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RECALCITRANCE IN GROUPS

R.G. BURNS, W.N. HERFORT, S.-M. KAM, O. MACEDONSKA AND P.A. ZALESSKII

To B.H. Neumann on his 90th birthday

Motivated by a well-known conjecture of Andrews and Curtis, we consider the ques-
tion as to how in a given n-generator group G, a given set of n "annihilators" of
G, that is, with normal closure all of G, can be transformed by standard moves into
a generating n-tuple. The recalcitrance of G is defined to be the least number of
elementary standard moves ("elementary M-transformations") by means of which
every annihilating n-tuple of G can be transformed into a generating n-tuple. We
show that in the classes of finite and soluble groups, having zero recalcitrance is
equivalent to nilpotence, and that a large class of 2-generator soluble groups has
recalcitrance at most 3. Some examples and remarks are included.

1. INTRODUCTION

We shall understand an n-generator group to be a group that can be generated
by n elements, but not fewer, and an n-annihilator group to be one that is the normal
closure of n elements, but not fewer. We shall call a set {r\,... , r n } of elements of a
group G whose normal closure is the whole of G an annihilating n-tuple for G, and
write (r\,...,rn) — G. These include, of course, generating n-tuples {<?i, ...,<?«},
for which we write {gi,...,gn) = G.

We are interested here in the question as to whether, and if so then with what degree
of difficulty, an annihilating n-tuple {ri,...,rn} of a given group G can be transformed
via natural elementary moves into a generating n-tuple. The "elementary moves" as
denned by Andrews and Curtis in [1] are Nielsen transformations supplemented by the
transformations replacing an Ti by a conjugate ri9. In [2, Proposition 1], it was shown
essentially that the result of any finite sequence of such transformations can be achieved
by means of a sequence of transformations of the form

{r\,...,rn} —> {ri,...,uw,...,rn}, w € < r i , . . . , r i _ i , r i + i , . . . , r n > G ,

called elementary M-transformations (M for "modulo" since r; is replaced by any ele-
ment congruent to it modulo the other r^s), and conversely. For some purposes - see
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[2] and the remarks below - the latter transformations are more convenient than those
of Andrews and Curtis, and it is these that we shall take as our "elementary moves"
here.

Let G be an n-generator, n-annihilator group. We define the recalcitrance of an
annihilating n-tuple for G to be the least number of elementary M-transformations
required to transform that n-tuple into a generating n-tuple. (If it is not possible to so
transform the given annihilating n-tuple, we say that its recalcitrance is infinite.) We
then define the recalcitrance of the group G to be the largest of the recalcitrances of all
of its annihilating n-tuples.

Our main results are as follows. In Section 2 we consider groups of recalcitrance
zero, showing that at least in the classes of finite and soluble groups having zero re-
calcitrance is equivalent to nilpotence. In Section 2, by way of giving examples we
examine the recalcitrance of two particular groups, namely the infinite dihedral group
Z2 * Z2 and the wreath product ZIZ. Finally, in Section 3, we prove that a great many
2-generator, 2-annihilator soluble groups, including all free soluble groups of rank 2,
have recalcitrance at most 3.

REMARKS. 1. The concept of recalcitrance has its origin in the paper [1] of An-
drews and Curtis, which contains the by now well-known conjecture that in the free
group Fn of rank n every annihilating n-tuple has finite recalcitrance. Some can-
didates for counterexamples, that is, for having infinite recalcitrance, are given in
[2]. One formerly hopeful such candidate (not in [2]), namely the annihilating pair
{yxyx~1y~1x~1, x2y~3} for F2, the free group on x,y, has recently been shown by
computer to have finite recalcitrance after all [3]. That in fact this pair has recalcitrance
2 can be shown as follows. Write briefly

r := yxyx~1y~1x'1, 3 := x2y~3.

Then r = yx~1x2yx~1y~3y2x~1, whence

r = yx~1yx~1y2x~1 mod (s)F2.

Thus as our first elementary M-transformation we may replace {r, s} by {ri, s}, where
rx := yx~1yx~1y2x~1. Now 7̂  is primitive (that is, a member of a generating pair
for F2) since it is conjugate to (yx"1) y, which is clearly primitive. Hence one further
elementary M-transformation will yield a pair {ri,si} of generators of F2.

2. In [2] the term "complexity" was used to mean something very close to recalci-
trance. The present version of the concept seems preferable, in particular since it avoids
negative numbers. Thus in terms of recalcitrance, Theorem 1 of [2] asserts that the
annihilating pair {x3y~1x~2y, y3x~1y~2x) for F2 has recalcitrance ^ 3.
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3. The concept of an elementary M-transformation lends itself to the formulation
of an analogue of the concept of recalcitrance - and hence also of the Andrews-Curtis
conjecture - for Lie rings. Thus if L denotes the free Lie ring on xi,...,xn, and the
ideal generated by r i , rn is all of L, an elementary M-transformation of {ri,..., rn}

changes this to an n-tuple of the form {ri,..., r^ + to, . . . , rn} where w belongs to the
ideal generated by { r i , . . . , fj_i, fj+i, . . . , r n } . The recalcitrance of such an n-tuple
{r i , . . . , rn} C L is now defined as before. Question: Is there a connection between the
original Andrews-Curtis conjecture for Fn and its analogue for the Lie ring constructed
from the lower central series of Fn in the usual way?

4. The concept of recalcitrance might be extended to arbitrary n-generator groups
(that is, not necessarily n-annihilator) by considering ordered rather than unordered
annihilating n-tuples. We have assumed our groups are n-annihilator as well as n-
generator chiefly for the sake of simplicity.

2. ZERO RECALCITRANCE

Most of the material of this section amounts to a paraphrase of known facts.

For an n-generator, n-annihilator group to have zero recalcitrance simply means
that every set of n elements whose normal closure is G, actually generates G. It is
well known - and not too difficult to prove by induction on the nilpotency class - that
nilpotent groups have this property:

PROPOSITION. Every finitely generated nilpotent group has zero recalcitrance.

We shall now show that, at least among finite and soluble groups, zero recalcitrance
in fact characterises nilpotence. The following result is also probably known in one form
or another.

THEOREM 1. Let G bean n-generator, n-annihilator group. Then G has zero
recalcitrance if and only if the Frattini subgroup $(G) contains the commutator sub-
group [G,G] ofG.

COROLLARY. An n-generator, n-annihilator finite or soluble group has recalci-

trance zero if and only if it is nilpotent.

In the finite case this follows via Wielandt's result that a finite group G is nilpotent
if and only if [G,G] ^ $(G) (see for example, [4, p.132]). For the soluble case, see [4,
p.460, Exercise 3].

PROOF OF THEOREM 1: Assume first that <3>(G) ^ [G, G], and let {a^ . . . , an} be
any annihilating n-tuple for G. We shall show that such an n-tuple actually generates
G.

Since the cosets ai[G,G],a2[G,G],..., an[G,G] generate G/[G,G] and G is finitely
generated, there is a generating set for G of the form {a\Ci,..., anCn, Cn+\,...,
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where c j , . . . , c,,+fc G [G, G]. Hence certainly

(ai,a,2,. • .,an,ci,C2,. -^Cn+k) = G.

However since we are assuming that $(G) ^ [G,G), and since, as is well known,
consists of the elements of G omissible from every generating set for G, it follows that
(ai,...,an) = G.

For the converse suppose that in G we always have

Let {51,... ,gn} be any generating n-tuple for G. We first show that for any elements
ci, Cn e [G,G] the set {fliCi,.. .,gnCn} also generates G. For this it suffices to
show that for an arbitrary element c\ of [G, G] we have (g\Ci,..., <;„) = G\ the desired
conclusion then follows via n iterations. Now since G/(g2, • • • ,gn)

G is cyclic, and
therefore certainly Abelian, we must have c\ € (02, • • • ,gn)

G- Hence

(91C1,92, • • •, 9n)G > (gi,92,-.-,gn) = G,

whence by our assumption (giCi,g2,... ,gn) = G.

Now let c be any element of [G, G], and let X be any subset of G such that
(X,c) — G. Since X generates G modulo [G,G], there exist elements xi,...,xn 6
(X) and di,...,dn € [G,G) such t ha t gi = xidi,...,gn = xndn, tha t is, x i =

gid^1,. ..,xn = gnd'1. Hence by our earlier argument (xi,...,xn) = G, so tha t

certainly (X) = G. Thus every element c € [G,G] is omissible, whence [G, G] <
D

3 . TWO EXAMPLES

3.1. The infinite dihedral group Z2 * Z2 has recalcitrance 1. Presented by D :=
(a,b I a2 = b2 = 1), the infinite dihedral group may be considered as consisting of
all finite strings of alternating a's and 6's. Since D/[D,D] = Z2 x Z2, generated by
a[D, D] and b[D, D], any annihilating pair must have one of the forms

{ac, bd}, {ac, abd}, or {6c, abd},

for some c, d € [£>, D] = ((a&)2). Since each element of the form ac or be is a member
of a generating pair, namely {ac, ab} or {6c, ab}, it follows that one elementary M-
transformation suffices to transform each of the three types of annihilating pairs into a
generating pair.
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3.2. The restricted wreath product ZlZ. It is not difficult to verify that this group
has recalcitrance ^ 2, for example, by observing that if x generates the top group and
y a coordinate subgroup, then the pair {x2y3,x3y4} is annihilating, but neither of its
elements is a member of any generating pair (since setting either of them equal to 1
results in a non-cyclic quotient of the wreath product). On the other hand by our main
theorem below, ZIZ has recalcitrance ^ 3. Thus its recalcitrance is either 2 or 3. We
leave it to the reader to decide which.

4. SOLUBLE GROUPS

We show here that a great many 2-generator soluble groups, including all rank-2
free soluble groups, have recalcitrance ^ 3 . (This puts paid to the suggestion made in
[2, Remark 6] that as a possible approach to disproving the Andrews-Curtis conjecture
one might try to show that the recalcitrance of some annihilating pair of the rank- 2
free soluble group goes to oo with the solubility length.)

THEOREM 2 . Let G be a 2-generator soluble group with commutator quotient
G/[G,G] free Abelian of rank 2 (that is, ^ Z x Z ) . Then G has recalcitrance ^ 3.

REMARK. At the expense of some combinatorial complexity, our method of proof can
certainly be extended to yield a bound for the recalcitrance of an n-generator soluble
group (with commutator quotient free Abelian of rank n) . On the other hand, we have
not been able to dispense with the condition on the commutator quotient, although it
seems unlikely that this is at all germane.

COROLLARY. The free soluble groups of rank 2 (that is, F2/F^k), where F2
(fc) is

the k th commutator subgroup of F2 ) have recalcitrance ^ 3 (that is, independently of
k).

PROOF OF THE THEOREM: Let {r, s} be any annihilating pair for G. The assump-
tion that G/[G, G] be free Abelian of rank 2 ensures that there exists a generating pair
{a, 6} for G and elements u, v € [G, G] such that

(1) r = au, s = bv.

This can be established by means of the following well-known argument. Let / : F2 -> G
be any epimorphism, and let p,cr be preimages under / of r,s respectively. Let {x, y}
be any free basis for F2, and write x := x[F2,F2], y := y[F2,F2\. For some integers
k,l,m,n we have

p = xkyl mod [F2, F2], a = xmyn mod [F2, F2).

Since the cosets p[F2,F2), a[F2,F2] generate F2/[F2,F2], there is a Nielsen transforma-
tion taking (x,y) to (xkyf, z"*!/") • Lifting this Nielsen transformation to F2 yields an
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automorphism of F2 taking (x, y) to a pair (a, (5) of free generators of F2, satisfying
amp mod [F2, F2], 0 = a mod [F2, F2] • Applying / to these congruences then yields
the desired result (1) with a := / ( a ) , 6 := /(/?).

We define in the usual way "commutators of weight w in a and 6" by induction
on w. For w = 1 these are taken to be just o± x, 6±1. A commutator of weight w > 1
in a and b is then defined to be an element of G expressible as [ci,c2](:= cJ"1c2"

1ciC2)
where ci, c2 are respectively commutators of weights w\, w2 < w in a and 6, such that
w\ + w2 = w. It is well-known, and not difficult to prove using the standard group
identities

xy = yx[x, y], [x, y ] " 1 = [y, x],

(2) {xy, z] = [x, z][[x, z], y][y, z],

[x,yz] = [x,z][x,y][[x,y],z],

that every element of [G, G] can be expressed as a product of finitely many commutators
of weights ^ 2 in a and b. Thus in particular in (1) u and v can be so expressed, say

(3) u = dC2...cm, v = did2...dn.

Now suppose that G has solubility length k; this means simply that commutators
of weight k commute with each other. If c(a, b) is any commutator of weight w > 2 in
a and b, then c(a,b) = c(u~1,b) mod {au)G, that is, the relation c(a,b) = c(u~l,b) is
a consequence of the relation au = 1. (Here c(u~1,b) is intended to denote the result
of replacing each entry a*1 in the commutator c(a, b) by u T l . ) Using the identities (2)
we can now expand c(u~1,6) as a product of commutators of weights strictly greater
than the weight of the original commutator c(a, 6). Carrying out this substitution for
each of c i , . . . , Cn in (3), we obtain an element adxd2 ...cj = 1 mod (r)G, where

min {weight c<} < min {weight c'A.

Iteration of this procedure will eventually yield an element

ou = aci.. .Cp= 1 mod (r)G,

where c\,...,Zp are commutators in a and 6, all of weight ^ k + 2.

Suppose that some ci — di(a, b) is such that as a commutator in a and b at least
two of its entries are a*1. Then on replacing all such entries by u^1, we shall obtain
the identity element: c^u"1,^) = 1 since commutators of weights ^ k commute in G.
Hence Ci(a,b) = 1 mod (r)G. Performing this substititution for all Ci with at least
two entries a*1, and leaving the others as they are, we obtain

(4) au = aci... cq = 1 mod (r)G,
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where c i , . . . , c , are expressible as commutators of weights ^ k + 2 in a and b, all of
which have just one entry of the form a*1. Since their weights are ^ k + 2, they must
then each have at least two entries of the form b* 1 .

We are now ready to apply our first elementary M-transformation to the given
annihilating pair {r, s} = {au, bv}. In bv — bd\... dn, we replace each commutator
di(a, b) by di (u~ 1,b); in view of (4) these are congruent to each other modulo ( r ) G . As
before, any di(a, b) with two or more entries equal to a*1 will under this substitution
yield the identity element. It follows that this elementary M-transformation transforms
{r, s} into {r, bv} where v has the form v = d\... dt with each dj expressible as a
commutator in a and b of weight ^ k + 2 with at least two entries of the form b±l.
Replacement of such entries by tT^1 will then result in

bdi(a,v-1)d2{a,v-1).. .d^v'1) = 1 mod (bv)G.

However since each dj(a,v~1) = 1, we infer that in fact b e (bv)G. For the second
elementary M-transformation, applied now to {r, bv}, we replace 6 by 1 everywhere in
r = au(a,b) (as we may since b € (bv)G), thereby obtaining the pair {a,bv}. As the
third and final elementary M-transformation we replace a by 1 in bv(a, b), obtaining
{a,6}. D
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