. By Lemma 5.3, it is not possible for B to be compatible

with 109 consecutive Aj ’s. Therefore, it must be possible to find i+2≤ i′ < j′ <k′ ≤ k−2

with j′− i′ ≥ 2 and k′− j′ ≥ 2 such that B is compatible with Ai′ and Ak′ , but B meets
Aj′ . In particular, πAj′ (B) is defined. By Lemma 5.6, Ai′ , Ak′ also have well-defined

projections to F(Aj′) with dAj′ (Ai′,Ak′) ≥ K − 2D > 2D. On the other hand, since B

is compatible with both Ai′ and Ak′ , we have dAj′ (Ai′,B)≤D and dAj′ (Ak′,B)≤D by

Theorem 5.4. This is a contradiction, finishing the proof that dFF7(Ai,Ak) ≥ d for all
k− i≥ 110d+4.

Recall that FFn is Gromov hyperbolic and that its Gromov boundary is the space of

equivalence class of arational trees. Also, recall we say a folding sequence (Gi)i converges

to an arational tree T, if π(Ui) converges to [T ] ∈ ∂FFn, where Ui is the open simplex in
in CVn associated to Gi. We have the following corollary.

Corollary 5.8. Given any strictly increasing sequence (ri)i≥1 satisfying ri ≡ i mod 7,

the folding sequence (τ ′i)i converges to an arational tree T.

5.3. Nongeometric tree

We will now show that the arational tree obtained in the previous section as the limit

of the free factors (Ai)i is nongeometric. This section will use the terminology of band

complexes and resolutions; for details see [BF95].

Definition 5.9 (Geometric tree). [BF94, LP97] Let X be a band complex and T a

G = π1(X)-tree. A resolution f : X̃ → T is exact if for every G-tree T ′ and equivariant

factorization

X̃
f ′

−→ T ′ h−→ T

https://doi.org/10.1017/S1474748023000488 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000488


Limit sets of unfolding paths in Outer space 2387

of f with f ′ a surjective resolution it follows that h is an isometry onto its image. We say

T is geometric if every resolution is exact.

The proof of the following proposition is based on [BF94, Proposition 3.6].

Proposition 5.10. For any strictly increasing sequence (ri)i≥1, if the corresponding

folding sequence (τ ′i)i converges to an arational tree T, then T is not geometric.

Proof. Let ψ̃i : τ̃
′
i−1 → τ̃ ′i be a lift of the train track map to the universal covers fixing a

base vertex. Pick a length measure on (τ ′i)i, so we get a folding sequence τ̃ ′0
ψ̃1−→ τ̃ ′1

ψ̃2−→ ·· ·
in cv7 that converges to T. Recall that there are morphisms hi : τ̃

′
i → T such that hi =

hi+1ψ̃i+1. Since T is arational, hi’s are not isometries though they restrict to isometries

on edges. Let X be a finite band complex with resolution f : X̃ → T . We will show that

the resolution factors through τ̃ ′i for sufficiently large i. This will imply T is not geometric.

Let Γ be the underlying real graph of X (disjoint union of metric arcs) with preimage
Γ̃ in X̃. We may assume f embeds the components of Γ̃. A vertex v of X̃ is either a

vertex of Γ̃ or a corner of a band or a 0-cell of X̃. For every such vertex v, choose a point

f0(v) ∈ τ̃0 so that f0 is equivariant and f = h0f0 on the vertices of X̃.
An edge in X̃ is either a subarc of Γ̃ or a vertical boundary component of a band

or a one-cell in X̃. Up to the action of F7, there are only finitely many edges. Using

Lemma 4.8, we can find i > 0 such that for every edge e in X̃, the edge path in τ̃ ′i joining
the two vertices of ψ̃i · · · ψ̃1f0(∂e) is legal. Now, extend ψ̃i · · · ψ̃1f0 to an equivariant map

fi : X̃ → τ̃ ′i that sends edges to legal paths (or points) and is constant on the leaves. Thus,

fi is a resolution of τ̃ ′i .

This yields a factorization

but hi is not an isometry. This shows T is nongeometric.

6. Nonuniquely ergodic unfolding sequence

The goal of this section is to show that if a sequence (ri)i≥1 grows sufficiently fast, then
the set of currents supported on the legal lamination Λ of the unfolding sequence (τi)i≥0

is a 1-simplex in PCurr7.

Recall that Mr is a 7×7 matrix of the block form(
0 I

Br 0

)
,
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where I is the 4×4 identity matrix, and B is the transition matrix of θ; all that matters
is that some positive power of B has all entries positive. Let λB be the Perron–Frobenius

eigenvalue of B. Recall the constant κB > 0 from Lemma 4.5. Given a sequence (ri)i,

define for each i≥ 1

Pi =
1

κBλ
ri+1

B

MriMri+1
.

Let {ek : k = 1, . . . ,7} be the standard basis for R7. Denote by PR
7
≥0 the projectivization

of R7
≥0, and the projective class of a vector v by [v]. Fix a metric d on PR

7
≥0. We view

Mr as a projective transformation PR
7
≥0 → PR

7
≥0. For a sequence (ri)i≥1 and for i < j

denote by Si,j ⊂ PR
7
≥0 the image of the composition

Mij :=MriMri+1
· · ·Mrj

and by Si =
⋂

j>iSi,j . We denote by vB a positive Perron–Frobenius eigenvector of B, and

by v234B (resp. v567B ) the vector in R
7 which is vB in coordinates 2,3,4 (resp. 5,6,7) and 0

in all other coordinates. The main result of this section is the following.

Proposition 6.1. Let (ri)i≥1 be a sequence of positive integers with ri+1− ri ≥ i. Then

for all i the set Si is a 1-simplex, that is, it is the convex hull of two distinct points

pi,qi ∈ PR
7
>0. Moreover, as i→∞, {pi,qi} converges (as a set) to {[v234B ],[v567B ]}.

Before we give a technical proof of Proposition 6.1, we will give a simpler, more intuitive

proof where the sequence r1 < r2 < · · · is chosen inductively so that r1 is sufficiently large

and each ri is sufficiently large depending on r1,r2, · · · ,ri−1. Later, we do a more careful

analysis where we can control the growth of the sequence.

Proof idea of Proposition 6.1. For ε > 0, we will write x
ε
= y if d(x,y) < ε in PR

7
≥0.

Each Sij is the convex hull of the Mij-images of the vectors ei, i = 1, · · · ,7. The proof

consists of computing these images using the Perron–Frobenius dynamics. We first observe

that there is a sequence εr → 0 such that

• Mr(e7) = e4, Mr(e6) = e3, Mr(e5) = e2, Mr(e4) = e1,

• Mr(ei)
εr= v567B , i= 1,2,3,

• Mr(v
567
B ) = v234B , Mr(v

234
B )

εr= v567B .

Next, we consider the composition MsMr for r >> s. The third bullet uses uniform

continuity of Ms and the assumption that r is sufficiently large compared to s.

• MsMr(e7) = e1,

• MsMr(ei)
εs= v567B , i= 4,5,6,

• MsMr(ei)
εs= v234B , i= 1,2,3.

Finally, for r >> s >> t we see similarly:

• MtMsMr(e7)
εt= v567B ,

• MtMsMr(ei)
εt= v234B , i= 4,5,6,

• MtMsMr(ei)
εt= v567B , i= 1,2,3.
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It follows that if we make suitably large choices for the ri’s, the set Si,i+3 will be
contained in the εri -neighborhood of the 1-simplex [v567B ,v234B ]. Moreover, given any ε > 0

and j > i+ 3 we can choose rj large (depending on uniform continuity constants of

Mij) to ensure that Si,j+3 = Mij(Sj,j+3) is contained in the ε-neighborhood of the 1-
simplex with endpoints Mij(v

567
B ) and Mij(v

234
B ). Thus, each Si is the nested intersection

of simplices of dimension ≤ 6 such that for all ε > 0 they are eventually all contained

in the ε-neighborhood of a 1-simplex with definite distance between the endpoints. This

proves the proposition.

We now present a more detailed proof of Proposition 6.1. For a sequence of integers

(ri)i≥1 such that ri,ri+1−ri →∞, by Lemma 4.5 (Pi)i converges to an idempotent matrix
Y. Let Δi = Y −Pi and let ||Y || be the operator norm.

Lemma 6.2. Let (ri)i≥1 be a sequence of positive integers such that ri+1− ri ≥ i. Then

there exists an I ≥ 1 such that for all i≥ I, ||Δi|| ≤ 1/(2 ·2i).

Proof. Let λB,μB,μ
′
B be the modulus of the three eigenvalues of B ; we have λB ∼ 1.46

and μB = μ′
B ∼ 0.826. Then

||Δi||= ||Pi−Y || ≤ max

(
μri+1

λri+1
,
λri

λri+1

)
≤ λri

λri+1
,

where the two terms comes from the two blocks in Pi. For the last inequality, note that

μ < 1< λ and ri are positive integers. Therefore, μri+1 < 1< λri .

Now, we claim that there exists an I ≥ 1 such that for all i≥ I,

λri

λri+1
≤ 1

2i+1
equivalently, 2≤ λ

ri+1−ri
i+1 .

We only need to show that the sequence ri+1−ri
i+1 is eventually increasing. Indeed, by

assumption, ri+1− ri ≥ i, so

i≤ ri+1− ri

i

i+1
≤ ri+1− ri

i+1
.

Since i/(i+1) is an increasing sequence, it follows that our sequence is also increasing.

The following lemma is a consequence of Lemma 4.5 and Lemma A.1.

Lemma 6.3. Let (ri)i≥1 be a sequence of positive integers such that ri+1 − ri ≥ i, Y

be the idempotent matrix of Lemma 4.5 and M∞ = limr→∞Mr/λ
r
B. Then the following

statements hold.

(1) For all i≥ 1, the sequence of matrices {PiPi+2 · · ·Pi+2k}∞k=1 converges to a matrix

Yi. Furthermore, for all sufficiently large i,

‖Yi−Y ‖ ≤ 2

2i

(
‖Y ‖+‖Y ‖2

)
.

(2) The kernel of Y is a subspace of the kernel of Yi for all i≥ 1.
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(3) For all i≥ 1, Yi(e1) �= 0 with nonnegative entries and Yi(e2) and Yi(e3) are positive

multiples of Yi(e1).

(4) For all i≥ 1, MriYi+1(e1) �=0 with nonnegative entries, and MriYi+1(e1) and Yi(e1)
are not scalar multiples of each other.

(5) Projectively, [Yi(e1)]→ [Y (e1)] and [MriYi+1(e1)]→ [M∞Y (e1)] as i→∞.

Proof. For (1), it suffices to show convergence for all i greater than some I. Indeed, if

such I exists and i < I, then let i0 ≥ I be such that i= i0 (mod 2) and observe that

{PiPi+2 · · ·Pi+2k}∞k= i0−i
2

= PiPi+2 · · ·Pi0−2{Pi0Pi0+2 · · ·Pi0+2k}∞k=0.

By assumption, {Pi0Pi0+2 · · ·Pi0+2k}∞k=0 converges. Since matrix multiplication is contin-

uous, the sequence {PiPi+2 · · ·Pi+2k}∞k=0 also converges.
For each i, let

Δi = Pi−Y.

By Lemma 6.2, there exists I ≥ 1 such that for all i ≥ I, ‖Δi‖ ≤ 1
2·2i . Also, choose I

sufficiently large so that 1
2I

‖Y ‖ ≤ 1/2. Then, by Lemma A.1, for all i ≥ I, the sequence

{PiPi+2 · · ·Pi+2k}∞k=0 converges to some matrix Yi, with

‖Yi−Y ‖ ≤ 2

2i

(
‖Y ‖+‖Y ‖2

)
. (3)

For (2), it again suffices to show the statement is true for all sufficiently large i, and

the statement holds for all i≥ I by Lemma A.1.

For (3), first note that since all the matrices involved are nonnegative, the resulting
vectors are all also nonnegative. So we only need to show that they are not the zero vector.

It suffices to check that Yi(e1) �= 0 for all sufficiently large i since each Pi is nonnegative

and has full rank. For large i, the statement follows because Y (e1) is not equal to 0 and
‖Yi(e1)−Y (e1)‖ ≤ ‖Yi−Y ‖ can be made arbitrarily small. For the second statement, we

know that Y (e2) and Y (e3) are positive multiples of Y (e1), so there are s,t > 0 such that

se2− e1 and te3− e1 are in the kernel of Y. Then Yi(se2− e1) = Yi(te3− e1) = 0 for all i

by (2).
For (4), MriYi+1(e1) �=0 with nonnegative entries since Yi+1(e1) is so by (3). To see that

MriYi+1(e1) and Yi(e1) are projectively distinct, it is enough to do this for all sufficiently

large i. Let M∞ = limr→∞Mr/λ
r
B . By Lemma 4.5 and Lemma 4.7, Y (e1) and M∞Y (e1)

are orthogonal. Since ri →∞, we can make
Mri

λ
ri
B

Yi+1(e1) arbitrarily close to M∞Y (e1),

and Yi(e1) close to Y (e1). This means MriYi+1(e1) and Yi(e1) are near orthogonal, so
they can’t be scalar multiples of each other.

Statement (5) is clear.

Proof of Proposition 6.1. By Lemma 4.5 and Lemma 4.7, [v234B ] = [Y (e1)] and [v567B ] =

[M∞Y (e1)]. Using notation from Lemma 6.3, set

pi = [Yi(e1)] and qi = [MriYi+1(e1)].

By Lemma 6.3 (3)–(5),
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• pi and qi are well defined and distinct.
• pi = [Yi(ek)], and qi = [MriYi+1(ek)], for k = 1,2,3.
• pi → [v234B ] and qi → [v567B ].
• [Mri(pi+1)] = qi and [Mri(qi+1)] = pi.

Our goal is to show Si is the 1-simplex spanned by pi and qi. To do this, we consider
Sij , which is the convex hull of the Mij-images of the vectors ek, k = 1, · · · ,7. That is, we
have to show that [Mij(ek)] is close to either pi or qi for each k. We first observe that for

all r,s > 0:

• Mr(e4) = e1, Mr(e5) = e2, Mr(e6) = e3, Mr(e7) = e4,
• MrMs(e7) = e1.

We may assume that j−1 = i+2m, so Mij breaks up into pairs, that is, for all k,

[Mij(ek)] = [Pi · · ·Pj−1(ek)].

Let ε > 0 be arbitrary. Choose δ > 0 such that for any vector u ∈ R
7
+ and any v ∈{

Yi(ek),
Mri

λ
ri
B

Yi+1(ek) : k = 1,2,3
}
, if ‖u−v‖ ≤ δ, then d([u],[v])≤ ε. Now, by Lemma 6.3,

we can choose J sufficiently large so that whenever i+2m≥ J , then

• ‖Pi · · ·Pi+2m−Yi‖ ≤ δ
• ‖Pi+1 · · ·Pi+2m+1−Yi+1‖ ≤ δ

‖Mri
/λ

ri
B ‖ .

Now, we may assume that j−3≥ J . Then,

• For k = 1,2,3, we have

‖Pi · · ·Pj−1(ek)−Yi(ek)‖ ≤ δ =⇒ d
(
[Mij(ek)],pi

)
≤ ε.

• For k = 7, we have Mij(e7) =Mi,j−2(e1), so [Mij(e7)] = [Pi · · ·Pj−3(e1)] is ε-close
to [pi] by the same reasoning as the previous bullet point.

• For k = 4,5,6, Mij(ek) = Mi,j−1(ek−3). In this case, we consider
Mri

λri
Pi+1 · · ·

Pj−2(ek−3) and approximate it by
Mri

λri
Yi+1(ek−3), as follows:∥∥∥∥Mri

λri
Pi+1 · · ·Pj−2(ek−3)−

Mri

λri
Yi+1(ek−3)

∥∥∥∥
≤
∥∥∥∥Mri

λri

∥∥∥∥‖Pi+1 · · ·Pj−2−Yi+1‖

≤ δ.

Thus, for k = 4,5,6, d
(
[Mij(ek)],qi

)
≤ ε.

We have shown that for any ε, the vertices of the simplex Si,j come ε-close to pi and qi
for all sufficiently large j. Since Si,j+1 ⊂ Si,j and Si =

⋂
j>iSi,j , it follows that Si must

be the 1-simplex spanned by pi and qi. This proves the Proposition.

Recall the unfolding sequence (τi)i≥0, where Mri is the transition matrix of the train

track map φri : τi → τi−1. Let Λ be the legal lamination of (τi)i≥0.
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Corollary 6.4. If (ri)i≥1 is a positive sequence with ri+1− ri ≥ i, then PCurr(Λ) is a

1-simplex.

Proof. In light of Theorem 3.3, it is enough to show PCurr((τi)i) is a 1-simplex. For each

i≥ 0, we have a well-defined projection

pi : PCurr((τi)i)→ PR
7
+ given by pi([(μi)i]) = [μi].

The image of the projection is Si+1, which is always a 1-simplex by Proposition 6.1.

Therefore, PCurr((τi)i) is a 1-simplex.

7. Nonuniquely ergometric tree

The goal of this section is to show that if a sequence (ri)i≥1 grows sufficiently fast, then
the set of projectivized length measures PD((τ ′i)i) on the folding sequence (τ ′i)i) is a 1-

simplex. By Proposition 3.1, if (τ ′i)i converges to an arational tree T, then PD(T ) is also

a 1-simplex in ∂CV7.

Recall that Nr is a 7×7 matrix of the block form(
0 Cr

I 0

)
,

where I is the 4×4 identity matrix, and C is the transition matrix of ϑ. The transpose

of Nr has the same shape as Mr. Therefore, the same theory from Section 6 holds true.
For brevity, we record only the essential statements that will be used later and omit all

proofs from this section.

Let λC be the Perron–Frobenius eigenvalue of C. Let κC be the constants of Lemma
4.6. Given a sequence (ri)i, define for each i≥ 1

Qi =
1

κCλ
ri+1

C

Nri+1
Nri .

Lemma 7.1. Given a sequence (ri)i≥1 of positive integers such that ri+1− ri ≥ i. Then
for all i ≥ 1, the sequence of matrices {Qi+2k · · ·Qi+2Qi}∞k=0 converges to a matrix Zi.

Furthermore, limi→∞Zi = Z, where Z is the idempotent matrix of Lemma 4.6.

Corollary 7.2. If (ri)i≥1 is a positive sequence with ri+1− ri ≥ i, then PD((τ ′i)i), and
hence PD(T ), is a 1-simplex.

8. Nonuniquely ergodic tree

In this section, we relate the legal lamination Λ associated to the unfolding sequence

(τi)i defined in Section 6 and the limiting tree T of the folding sequence (τ ′i)i defined in
Section 5, to show that T is not uniquely ergodic.

Recall the automorphism Φi = φr1 ◦ · · ·φri , with Φ0 = id. We also use Φi to denote the

induced graph map from τi to τ0. If each τi and τ ′i as a marked graph is the rose labeled
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by {ai,bi,ci,di,ei,fi,gi}, then xi is represented by Φi(x) for x ∈ {a,b,c,d,e,f,g} as a word

in F7 = 〈a,b,c,d,e,f,g〉= π1(τ0) = π1(τ
′
0). We denote x0 as above simply by x.

Lemma 8.1. If (ri)i≥1 is positive, then for any length measure (λi)i ∈ D((τ ′i)i), the λi-
volume of τ ′i goes to 0 as i→∞.

Proof. The composition ψriψri−1
ψri−2

: τ ′i−3 → τ ′i has the property that the preimage of

every point of τ ′i consists of at least two (in fact, many more) points of τ ′i−3, and so the

λi-volume of τ ′i is at most half of the λi−3-volume of τ ′i−3.

Lemma 8.2. Suppose (ri)i≥1 is positive. Let Λ be the legal lamination of the unfolding

sequence (τi)i. Then every leaf in Λ is obtained as a limit of a sequence {Φi(w)}i, where w
is a legal word in τ0 of length at most two in {a,b,c,d,e,f,g} and their inverses. Moreover,

w can be closed up to a legal loop which is a cyclic word of length ≤ 3.

Proof. Let l be a leaf of Λ realized as a bi-infinite line in τ0, and let s be any subsegment

of l, with combinatorial edge length �s > 0 in τ0. By definition, for every i there is a bi-
infinite legal path li in τi such that l=Φi(li). Let i= i(s)≥ 0 such that the edge length of

xi in τ0 under the graph map Φi is ≥ �s for all x∈ {a,b,c,d,e,f,g}. Thus, there is a segment

si of li of combinatorial length at most two in {ai,bi,ci,di,ei,fi,gi} such that s ⊂ Φi(si)
(here, Φi is a graph map). Now, if si = xiyi for x,y ∈ {a,b,c,d,e,f,g}, take w = xy. Thus,

we see that Φi(w) (here, Φi is an automorphism) covers s in τ0. Since this is true for

any segment of l, we conclude the lemma by taking a nested sequence of subsegments of

l with edge length in τ0 going to infinity. The fact that legal paths of length ≤ 2 can be
closed up to legal loops of length ≤ 3 follows from the description of the train track in

Lemma 4.3.

Recall that if (τ ′i)i converges to an arational tree T, then we can identify D((τ ′i)i) with
D(T ) by Proposition 3.1.

Lemma 8.3. Suppose (ri)i≥1 is positive and that the folding sequence (τ ′i)i converges
to an arational tree T. Let w be any conjugacy class in F7 represented by a cyclic word

in {a,b,c,d,e,f,g} and their inverses, and let λ ∈ D(T ) correspond to a length measure

(λi)i ∈ D((τ ′i)i). Then

lim
i→∞

‖Φi(w)‖(T,λ) = 0.

Proof. Under the isomorphism from D((τ ′i)i)→D(T ) that maps (λi)i 	→ λ, the sequence

(τ ′i,λi)⊂ cv7 also converges to (T,λ) ∈ ∂cv7. Thus, for any x ∈ F7,

‖x‖(T,λ) = lim
i→∞

‖x‖(τ ′
i,λi)

.

In fact, the sequence ‖x‖(τ ′
i,λi)

is monotonically nonincreasing. Recall that τ ′0 as a marked

graph is the rose labeled by {a,b,c,d,e,f,g}. Represent w by a loop cw in τ ′0. The graph τ ′i
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is the rose labeled by {Φi(a), . . . ,Φi(g)}. Thus, the loop cw in τ ′i represents the conjugacy
class Φi(w). This shows

‖Φi(w)‖(T,λ) ≤ ‖Φi(w)‖(τ ′
i,λi)

≤ ‖w‖word vol(τ
′
i,λi)

where ‖w‖word is the word length of w. By Lemma 8.1, the last term goes to 0.

We now come to the main statement of this section.

Proposition 8.4. Suppose (ri)i≥1 is positive and that the folding sequence (τ ′i)i converges
to an arational tree T. Let Λ̃ be the lamination corresponding to the legal lamination Λ

of the unfolding sequence(τi)i, and let L(T ) be the lamination dual to T. Then Λ̃⊆ L(T ).

In particular, if T is nongeometric, then Curr(Λ) = Curr(T ).

Proof. Recall by Lemma 2.4, the lamination dual to an arational tree is independent of
the length measure on the tree. So fix an arbitrary length measure λ ∈ D(T ) on T.

Let W3 be the set of legal loops of length at most three in {a,b,c,d,e,f,g} and their

inverses. By Lemma 8.3, for every ε > 0, there exists Iε > 0 such that for all i ≥ Iε,∥∥Φi(w)(T,λ)

∥∥ < ε, for every w ∈ W3. Then the bi-infinite line (Φi(w)
−∞,Φi(w)

∞) is in
Lε(T ) for all i≥ Iε. Therefore,⋂

ε>0

⋃
w∈W3
i≥Iε

(Φi(w)−∞,Φi(w)∞)⊆
⋂
ε>0

Lε(T ).

By Lemma 8.2, we conclude that Λ̃⊆ L(T ).

If T is nongeometric and arational, then it is freely indecomposable by [Rey12]. By

[CHR15, Corollary 1.4], Curr(Λ) = Curr(T ).

The following is the consequence of Proposition 8.4 and Corollary 6.4.

Corollary 8.5. For a positive sequence (ri)i≥1 of integers with ri+1−ri ≥ i, if the folding

sequence (τ ′i)i converges to a nongeometric arational tree T, then PCurr(T ) is a 1-simplex.
In particular, T is not uniquely ergodic.

9. Nonconvergence of unfolding sequence

In this section, fix a sequence (ri)i≥1 such that ri+1 − ri ≥ i. We will show that the

corresponding unfolding sequence (τi)i does not converge to a unique point in ∂CV7. In

fact, we will show in Corollary 9.3 that it converges to a 1-simplex in ∂CV7.
Recall the folding and unfolding sequences (τ ′i)i and (τi)i, respectively, from

Section 4.
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Here, τi and τ ′i as marked graphs belong to the same simplex in CV7. Also, recall the

matrices defined for all i≥ 0

Pi =
1

κBλ
ri+1

B

MriMri+1
and Qi =

1

κCλ
ri+1

C

Nri+1
Nri,

and the existence of the limiting matrices from Lemma 6.3 and Lemma 7.1

Yi = lim
k→∞

PiPi+2 · · ·Pi+2k and Zi = lim
k→∞

Qi+2k · · ·Qi+2Qi.

For all even 2m≥ 0,

c2m =
(
κm
Bλr2

B λr4
B · · ·λr2m

B

)(
κm
C λr2

C λr4
C · · ·λr2m

C

)
.

Similarly, for all odd 2m+1≥ 1, set

c2m+1 =
(
κm
Bλr1

B λr3
B · · ·λr2m+1

B

)(
κm
C λr1

C λr3
C · · ·λr2m+1

C

)
.

Let �= �0 ∈R
|Eτ0| be a positive length vector on τ0. Then � determines a length vector �i

on each τi given by �i =MT
ri . . .M

T
r1� ∈R

|Eτi|. We set �Te = �TY1 and �To = �T
Mr1

λ
r1
B

Y2. Note

that both �e and �o are positive vectors. For �e, this follows since � is a positive vector

and Y1 is a nonnegative matrix. Similarly, �TMr1 is positive and Y2 is nonnegative, so �o
is also positive.

We will show the sequence (τi,�i)i ⊂CV7, up to rescaling, does not have a unique limit

in ∂CV7. We start by showing the even sequence and the odd sequence do converge, up
to scaling. More precisely:

Lemma 9.1. For any positive length vector �= �0 on τ0, the corresponding even sequence(
τ2m,

�2m
c2m

)
and odd sequence

(
τ2m+1,

�2m+1

c2m+1

)
of metric graphs converge to two points Te

and To, respectively, in ∂CV7. In fact, for any conjugacy class x ∈ F7, there exists an

index ix ≥ 0, a vector vx ∈ R
|Eτ ′

ix
| and matrices Y e

x and Y o
x such that

‖x‖Te
= �Te Y

e
x vx and ‖x‖To

= �To Y
o
x vx.

Proof. Let x∈ F7 be a cyclically reduced representative of its conjugacy class. By Lemma
4.8, there exists i≥ 0 such that x is legal in τ ′i . Let ix be the smallest index among such

i. Then we can represent x by a vector vx in R
|Eτ ′

ix
| and by the vector Nri . . .Nix+1vx in

R
|Eτi| for i≥ ix. Thus, for all i≥ ix, we have

‖x‖(τi,�i) =
(
�TMr1 · · ·Mri

)(
Nri · · ·Nix+1vx

)
.

If ix is even, then write ix = 2mx, and set

cex = κmx

C λr2
C λr4

C · · ·λrix
C and cox = κmx

C λr1
C λr3

C · · ·λrix−1

C .
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If ix is odd, then write ix = 2mx+1, and set

cex = κmx+1
C λr2

C λr4
C · · ·λrix−1

C and cox = κmx

C λr1
C λr3

C · · ·λrix
C .

First, suppose ix is even. Then for all even 2m≥ ix, we have

‖x‖(
τ2m,

�2m
c2m

) =
‖x‖(τ2m,�2m)

c2m

=
�T

(
P1P3 · · ·P2m−1

)(
Q2m−1 · · ·Qix+3Qix+1

)
vx

cex

m→∞−−−−→ �TY1Zix+1vx
cex

= �Te

(
Zix+1

cex

)
vx

and for odd 2m+1≥ ix, we have

‖x‖(
τ2m+1,

�2m+1
c2m+1

) =
‖x‖(τ2m+1,�2m+1)

c2m+1

=
�T

Mr1

λ
r1
B

(
P2P4 · · ·P2m

)(
Q2m · · ·Qix+4Qix+2

)
Nix+1vx

coxλ
rix+1

C

m→∞−−−−→
�T

Mr1

λ
r1
B

Y2Zix+2Nix+1vx

cox
= �To

(
Zix+2

cox

Nix+1

λix+1
C

)
vx.

Now, suppose ix is odd. Then for all even 2m≥ ix, we have

‖x‖(
τ2m,

�2m
c2m

) =
�T

(
P1P3 · · ·P2m−1

)(
Q2m−1 · · ·Qix+3

)
Nrix+1

vx

cexλ
rix+1

C

m→∞−−−−→ �Te

(
Zix+2

cex

Nrix+1

λ
rix+1

C

)
vx,

and for odd 2m+1≥ ix, we have

‖x‖(
τ2m+1,

�2m+1
c2m+1

) =
�T

Mr1

λ
r1
B

(
P2P4 · · ·P2m

)(
Q2m · · ·Qix+3Qix+1

)
vx

cox

m→∞−−−−→ �To

(
Zix+1

cox

)
vx.

Either way, for any conjugacy class x in F7, both

‖x‖Te
= lim

m→∞
‖x‖(

τ2m,
�2m
c2m

) and ‖x‖To
= lim

m→∞
‖x‖(

τ2m+1,
�2m+1
c2m+1

)

are well defined and have the desired form.
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We now want to show Te and To are not scalar multiples of each other. In fact, the
following lemma will allow us to show that Te and To are the extreme points of the simplex

PD(T ).

Lemma 9.2. There exist two sequences αi and βi of conjugacy classes of elements of F7

such that the following holds. For any positive length vector � = �0 on τ0, let Te and To

be the respective limiting trees in ∂CV7 for
(
τ2m, �2mc2m

)
and

(
τ2m+1,

�2m+1

c2m+1

)
. Then

||αi||To

||αi||Te

i→∞−−−→∞, and
||βi||To

||βi||Te

i→∞−−−→ 0.

Proof. Take the letter e ∈ F7 and recall the automorphisms Φi used to define the folding
and unfolding sequences. Set xi =Φi(e). For each i, xi is legal in τ ′i and is represented by

the vector e5 = (0,0,0,0,1,0,0)T in τ ′i .
Using notation from Lemma 9.1, set cei = cexi

and coi = cexi
. Note here i is the smallest

index such that xi is legal in τ ′i . We compare the ratio of coi and cei . Since ri+1−ri →∞,

we have

ce2i
co2i

=
λr2
C · · ·λr2i

C

λr1
C · · ·λr2i−1

C

i→∞−−−→∞, while
ce2i+1

co2i+1

=
κC

λr1
C

λr2
C · · ·λr2i

C

λr3
C · · ·λr2i+1

C

i→∞−−−→ 0.

Recall that both �e and �o are positive and by Lemma 7.1 the sequence Zi converges

to Z. Since Ze5 is the zero vector, by continuity of the dot product,

lim
i→∞

�Te Z2i+1e5 = �Te Ze5 = 0 and lim
i→∞

�To Z2i+1e5 = �To Ze5 = 0.

Next, let N∞ = limi→∞
Nri

λ
ri
C

and recall by Lemma 4.7 that the vector ZN∞e5 = (�, �, �,

0,0,0,0) is nonnegative. Thus, there are positive constants A and B such that

lim
i→∞

�Te

(
Z2i+2

Nr2i+1

λ
r2i+1

C

)
e5 = �Te ZN∞e5 =A> 0,

and

lim
i→∞

�To

(
Z2i+2

Nr2i+1

λ
r2i+1

C

)
e5 = �To ZN∞e5 =B > 0.

Combining the above observations and the formulas for length of xi in Te and To

obtained in Lemma 9.1 we get

‖x2i‖To

‖x2i‖Te

=
�To

(
Z2i+2

Nr2i+1

λ
r2i+1
C

)
e5

�Te (Z2i+1)e5

ce2i
co2i

i→∞−−−→ A

0
·∞

‖x2i+1‖To

‖x2i+1‖Te

=
�To (Z2i+1)e5

�Te

(
Z2i+2

Nr2i+1

λ
r2i+1
C

)
e5

ce2i+1

co2i+1

i→∞−−−→ 0

B
·0.

Setting αi = x2i and βi = x2i+1 finishes the proof.
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Corollary 9.3. For a sequence (ri)i≥1 with ri+1 − ri ≥ i, if the folding sequence (τ ′i)i
converges to an arational tree T, then for any positive length vector �0 on τ0, the limit

set in ∂CV7 of the rescaled unfolding sequence (τi,�i) is always the 1-simplex PD(T ).

Proof. Since the folding (τi)
′
i and the unfolding sequence (τi)i are equal as marked graphs

for all i≥ 0, no matter the metric, they both visit the same sequence of simplices in CV7.

In particular, they both project to the same quasigeodesic in FF7. Thus, the two limiting

trees Te and To of the even and odd sequences of (τi,�i) are length measures on T.
Recall PD(T ) is a 1-simplex by Corollary 7.2. If neither Te nor To are the extreme

points of this simplex, then there exist constants c,c′ > 0 such that any x ∈ Fn,

c′ ≤
‖x‖To

‖x‖Te

≤ c.

On the other hand, if one of them, say To, is an extreme point but Te is not, then we

have a constant c > 0 such that for any x ∈ Fn,
‖x‖To

‖x‖Te

≤ c. In both the cases, we get a

contradiction to Lemma 9.2.

10. Conclusion

Recall φ ∈Aut(F7) is the automorphism

a 	→ b,b 	→ c,c 	→ ca,d 	→ d,e 	→ e,f 	→ f,g 	→ g

and ρ ∈Aut(F7) is the rotation by four clicks:

a 	→ e,b 	→ f,c 	→ g,d 	→ a,e 	→ b,f 	→ c,g 	→ d.

For any integer r, let φr = ρφr. To each sequence (ri)i≥0 of positive integers, we have an
unfolding sequence (τi)i with train track map φri : τi → τi−1, and a folding sequence (τ ′i)i
with train track map φ−1

ri : τ ′i−1 → τi. By the limit set of the unfolding sequence (τi)i in

∂CVn we mean the limit set of (τi,�i) with respect to some (any) positive length vector
�i on τi.

Main Theorem. Given a strictly increasing sequence (ri)i≥1 satisfying ri ≡ i mod 7

and ri ≡ 0 mod 3, then the folding sequence (τ ′i)i converges to a nongeometric arational

tree T.

If (ri)i grows fast enough, that is, if ri+1−ri ≥ i, then T is both nonuniquely ergometric
and nonuniquely ergodic. Both PD(T ) and PCurr(T ) are one-dimensional simplices.

Furthermore, the limit set in ∂CV7 of the unfolding sequence (τi)i is always the 1-

simplex spanned by the two ergodic metrics on T.

Proof. A sequence as in the statement exists by the Chinese remainder theorem. The first
statement follows from Corollary 5.8 and Proposition 5.10. Nonunique ergometricity of T

follows from Proposition 3.1 and Corollary 7.2. Nonunique ergodicity of T is Corollary

8.5. Finally, the last statement is Corollary 9.3.
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A. Appendix

A.1. Convergence lemma

Let ‖·‖ denote the operator norm. Thus, ‖Y ‖ ≥ 1 for a nontrivial idempotent matrix Y.

Lemma A.1. Let Y be an idempotent matrix and Δi, i≥ 1, a sequence of matrices with
‖Δi‖ ≤ ε

2i for some ε > 0. Assume also that ε‖Y ‖ ≤ 1/2. Then the infinite product

∞∏
i=1

(Y +Δi)

converges to a matrix X with ‖X−Y ‖ ≤ 2ε
(
‖Y ‖+‖Y ‖2

)
. Moreover, the kernel of Y is

contained in the kernel of X.

Proof. Write

Y +Σk =

k∏
i=1

(Y +Δi)

Then (Y +Σk)(Y +Δk+1) = Y +Σk+1 and since Y 2 = Y it follows that

Σk+1 = YΔk+1+Σk(Y +Δk+1). (1)

Multiplying on the right by Y and using Y 2 = Y , we get

Σk+1Y = YΔk+1Y +ΣkY +ΣkΔk+1Y

and applying the norm

‖Σk+1Y ‖ ≤ ‖ΣkY ‖+ ε

2k+1
‖Y ‖2+‖Σk‖

ε

2k+1
‖Y ‖ .

By adding these for k = 1,2, · · · ,m−1 and using Σ1 =Δ1, we have

‖ΣmY ‖ ≤ ‖Σ1Y ‖+ ε‖Y ‖2
(
1

4
+ · · ·+ 1

2m

)
+ ε‖Y ‖

(
‖Σ1‖
4

+ · · ·+ ‖Σm−1‖
2m

)
≤ ε

(
‖Y ‖+‖Y ‖2

)
+ ε‖Y ‖

(
‖Σ1‖
4

+ · · ·+ ‖Σm−1‖
2m

)
.

So the norms of ΣmY are bounded by norms of Σi with i < m. From Equation 1, we

also see that the norm of Σk+1 is bounded by the norms of ΣkY . Putting this together,

we have

‖Σk+1‖ ≤ ‖Y ‖‖Δk+1‖+‖ΣkY ‖+‖Σk‖‖Δk+1‖

≤ ε

2k+1
‖Y ‖+‖ΣkY ‖+ ε

2k+1
‖Σk‖

≤ ε

2k+1
‖Y ‖+ ε

2

(
‖Y ‖+‖Y ‖2

)
+ ε‖Y ‖

(
‖Σ1‖
4

+ · · ·+ ‖Σk−1‖
2k

)
+

ε

2k+1
‖Σk‖

≤ ε
(
‖Y ‖+‖Y ‖2

)
+ ε‖Y ‖

(
‖Σ1‖
4

+ · · ·+ ‖Σk−1‖
2k

+
‖Σk‖
2k+1

)
.
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Thus, we have an inequality of the form

‖Σk+1‖ ≤ a+ b

(
‖Σ1‖
4

+ · · ·+ ‖Σk‖
2k+1

)
for a= ε

(
‖Y ‖+‖Y ‖2

)
and b= ε‖Y ‖.

Set c=2ε
(
‖Y ‖+‖Y ‖2

)
. Then c≥ ε, a≤ c/2 and b≤ 1/2 by assumption. Easy induction

then shows for all k ≥ 1,

‖Σk‖ ≤ c. (2)

This obtains the inequality ‖X−Y ‖ ≤ c from the statement, once we establish conver-
gence.

To see convergence, we argue that the sequence of partial products forms a Cauchy

sequence. For 1< k <m,

m∏
i=1

(Y +Δi)−
k∏

i=1

(Y +Δi) =
k−1∏
i=1

(Y +Δi)

( m∏
i=k

(Y +Δi)− (Y +Δk)

)
.

By Equation 2, the norm of
∏k−1

i=1 (Y +Δi) = Y +Σk−1 is bounded by c+ ‖Y ‖. We can
apply the same estimate to the sequence starting with Y +Δk and with ε replaced with

ε
2k−1 to see that ∥∥∥∥∥

m∏
i=k

(Y +Δi)−Y

∥∥∥∥∥≤ 2ε(‖Y ‖+‖Y ‖2)
2k−1

≤ c

2k−1

and so ∥∥∥∥∥
m∏
i=k

(Y +Δi)− (Y +Δk)

∥∥∥∥∥≤ c

2k−1
+

1

2k

which proves the sequence is Cauchy.

For the second statement, set Xk =
∏∞

i=k(Y +Δi) for k ≥ 1. By the same estimate as

above with ε replaced with ε
2k−1 , we know that Xk exists and

‖Xk−Y ‖ ≤ 2ε

2k−1

(
‖Y ‖+‖Y ‖2

)
=

c

2k−1
.

By definition, X = (Y +Σk)Xk+1. Suppose v is a unit vector with Y v = 0. Then

‖Xv‖ ≤ ‖Y +Σk‖‖Xk+1v‖
= ‖Y +Σk‖‖Xk+1v−Y v‖
≤ ‖Y +Σk‖‖Xk+1−Y ‖

≤ (‖Y ‖+ c)
c

2k
.

Since this is true for all k ≥ 0, letting k →∞ yields Xv = 0.
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A.2. Sage code

The following is the Sage code used to check Lemma 4.2, Lemma 4.3 and Lemma 4.4.
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