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Abstract. Let F be a number field, let N > 3 be an integer, and let k be a finite field
of characteristic £. We show that if o : Gr —> GLy(k) is a continuous representation
with image of p containing SLy (k) then, under moderate conditions at primes dividing
£oo, there is a continuous representation p : Gp —> GLy(W(k)) unramified outside
finitely many primes with p ~ p mod £. Stronger results are presented for p : Gg —>
GLs(k).
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1. Introduction. A celebrated result of Khare and Wintenberger [8] proves that
every odd, irreducible, continuous representation p : Gg —> GLZ(E) is modular, that
is, p is the mod-¢ reduction of an ¢-adic Galois representation Gg —> GL(Qy)
attached to a modular form. The statement, commonly referred to as Serre’s
(modularity) conjecture, was initially known only when p had solvable image following
work of Langlands and Tunnell. A key evidence for Serre’s conjecture was provided
by Ramakrishna in [13] by proving the existence of an £-adic lift of p. Ramakrishna’s
construction and subsequent refinements (see [1,2, 15]) play a crucial role in Khare
and Winterberger’s proof; for earlier applications of Ramakrishna’s lifting resutls to
modularity of GL,(F;7) and GL,(Fy) valued representations, see [9] and [6].

Now, let F be a number field, let N > 3 be an integer, and suppose we are given
a continuous representation p : Gp —> GLN(E). Just as in the two-dimensional case,
we then expect p to satisfy some version of modularity. In particular, we should be able
to find a finite extension K of @, and a continuous representation p : Grp —> GLy(Ok)
with values in the integer ring of K which is unramified outside finitely many primes
and whose reduction modulo the maximal ideal of Ok is equivalent to p. In this paper,
we generalise the method of Ramakrishna, [13], to N > 3 and provide an answer to the
finding such characteristic zero lifts when the image of p and the residue characteristic
¢ are ‘big’.

Before we describe the main result, we recall some terminology. Let 4 be a
commutative ring and let p : Gp —> GLy(A) be a representation. Then, adp is the
A[GF]-module consisting of N x N matrices over 4 with the action of g € Gy on a
matrix M given by p(g)Mp(g)~", and ad’p denotes the A[Gr]-submodule of N x N
matrices over A with trace 0. Also, we will call the representation p : Gp —> GLy(A)
totally even if the projective image of the decomposition group at each infinite place of
F is trivial. (Equivalently, any choice of complex conjugation acts trivially on adp.)
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We now state the main result of this paper; for definitions of terms involved,
see Section 2. Essentially, the result states that a residual Galois representation with
big image (including the assumption that £ is large) and good properties at £ admits
characteristic zero liftings.

MAIN THEOREM. Fix an integer N > 3. Let k be a finite field of characteristic £, and
let o : Gp —> GLy(k) be a continuous representation of the absolute Galois group of a
number field F. Let W := W (k) denote the Witt ring of k, and fix a continuous character
x : Ggp —> W™ lifting the determinant of p (i.e., x (mod £) = detp). Assume that

(1) The image of p contains SLy(k),
(2) p is not totally even;
(3) If v is a place of F lying above € then H®(Gr,, ad"p(1)) = (0).

Suppose that £ > NN There then exists a global deformation condition D with

determinant x for p such that the universal deformation ring for type D deformations
of p is a power series ring over W in at least N — 2 variables. In particular, there
is a continuous representation p : Gp —> GLN(W) with determinant x satisfying the
following properties:

e p (mod ¢) ~ p; and,

* p is unramified outside finitely many primes.

We can remove the local hypothesis at £ and say more when the number field is
Q and N = 3. More precisely, let p : Gg —> GL3(k) satisfy the first two conditions of
the main theorem (so, p is odd and its image contains SZ3(k)). Then, p has a lifting
to GL3(W (k)) whenever £ > 11, or £ = 7 and the fixed field of ad°5 does not contain
cos(2m /7). See Theorem 6.2.

The basic organisational principle underlying our approach is a beautiful result
of Bockle relating the structure of a universal deformation ring to its local (uni)versal
components. See [1, 2]; for a precise statement of the result we need, see Theorem
2.2 in Section 2.2. The problem thus becomes one of finding a global deformation
condition with smooth local components and trivial dual Selmer group. It is perhaps
worth noting here that the two requirements are not completely independent of each
other (as can be seen from the discussion in Section 2.2). Ramakrishna’s great insight,
in the GL, case, is to show how to reduce the size of the dual Selmer group by a
clever tweaking of the global deformation condition at some primes. We will adapt
Ramakrishna’s strategy so that the sizes of dual Selmer groups can be controlled (and
reduced) when N > 3.

There are two key ingredients in being able to make such an extension. First,
we prove a cohomological result which gives conditions under which a subspace of
H'(Gr, M) can be distinguished by its restriction at a prime. This provides us with
a collection of primes where an adjustment of the local condition can result in a
smaller dual Selmer group. The second component is local: for each prime v 1 ¢,
we need to produce a smooth deformation condition of sufficiently large dimension
for the restriction of p to a local decomposition group at the prime v. There are
complications when the residue characteristic of F, is relatively small (for instance,
when the residue characteristic is not bigger than ), and we avoid these by assuming
[Fy(Z)) : F,] > 3N. (See Theorem 4.3.) The condition £ > N3F@W is an easy—but not
an economic—bound that allows us to avoid local complications at small primes for
general N, €.
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While the hypothesis at primes above £ ensures that we do not have to deal with
the more difficult problem of studying local deformations at ¢, it does still cover a
wide range of examples. Note that the hypothesis at a prime v|¢ is equivalent to the
assumption that the only G, -equivariant homomorphism from » to p(1) is the zero
map. The exceptions can be easily classified for small N, and we do so for the case
when N = 3 and F = Q. We do not attempt to put any geometric condition as the
representations we are looking at might not even have the right duality property (to
link up with automorphic forms).

A similar generalisation of Ramakrishna’s lifting technique to GLy was also
obtained by Hamblen, [7], about the same time when an earlier version of this paper was
first prepared. Even so, we hope that this paper still carries an interest for the following
reasons. First, the study of local deformations presented here, in particular the existence
of smooth deformations of right dimension, has independent merit. Although some
of the local analysis also appears in [4], there is a difference in approach (for instance
in the study of tamely ramified deformations and also in the role of tensor product of
deformations). Second, there is a slight difference in the method: we rely on Bockle’s
result to produce smooth universal deformation rings, and make use of different local
conditions. Consequently we are able to prove existence of characteristic 0 lifts for
general number fields, and strong lifting results when the base field is @ and N = 3.

This paper is organised as follows. After setting out the requisite terminology,
Section 2 describes the overall strategy of the proof following Bockle’s result (see
Theorem 2.2 and the ensuing paragraphs). Section 3, then, establishes a result in Galois
cohomology (see Theorem 3.1) which allows us to show that the new deformation
conditions we consider reduce the size of the dual Selmer group, while Section 4 proves
the existence smooth local deformation rings. These two sections are independent
of each other. Section 5, then, applies the results of Sections 3 and 4 to produce
deformation conditions with trivial dual Selmer group. Finally, we complete the
construction of characteristic 0 liftings in Section 6, and show how our earlier
discussion extends to proving stronger lifting results for GL3.

1.1. Notation. The ¢-adic cyclotomic character is always denoted by w and @ is
the mod ¢-cyclotomic character. The term ‘prime’ on its own always indicates a finite
prime except when the context makes it clear that we are also including infinte primes.
If F is a number field, we assume we are given fixed embeddings F < F, for each
prime v (including the infinite ones). If F is unramified at the prime v we shall view
Frob, as element of Gy via the embedding F < F,. If 4 is a topological ring and
p : Gp —> GLy(A) is a continuous representation, we shall denote the restriction of
o to a decomposition group at v by p,. We shall frequently use H*(F, M) to denote
H*(Gp, M). The group of unramified cohomology classes at a prime is indicated by
the presence of a subscript (as in H},).

If k is a finite field, then the Witt ring of k& will be denoted by W (k) and X € W (k)
denotes the Teichmiiller lift of x € k. A CNL W(k)-algebra, or simply a CNL algebra
if the finite field k is clear, is shorthand for a complete, Noetherian, local algebra with
residue field k. If x (resp. p) is a W (k) valued character (resp. homomorphism), then
we will use the same letters for their extension to a CNL W (k)-algebra.

2. Preliminaries. In this section, we give a brief summary of deformation theory
and recall the definitions of some of the key objects used in the analysis of universal
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deformation rings attached to global deformation conditions. This leads on to a
description of Bockle’s result and an outline of the main steps needed to prove our
main theorem (see Theorem 2.2 and the paragraphs following it). Aside from setting
out key terminology and notation, we hope that the discussion in this section will make
transparent the basic argument and structure of this paper.

2.1. Deformation conditions in general. We begin with a sketch of deformation
theory for group representations as developed by Mazur (see [10,11]). The presentation
closely follows Sections 23 and 26 of [10] apart from some minor adjustments. In
particular, we specify what the term ‘a deformation condition’ precisely means since,
for the most part, we shall be involved in checking that the properties we specify at a
local decomposition group determine a deformation condition. (See [4] for a slightly
different approach using more explicit descriptions of the conditions (DC0), (DC1),
and (DC2) below. For pro/near representability in a general context, see [14].)

Let IT be a profinite group satisfying the ‘finiteness at £’ property of Mazur (Section
1 of [10]). For our purposes, a representation of IT is a continuous homomorphism
o : 1 —> GLy(A), where A is a topological ring. The underlying free 4-module on
which IT acts will be denoted by V' (p). Given two representations

pa: Il — GLy(4),  pp: 11— GLy(B),

and a morphism f : 4 —> B in the relevant category, we say that p, is a lift of pp if
Sfpa = ps.

If o: 11— GL,(A), p,:11 — GL,(4A) are two representations, then
Hom(V(p1), V(p2)), or just simply Hom(py, 02), is shorthand for the A[IT]-module
of A-linear maps from V(p;) to V(pz). As a representation Hom(p;, p;) can be
described as the group of m x n matrices over 4 with IT action given by (g, M) —
02(2)Mp1(g)~". We shall take p; ® p» : Gr —> GL,u(A) to mean the representation
(gotten from V(p;) ® V(p2)) expressed with respect to the basis v; ® wy, ..., v &
Wiy -, Uy @ W, ..., U, ® w, Where vy, ..., v, and wq, ..., w,, are the bases for p;
and p, respectively. Note that Hom(p;, p2) is naturally isomorphic to pj ® p» where
p1 is the dual representation for p;.

Let Repy(IT; k) denote the following category:

e Objects are pairs (4, p4) where A4 is a CNL W (k)-algebra and p4 : [T —> GLy(A)
is a representation.

e A morphism from (4, p4) to (B, pp)isapair (f, M) where f : A —> Bisamorphism
of local rings and M € GLy(B) satisfies fpo, = MpzM .

Given a representation p : [1 —> GLy(k), a deformation condition D for p is a full
subcategory D C Repy(IT; k) satisfying the following properties:

(DCO) (k,p) € D, and if (4, py) € D, thenp ~ p4 mod my.

(DC1) If (4, py) is an object in D and (f, M) : (4, p4) —> (B, pp) is a morphism,
then (B, pp) is also in D.

(DC2) Leta: A — Cand B : B— C be morphisms of Artinian CNL algebras.
Assume that 8 is a small extension, that is, 8 : B —> C is surjective and
ker 8 is a non-zero principal ideal killed by the maximal ideal m.
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Then, in the cartesian diagram

AXCBL B

nAJv f}l 5
4 —scC
an object (4 x ¢ B, p) of Repy(IT; k) is in D if and only if (4, 7 4p), (B, m5p)
are in D.
Wesay that o : IT —> GLy(A), or (4, p),isof type Dif (4, p)isinD.If x : [T — W™
is a character, we say that D has determinant yx if det p = x for any (4, p) € D. The
deformation condition D is said to be smooth if for any surjection f : 4 — B and
an object (B, pp) of type D, there is an object (A4, p4) in D such that fp4 = pp. It is
sufficient to verify the smoothness condition for small extensions only. The tangent
space of D will be denoted by 7D, and will be viewed as a k-subspace of H'(I1, adp)
(it is a subspace of H'(I1, ad°p) if the determinant is fixed).
In practice, conditions (DCO0), (DC1), and the only if part of condition (DC2), will
almost always be immediate. If D is a deformation condition for o : [T —> GLy(k),
the functor

D(A) := {type D liftings p : [T —> GLy(A) of p} /strict equivalence

is nearly representable. If D is smooth then the (uni)versal deformation ring is a power
series ring.

Our objective is to produce (uni)versal deformation rings, which are power series
rings. In view of the following lemma, one can make use of extension of scalars to
produce such (uni)versal deformation rings.

LEMMA 2.1. Let ko C ky be finite fields of characteristic £, and let py : 1 —>
GL,(ko) be a representation. Denote by p, : 11 —> GL,(k;) the extension of scalars of
Py to GL,(ky).

Given a deformation condition D) C Rep,(I1;k1), let Dy be the full
subcategory of Rep,(I1; ko) consisting of those objects (A, p) € Rep,(I1; ko) such that
(A Swiky Wki1), p ® W(kl)) € Dy. Then

(1) Dy is a deformation condition for p,, and dimy, TDy = dimy, TDy;

(2) Let Ry, R be the (uni)versal deformation rings of type Dy, Di. Then, there is an
isomorphism Ry —> Ry ®w ) W(k1). In particular, if Ry is a power series ring then
5o is Ry.

Proof. Checking that D is a deformation condition is straightforward. Extension
of scalars give a natural isomorphism between H'(IT, adp,) ® k; and H'(I1, adp)).
Thus, there is a subspace L C H l(1'[, adp,) such that L ® k; = TD;. One then checks
that L has to be the tangent space for D.

For the second part, there is a surjection Ry —> Ry ® W (k). Since the extension
W (ky)/ W (ko) is smooth, the tangent space for Ry ® W (k) has the same dimension as
the tangent space for Ry. Hence, the surjection is an isomorphism. ]

2.2. Global deformations. Now, let F be a number field and let & be a finite field of
characteristic £. Fix an absolutely irreducible representation o : G —> GLy(k) and
a character x : Gp —> W such that y (mod ¢) = detp.
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Informally, a global deformation condition specifies that we consider liftings of
0 : G —> GLy(k) with prescribed local behaviour. More precisely: Suppose we are
given, for each prime v of F, a deformation condition D, for p|, with determinant
x. Furthermore, we require that the deformation condition D, is unramified (i.e., all
representations in D, are unramified) for almost all primes v. The global deformation
condition {D,} with determinant y for p is then the full subcategory of Repy(Gr; k)
consisting of those objects (4, p) € Repy(Gr; k) such that det p = x and (4, pl,) € D,
for all primes v.

For a global deformation condition D with determinant x for o, we shall denote
the local condition at v by D,, (so D = {D,}). We define the ramification set X(D) to
be the finite set consisting of those primes v of F where D, is not unramified, primes
lying above ¢ and oo, and primes where p and x are ramified. Thus, D is precisely a
deformation condition for p|Gay(ry,/r) With prescribed local components (cf. Section
26 of [10]). The tangent space for D is the Selmer group

Hirp,, (F.ad"0) = ker (H'(Gr, ad ) — [ H'(F,,ad"p)/ TD, ).

The dual Selmer group for D is defined as follows. For each prime v of F the pairing
ad’% x adp(1) —> k(1) obtained by taking trace induces a perfect pairing

H' (F,,ad"p) x H' (F,,ad’p(1)) —> H*(F,, k(1)).

Let 7D} < H' (F,, ad"p(1)) be the annihilator of 7D, under the above pairing. The
dual Selmer group H{ITD 1) (F \ adoﬁ(l)) is then determined by the local conditions
{TD}), that is,

Hlppy (F.ad"(1) := ker (HI(GF, ad’5(1) — [ H'(F., adop(l))/mj) .

While the tangent space for D is a very difficult object to get a handle on, remarkably
a quantitative comparison with the dual Selmer group is possible by the following
formula of Wiles (Theorem 8.6.20 in [12]):

dim H{7p, , (F,ad’p) — dim H{lm} (F,ad"p(1))
=Y (dim 7D, — dim H'(F,,ad’p)). (2.1)

Note that the summation runs over all primes, including the primes at infinity.

We now describe a beautiful result of Bockle which allows one to relate the global
(uni)versal deformation ring in terms of local deformation rings. Let p, x and D
be as above. For each prime v, let R, be the (uni)versal deformation ring for type
D, deformations, and let R be the (uni)versal global deformation ring for type D
deformations of p.

Now, choose presentations

Rv = W(k)[[Tu,ls BRI Tv,nv]]/']va R= W(k)[[Tlv e Tn]]/']
of R,, R as quotients of power series rings in minimal number of generators. Thus,

n, = dim T'D, and n = dim H/;p, ,(F, ad*p); theideal J, = (0)if v & =(D). Restriction
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of the (uni)versal deformation to a decomposition group at v induces a map R, — R,
which can be then lifted to a map

ay : Wil — W

of local rings. Of course «,, and even R, —> R, might not be unique at all.

THEOREM 2.2. (Bdickle, Theorem 4.2 of [2]) With notation as in the preceding
paragraphs, the ideal J is generated by the images w,J, together with at most
dim H, {ITDL}(F . ad’p(1)) other elements. Thus,

gen(J) < Y gen(J,)+ dim H|pp,(F, ad"p(1)), (2.2)
ve(D)

where gen(J) (resp. gen(J,)) is the minimal number of elements required to generate the
ideal J (resp. J,).

Theorem 2.2 above allows us to prove our main theorem provided we can find
a global deformation condition with smooth local conditions and trivial dual Selmer
group. For in this case, the right hand side of (2.2) is 0; consequently, the global
deformation ring has trivial ideal of relations and therefore is smooth. The question
now is how to get to such nice global deformation conditions.

Suppose we start off with a global deformation problem D with smooth local
deformation conditions. By (2.2) the number of global relations is then bounded by
the dimension of the dual Selmer group. The critical step then is to tweak one of the
local conditions D, at some prime so that the new deformation condition has smaller
dual Selmer group. We shall show that this can be done in Section 5 provided

dim H/;p,, (F,ad"p) > N — 2+ dim Hlrpy (F, ad"p(1)). (2.3)

We then need to resolve two issues. For our choice of primes where the local
deformation condition should be—and how it should be—changed, we use a direct
generalisation of the one used in [13]. However, the verification that this choice indeed
reduces the size of the dual Selmer group requires effort. The relevant result, established
in Section 3, follows from a careful analysis of the cohomology of G with coefficients
in various modules associated to the residual representation p.

The second issue is that by Wiles’ formula (2.1), the above inequality (2.3) will
fail if the local deformation conditions are ‘small’. To ensure this doesn’t happen, we
make sure that D, is smooth in dim H°(F,, ad°p) variables at primes not dividing £.
The required constructions are carried out in Section 4; the precise statement we need
is presented in Theorem 4.3. Given these local conditions, the hypotheses at £ and oo
allows us to ensure that (2.3) is satisfied.

3. Galois cohomology. Our aim in this section is to prove a result in Galois
cohomology which allows us to show how sizes of dual Selmer groups can be controlled,
and be decreased, by careful changes in local conditions. But, before we proceed any
further, we record the following running assumption in place for the rest of the section:

Throughout this section, K/F is a finite Galois extension of number fields with
Galois group G := Gal(K/F) and k be a finite extension of [F,.
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The main result of this section, stated below, gives conditions under which a subspace
of H'(Gp, M) can be distinguished by its restriction at a prime.

THEOREM 3.1. Let M1, ..., M, be n mutually non-isomorphic, absolutely irreducible
k[G] modules with HI(G, M;) =0, 1 <i<n. Weassume that we are given a place v of
F and k-subspaces V; € H'(Gp, M;) with the following properties:

e M\ ®---® M, is unramified at v, and that Frob, acts semi-simply on each M;;
o dimV; <dimH\(F,, M) fori=1,...,n.

Under the above assumptions, we can find infinitely many places w such that:

e M\ ®---® M, is unramified at w and the images of Frob,,, Frob, in G are the same,

*  Any cohomology class in V; is unramified at w,

e The restriction map Vi®---®V, — H,L(Fw, M)® - & H,ir(Fw, M,) is
injective.

For clarity, we record the following (generally standard) notation. If M is a k[G]-
module and & € H'(Gr, M), then the restriction of £ to G is a group homomorphism.
We denote by K(&) the field through which this homomorphism factorises. Note that
the extension K(£)/F is Galois. For & € H'(Gp, M), i=1, ..., n, the compositum of
K(&), ..., K(&,) will be denoted by K(&1, ..., &,).

We will derive Theorem 3.1 from two propositions, the first of which is as follows.

PROPOSITION 3.2. Let M be a finite k[Gl-module satisfying the following two
conditions:
* M is a simple F¢[Grl-module with Endy,jG. (M) = k;
e HY(G, M)=0.
If Y1, ¥, ..., Wy, are n linearly independent classes in the k-vector space HI(GF, M),
then K(yr)), K(¥), ..., K(Y,) are linearly disjoint over K.

The proof of the above proposition relies on the following observation, recorded
as a lemma.

LEMMA 3.3. Let M be as in Proposition 3.2, and let 0 # &€ € H'(Gr, M). Then:

(a) The restriction & : Gal(K(§)/K) —> M is an isomorphism of G-modules.
(b) If Lisa Galois extension of F with K C L then either K(§) € Lor K(§)N L =
K.

Proof. The images of Gal(K(¢)/K) and Gal(K(£)/(K(£) N L)under & are subspaces
of M stable under the action of G. The lemma follows as M is simple. O

Proof of Proposition 3.2 We first do the case n = 2. If K(y1) and K(1,) are not
linearly disjoint over K, then by the above lemma K (1) = K(y»). The composite

M Y Gal(K(y1)/K) = Gal(K(ya)/K) 5 M

is a G-module automorphism of M. Since k is the endomorphism ring of M, the
composite Yoy ! must be a non-zero element of k, and so v and v, are linearly
dependent—a contradiction.

We use induction for the general case. Suppose, we have proved that the fields
KWn),...,K(,_1) are linearly disjoint. We then need to show that K(y,) and
K1, ..., ¥,_1) are linearly disjoint over K where K(y/, ..., ¥,_1) is the compositum
of K(¥1), ..., K(¥ru-1).
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Suppose they are not linearly disjoint. Then, Lemma 3.3 implies that K(v,) is
a subfield of K(¢y, ..., ¥,_1) with Gal(K(y,)/K) = M. If we can now show that
KW,) = Ky + -+ - + ay_1¥,—1) for some ay, ..., a, € k then, appealing to the case

n = 2 of the proposition, we see that v, is a linear combination of v, . .., ¥,_1—which
is a contradiction.
Let £ be the set of Galois extensions E/F with K € E C K(y, ..., ¥,_1) and

Gal(E/K) isomorphic to M as G modules, and let V' be the k-subspace of H'(Gr, M)
spanned by ¥y, ..., ¥,_1. We claim that the map P(V) — & given by y — K(v/) is
a bijection. This will complete the proof of the inductive step as K(,) € £.

That the map P(V) — £ is an injection follows from the case n = 2 of the
proposition. Now, by our hypothesis, we have identifications

Gal(K(¥1, - -, Y1)/ K) = Gal (K(y1)/K) x - - x Gal (K(-1)/K) = M"™!

of G-modules. Using the simplicity of M, we observe that elements of £ correspond to
G-submodules of M"~! which are isomorphic to M "=2_that is, kernels of non-trivial G
module homomorphisms from M"~! to M. Since

Homg (M x --- x M, M) =Homg(M, M) x --- x Homg (M, M)
Zkx.--xk,

we deduce |E] = |[P(K"™")| = |P(V)|, and this establishes the claim. ]

The second proposition needed to prove Theroem 3.1 requires a small degree of
preparation. We fix an absolutely irreducible k[G]-module M with H'(G, M) =0,
along with an element g € G which acts semi-simply on M. We denote by M# the
kernel of multiplication by g — 1 on M. Note that we have a decomposition M =
MED(g—1)M.

Let us also fix a non-trivial subgroup L € M invariant under Gz with minimal
dimension as an [F,-vector space. It is then straightforward to check that L is simple,
that k contains Endy,(g,)(L) =: K’ (say), and that M = L ®y k. Furthermore, we have
ME =1°5Qpkand(g— )M =(g— 1)L Q k.

PROPOSITION 3.4. With assumptions and notations as in the previous two paragraphs,
let V be a finite dimensional k-subspace of H (G, M). If dim M? > dim V we can find
a lift ¢ € Gr of g such that the restriction map

V — H'(Gr, M) — H' (), M)
is injective.

Proof. Set n:=dim V. Since H'(Gr, M)= H'(Gr, L)Q k, we can find the

following:
e abasis&,..., & of V,
* m linearly independent cocyles ¥, ..., ¥, in the k’-vector space H'(Gr, L) with

m > n and such that §; := w,-+Z. agy; forsomeaj ek, i=1,...,n
j>n

Fix a lift g € G of g. We can identify H'((g’), M) with M%. For ease of notation,
we set

Ko =KW, j>n), and K; := K(¥;, ¥;,j >n), i=1,...,n
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By Proposition 3.2, the extensions K;, i = 1, ..., n are linearly disjoint over Kj.

For each 1 < i < n, the cocyle §; restricts to y; on Kj. Since ¥,(Gal(K;/Ky)) = L
and &;(xg") = ¥i(x) + &(g’) for any x € Gal(K;/Ko), we see that the k-subspace of M
generated by y;(xg’) is M.

We claim that we can find x; € Gal(K;/Ky), 1<i<mn, such that
E1(x1g), ..., E(x,g) generate an n-dimensional subspace of M /(g — 1)M. To see
this, first pick x; € Gal(K;/Kjp) such that & (xg’) is non-trivial when projected to
M/(g — 1)M. Having found x; € Gal(K;/Kp), i =1,...,j with j < n and such that
£1(x1g), ..., &(x;g’) generate a j-dimensional subspace of M /(g — 1)M we can find an
Xjr1 € Gal(Kj;1/Kp) with the property that & (x;+1g") does not lie in the subspace
of M spanned by &(x;g), ..., &i(x;¢') and (g — 1)M. This is possible as this latter
subspace has dimension j + dimy(g — )M < dim; M.

Finally, using Proposition 3.2, we can find x in the Galois group of K; which
acts as x; on each extension K;/Kj. Set ¢ = xg’. Then, as &(2), ..., £,(2) generate an
n-dimensional subspace of M /(g — 1)M, we see that the images of & when restricted

to H'((g), M) are linearly independent. ]
Proof of Theorem 3.1 Denote by K(V;) the splitting field for V; over K, and
by K(V1, ..., V,) the compositum of K(V;). We claim that the extensions K(V;) are

linearly disjoint over K. To see this, we observe that each Gal(K(V;)/K) is isomorphic
to a subgroup of M; as a G-module and therefore Gal(K(V;)/K) ®g, k is a direct
sum of copies of M; as a k[G]-module. Thus, if K(V;) and K(V;) are not linearly
disjoint over K for some i # j, then the semi-simplifications of Gal(K(V;)/K) ®¢, k and
Gal(K(V;)/K) ®r, k will have a common irreducible factor. But, this cannot happen
as M; and M; are absolutely irreducible and non-isomorphic.

Take g € G to be an element which Frob, lifts and let g’ € Gal(K(V1, ..., V,))/F)
be a lift of g. By Proposition 3.4, we can find x; € Gal(K(V;)/K) such that
V; — H'((xig), M;) is injective. Using disjointness of the K(¥;)’s, we can find an
x € Gal(K(V1, ..., V,)/K) such that x acts on K(V;) as x;. By the Chebotarev density
theorem, we can then find a place w of F lifting xg’ and unramified in K(V1, ..., V).
It is now immediate such a w satisfies the properties asked for. O

4. Local deformation conditions. Our objective in this section is to construct
examples of local deformation conditions which admit a sufficiently large (uni)versal
deformation ring. Throughout this section, k is a finite field of characteristic £ and p is a
prime different from £.

DEFINITION 4.1. Let F be a finite extension of @, and let p : Gr — GLy(k) be
a representation. We say that a deformation condition D for p is well-behaved if D is
smooth and dim 7D = dim H(Gp, adp).

EXAMPLE 4.2. Let F be a finite extension of Q, and let p : Gr — GLy(k) be a
representation. If o is unramified, then the class of unramified liftings is a well-behaved
deformation condition. The unrestricted deformation condition is well-behaved if
H*(Gr, adp) = (0).

We can now state our main result asserting the existence of well-behaved
deformation conditions.

THEOREM 4.3. Let F be a finite extension of Q,, let k be a finite field of characteristic
L#£p, and let p: Gp —> GLy(k) be a representation. Assume that all irreducible
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components occurring in the semi-simplification of p are absolutely irreducible. If p < N
and p is wildly ramified assume that [F(&,) : F| = 3N where ¢, is an Lth root of unity.
Then, the following hold.:

(a) There exists a well-behaved deformation condition D.

(b) Suppose x : Gp —> W™ is a character lifting detp. Assume that N, £ are
co-prime. Then, liftings of type D and determinant x is a smooth deformation
condition for p and the dimension of its tangent is equal to diim H (G, ad"p).

To construct a well-behaved deformation condition D as claimed (and also to
outline the structure of this section), we proceed as follows:

(I) We would like to build up D from well-behaved deformation conditions for some
decomposition of p. In section 4.1 we show that a good way of decomposing p
is to make sure that the basic blocks have no common irreducible components,
even after taking Tate twists.

(IT) The blocks can then be analysed separately. There are essentially three cases we
need to consider.
(i) First, the case when a given residual representation is tamely ramified. The
deformation condition in this case is to obtained by specifying a Jordan—
Holder decomposition for a generator of tame inertia. See Section 4.2.

(i) The residual representation is a tensor product of two smaller
representations. In Section 4.3 we study when we can construct the
candidate well-behaved deformation by using tensor products.

(ii1) The residual representation is induced, in which case we try to induce a
known well-behaved deformation condition. This is done in Section 4.4

(IT) Finally, we verify that the hypotheses of Theorem 4.3 guarantee applicability of
the preceding steps and complete the proof Theorem 4.3 in Section 4.5.

As indicated in Section 1, local deformation conditions for a class of residual
representations are constructed in [4]. While there is some overlap in the treatment
of induced and tamely ramified deformations, the results here do not follow directly
from [4]. Moreover, the approaches are different (and quite significantly in the case of
tamely ramified deformations).

The second part of Theorem 4.3 is straightforward given the first part, and we deal
with it right away. As indicated earlier, the first part of Theorem 4.3 will be proved in
Section 4.5.

Proof of Theorem 4.3 (b). We need only check smoothness, and for that it suffices
to check that any deformation p : Gp —> GLy(A) of type D can be twisted to a
deformation with determinant x. If ¢ : G —> A* is a character and we want y =
det(yp), then ¥ = y det p~!. We can find such a character ¥ because x detp~' :

G — 1 +my and
X—)XN
l+my —— 1+my

is an isomorphism. U

4.1. Direct sums of deformation conditions. In this subsection, we show that given
a favourable decomposition of the residual representation, taking direct sum of liftings
of the components determines a deformation condition.
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We will keep the following assumptions for the rest of this subsection. We assume
we are given a finite extension F/Q, and representations p; : Gr —> GL4(k), i=

1, ..., nsatisfying

Homyg,) (5, p,(r)) = (0) 4.1
for i # j, r € Z. We also assume that we are given a deformation condition J; for each
residual representation p;, i = 1,...,n.

We will also keep the following notation for the rest of this subsection.

e Wesetp:=p,®---Pp,and N :=d; + ...+ d,. Thus, the representation p takes
values in GLy (k).

* We denote by F := F; & --- @ F, the full subcategory of Repy(Gr; k) consisting
of objects (A4, p) such that the representation p ~ p; & - - - ® p, with (4, p;) € Fi.
In other words, but perhaps less formally, we are restricting attention to those
representations which split completely as a direct sum of representations of type
Fi,....Fn

We then have the following theorem.

THEOREM 4.4. F is a deformation condition for p. The natural map
(A4, p) e Fiey — (A, p1 ® -+~ ® py)
induces an isomorphism of tangent spaces
TFETH® - & TF,
and F is well-behaved if each F; is well-behaved.

Theorem 4.4 is an immediate consequence of the following proposition:

PROPOSITION 4.5. Let R be a CNL algebra, and let p : G —> GLy(R) be a lift of
0. We then have, up to strictly equivalence, a unique decomposition p = p; & --- ® py,
where p; : Gp —> GL4(R) is a lift of p;.

The proof of Proposition 4.5 relies on there being no cohomological relations
between lifts of p; and p; when i # j. More precisely, we need the following lemma:

LEMMA 4.6. Let + =0, 1 or 2.
(1) Ifi #£j then H* (Gp, Hom(p;, ﬁj)) = (0) if i # j. Consequently, we have
H* (G, Hom(p, p)) = H* (G, Hom(By, 5y) @ - - - ® H* (Gr, Hom(,,, 7,,) .

(2) Let A be an Artinian CNL algebra, and let p;: Gr — GLg(A4), p;: Gr —
GLy(A) be lifts of p;, p;, i # j. Then,

H*(Gr, Hom(p;, p;)) = (0).

Proof. The first part follows easily from the triviality of relevant Hom groups (by
assumption 4.1), local duality and the local Euler characteristic formula.
For the second part, let J be an ideal of 4 with mJ = (0). Then,

0 — Hom(p;, pj)) ® J —> Hom(p;, p;) — Hom(p; mod J, pjmodJ) — 0
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is an exact sequence of Gg-modules. Induction along with the first part then completes
the proof. O

Proof of Proposition 4.5 We can take R to be Artinian. Let m be its maximal ideal,
and let J # (0) be an ideal of R killed by m. Suppose that

p (modJ)=p & D p,

with p] : Gr —> GL4(R/J) lifting p;. The obstruction to lifting p; to a representation
Gr —> GL4(R) is a cohomology class

¢; € H(Gr, Hom(p; ® J, 5; ® J)) = HX(Gr, Hom(5,, 5,)) ® J.

Since p (mod J) lifts to R, ¢; + ...+ ¢, vanishes in H*(Gr, Hom(p, p)) ® J. Hence,
1, - .., Cy are trivial by the first part of Lemma 4.6.

We can therefore lift each p; : G —> GL4(R/J) to p; : G —> GL4(R). If we set
=01 @ ® P then p = (I +£)p with & € H'(Gr, Hom(p ® J, 7 ® J)). By the
first part of Lemma 4.6, we see that £ = & +... + &, with & € H'(Gr, Hom(p, ®
J,p; ® J)). The required decomposition for p follows. The uniqueness part follows
from the second part of Lemma 4.6. O

4.2. Tamely ramified representations. We now consider the problem of
constructing a well-behaved deformation condition when the residual representation
is tamely ramified. Our objective is to study liftings obtained by specifying a
Jordan—Holder decomposition for a generator of tame inertia. The Jordan—Holder
decomposition together with Frobenius action on the tame generator allow us to
study tamely ramified liftings algebraically and produce the required well behaved
deformation condition.

Throughout this subsection, F is a fixed finite extension of Q, with residue field

of order g. We denote by F™ and F" the maximal unramified and the maximal tamely
ramified extensions of F, and fix
* a topological generator T of Gal(F""/F™),
¢ alift o of Frobenius to Gal(F"/F).
The letter T denotes a fixed indeterminate. For a tamely ramified representation p :
Gr —> GL,(R), we shall view the underlying module V(p) as an R[T]-module where T’
acts via . (We shall freely identify tamely ramified representations with representations
of Gal(F"/F).) Note that the action of ¢ provides added structure.

To describe this further, we first fix some notation:

* ¢, : R[T] — R[T]is the injective homomorphism which sends 7 to 77 (and is the
identity on R).

e If M is an R[T]-module, then qb;‘M is the R[T]-module with underlying set M and
action twisted by ¢y, that is, (f(T), m) — f(T%)m for all f(T') € R[T].

Then, with notation as before, specifying the action of o on V(p) is equivalent

to specifying an isomorphism V(o) —> ¢, V(p) of R[T]-modules. Conversely, these

determine the representation completely.

We fix a tamely ramified representation p : Gp —> GL,(k) throughout this
subsection and let (a;) be the (upper triangular) Jordan normal form of p(z) (so
aj=0ifi <jori>j+1,and a1 is 0 or 1). We define the n x n matrix J(p) by

J(p) := (aj) where aj is the Teichmiiller lift of a;.
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Finally, let D) be the full subcategory of Rep,(Gr; k) consisting of objects (4, p)
with p : G —> GL,(A) tamely ramified and p(t) ~ J(p). We then have the following:

PROPOSITION 4.7. Dy is a well-behaved deformation condition for p.

We’d like to study deformations (R, p) in Dy using the linear algebra data ‘R[T]-
module with added structure’, and for that we need a convenient description of J(p)
in terms of R[T]-modules.

Recall that k& is a finite of characteristic £ # p. We denote by k() the orbits of the
action « —> af on the set of elements in £* which have order prime to ¢. For o € k*
with order prime to ¢ we define the polynomial

P,(T):= (T —@)(T —@*)--- (T —a")

where d is the smallest non-negative integer with o = . As usual, @ € W denotes
the Teichmiiller lift of @ € k. Equivalently, P, is the polynomial whose roots are the
Teichmiiller lifts of elements in the orbit of . Finally, if x € k(y) is the orbit of « then
Py = P,.

DEFINITION 4.8.

(1) A type function tisamap ¢ : k) x N — Z such that
— Hx,m) > t(x,m+ 1) forall x € k), m e N, and
— t(x, m) = 0 for almost all x, m.

(2) Let Rbea CNL W-algebra, and let ¢ be a type function. The standard R[T| module
of type t, denoted by J(R, 1), is

R[T] RI[T]
D

2] 2]
i \(P0) (P

An R[T] module M is said to be of type ¢ if M is isomorphic to J(R, t). A tamely
ramified representation p : Gr —> GL,(R) is said to be of type ¢ if the underlying
module V(p) is of type ¢.

We make the following observation. Let p : G —> GL, (k) be our given tamely
ramified representation. Because oo ™! = 79, the uniqueness of Jordan normal form
implies that V' (p) is a k[T]-module of type ¢ for some type function ¢. Fix one such
type function ¢. Then, (4, p) is in D) if and only if p is of type ¢.

We now establish some results that will be needed in the proof of our key
proposition 4.7.

LEMMA 4.9. Let «, B € k* have orders prime to q and let f:R—> S be

a surjective homomorphism of Artinian CNL _algebras. Given m,n>1 and ¢ €
Homgpr (S[T]/(P:’), S[T]/(Pyg ) , there exists ¢ € Hompgr (R[T]/(P?), R[T]/(P’/;))
such that the diagram

RITV/(P™) %> RITY/(P)
) !
SITV/(P7) 2> S[T1/(P})

commutes.
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Proof. The lemma holds trivially if o # ﬂ‘f’ for any j > 0 because

Homgry (RITT/(P}), RITT/(Pp)) = (0)

in this case.

Suppose now that o« = 8. To give an S[7]-module homomorphism ¢ :
S[T1/(P)) — S[T]/(P.) is equivalent to finding a g(7') € S[T] such that P)'g(T)
(P) (and ¢(1) = g(T) (mod P,)). If m > n, take g(T) € R[T] to be a lift of g(T), and
define

¢ : R[T1/(P) — RIT)/(F,)

by setting (1) =(T) (mod P2).If m < n, wehave g(T) = P "h(T) for some h(T) €
S[T7]. In this case, define

(1) := Pi"h(T) (mod P%)
where 7(T) € R[T] s a lift of h(T). O

PROPOSITION 4.10. Let R be an Artinian CNL algebra, and let I be an ideal
of R. If M, N are R[T]-modules of type ty, ty, respectively, then any R[T]-module
homomorphism M /IM —> N/IN lifts to a homomorphism M —> N.

Proof. Fix isomorphisms
. R[T] . RIT]
o M — P e ov: N — P F

and let 0, Oy be their reductions modulo 7. Given a homomorphism of R[T]-modules
¢ :M/IM — N/IN, we can apply Lemma 4.9 to find a lift

R[T] R[T]
1'[/ @ tM(a i) @W

of Oxg8,,'. If we now take ¢ : M —> N to be 6y 6y, then ¢ (mod I) = ¢. O

ProPOSITION 4.11. Let R be a CNL W-algebra. Let ¢, : R[T] — R[T] be the
injective homomorphism sending T to T?. Then, ¢, induces an isomorphism

R[T] R[T]
P pn

of R algebras for any o € k™ of order coprime to q, n > 1.
Consequently, if M is an R[T}-module of type t then ¢, M is also of typet.

Proof. First, suppose that R is Artinian. Suppose, we have a polynomial f(7) €
R[T] with

S(T?) = Po(T)'g(T)
for some g(7') € R[T]. Then,

f@=f@)=-=0
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Since @7 — @7 is a unit if 0 <i<j<dy, wehave f(T) = Py(T)h(T) for some h(T)
R[T]. Now,

de—1

P(T%) = [ (17 —a%)

i=0

dy—1 )
= 2D [T (- ca")

=1 j=0
c#1

= Po(T) [ [ Put¢ T,

and therefore

P(T)"'&(T) = WT) [ | Pa(c T).

Since @ — ;“67‘/ are units, we have
h@) =h@')=---=0.
We can now conclude (by induction) that ¢, induces an injection

R[T] R[T]
pr

)

and therefore induces an isomorphism.
The non-Artinian case follows on taking inverse limits. O

Proof of Proposition 4.7. To show that D, determines a deformation condition,
we need only verify condition (DC2) as (DCO0) and (DC1) are obvious. Fix a type
function ¢ so that p is of type . Let

AxcB —2 - B

| 7|
4 —=cC
be a Cartesian diagram of Artinian local W-algebras with 8 small, and suppose that
we are given an object (4 X ¢ B, p) in Rep,(Gr; k) such that the projections w40 and
mgp are also of type . We then need to show that p is of type ¢.

Denote by o, : Ir —> GL,(W) the tamely ramified representation that sends the
fixed tame generator t to the matrix J(p). If R is a CNL W-algebra then we will
continue to use p, for the representation that sends 7 to J(p) viewed now as a matrix
over R via the W-algebra structure; the context will always make clear where p, is
valued in.

Let (b) be the kernel of 8. Then, 74 is small with kernel generated by (0, b). We
may then suppose that w4pl;, = pr, and so p|;, = (I + (0, b&))p, with & a 1-cocycle
representing an element of H'!(Iz, adp). We need to show that £ is trivial.

https://doi.org/10.1017/5S0017089518000149 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089518000149

LIFTING N-DIMENSIONAL GALOIS REPRESENTATIONS 131

Now, wgplr, = (I + b&)ps, and also Mmpp M’1|1F = p; for some M € GL,(B).
Going down to C = B/(b) and using Bz = a4, we obtain (M), (M)~ = p,, that
is, B(M) commutes with p,. Using Proposition 4.10, we can find M’ € GL,(B) such
that M'p,M' ™" = p, and M = M’ (mod b). Write M’ "M = I + bX with X ann x n
matrix over k. Then,

pr = +bX)mgp(I —bX)|s,, thatis, (I —bX)p,(I+bX)=(+b&)p,

and hence £ is trivial.

We now consider smoothness of the deformation condition. Let R —> S be a
surjective morphism of Artinian local W-algebras, and let pg : GF —> GL,(S) be a
representation of type ¢ lifting p. Conjugating ps by a matrix congruent to the identity
modulo the maximal ideal of S, we may suppose that V(ps) is J(S, 7). The action of o
specifies a morphism

Os : J(S, 1) — ¢,J(S, 1)
of S[T]-modules which can then be lifted, by Proposition 4.10, to
Or: J(R, 1) — ¢, J(R, ).

Hence, Dy is smooth.

Finally, we consider the tangent space of D). The deformations of o to k[e] /€2
are uniquely determined by H'(Gr, adp). For & € H'(Gp, adp), the lift (I + €£)p is
of type t if and only if the restriction of &£ to inertia is trivial. Thus, the tangent
space for Dy is H' (Gr/Ir, (adp)'"), and hence Dy is a well behaved deformation
condition. U

4.3. Deformations for tensor products. We now consider step II(ii) in the outline
plan of the proof of Theorem 4.3. Thus, our starting point will be a residual
representation which is the tensor product of two smaller representations. We then
want to determine if taking tensor products of classes of liftings of the two components
gives a deformation condition for the bigger residual representation.

Let F is a finite extension of @, and fix, for the rest of this subsection, a residual
representation 6 : Gg —> GL,(k) such that

* 0 is absolutely irreducible,

* ¢4{n,and

* 6 is not equivalent to its Tate twist 8(1).

We set s to be the smallest positive integer such that 6(s) ~ 6. (So, s > 2 by our
assumption.) We then have the following.

THEOREM 4.12. Suppose that 1 <m <s—2, and let 0 : Gp —> GL,,,(k) be a
representation such that p* = 6(ay) @ - - - @ 6(a,,) for some integers ay, . . ., a,. There is
then a deformation condition & for p with the following properties:

e If (A, py) €&, then det py restricted to the inertia subgroup of G is the Teichmiiller
lift of det p;

e & is a smooth deformation condition,

e The dimension of the tangent space for & is equal to dim H (G, adp).

https://doi.org/10.1017/5S0017089518000149 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089518000149

132 JAYANTA MANOHARMAYUM

We make the following definition for convenience: A representation r : G —>
GL4(k) is said to be s-small if

S Ek()® - @ k(i)

with0 <iy,...,0, <s—2.

We shall make use of the natural isomorphism between Hom(V, W)and VY @ W
for k-vector spaces V, W in what follows without any further qualification. Also, the
identity map on U naturally identifies Hom(}’, W) as a subspace of Hom(V ® U, W ®
U).1f ¢ 4 dim U, then Hom(V ® U, W ® U) is naturally identified with Hom(V, W) &
Hom(V, W) ® ad’U where ad’U is the vector space of trace zero endomorphisms
of U.

LEMMA 4.13.
(@) If jl <s— 2 then H' (GF, ad®8(j)) = (0) for all i > 0.
(b) If 0 < a,b < s — 2 then we have natural isomorphisms

H' (Gp,Hom (0(a), 8(b))) = H' (GF, k(b — a))

foralli> 0.
(¢) If py,py are two s-small representations then the natural inclusion
Hom (p,, p,) = Hom (ﬁl ®0,0,® «9) induces isomorphisms

H'(Gr,Hom (7, ® 6,0, ® 6)) = H' (Gr, Hom (5}, 0,))

foralli > 0.

Proof. For part (a), one checks that the statement holds for |j| < s — 1 wheni = 0.
The full result then follows after an application of local Tate duality and the Euler
characteristic formula. Part (b) of the lemma is then immediate from part (a) via the
natural identifications

Hom (8(a). (b)) = Hom (8. 8) (b — a) = ad"8(b — @) @ k(b — a).
For part (c), we have
Hom (p, ® 0,9, ® 0) = Hom(p,, p,) ® Hom(p,, p,) ® ad"9,
and H' (Gp, Hom(p}, p,) ® ad"9) is trivial by part a. O

Let 6 : Gr — GL,(W) be the unique (up to equivalence) lifting of # with
determinant the Teichmiiller lift of det@. (The existence and uniqueness of such a
representation is an immediate consequence of the above lemma.) Fix also an s-small
representation p, : Gp —> GL,,(k) and a deformation condition D for p.

Define D ® 6 to be the full subcategory of Rep,,,(Gr) whose objects are pairs
(A4, pq) with p4 ~ po® 6 for some (4, py) € D.

PROPOSITION 4.14. With notation as above, D ® 6 is a deformation condition for
0o ® 6. The tangent space for D ® 0 is naturally identified with D.

Proof. We first show that D ® 6 is a deformation condition, and for that we need
only verify that a lifting p : Gr —> 4 x5 Cisin D Q 6 if the projections of p to 4 and
CareinD ® 6.
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Claim 1: If p : Gr —> GL,,(A) is a lifting of p, ® 6, then p is strictly equivalent to
po ® 6 for some lifting pg : G —> GL,,(A) of py.

Proof of claim: We use induction on length for 4 Artinian. Let J be an ideal of A killed
by the maximal ideal m of A. Then, p mod J is strictly equivalent to p; ® 6 for some lift
to A/J of B,. The obstruction to lifting p; to GL,,(4) lies in H*(Gr, adp,) ® J, and the
obstruction vanishes by Lemma 4.13, part ¢. We can therefore find a lifting p, : Gr —>
GL,,(A) of py such that p mod J = p; ® 6 mod J. It follows that p = p, ® 6 (1 + &)
for some & € H'(Gr, adp, ® 0) ® J, and the claim follows from Lemma 4.13, part c.

Claim 2. 1f py, p2 : Gr —> GL,,(A) are two liftings of oy and p; ® 6 ~; p» ® 6, then
P1 ~s P2.

Proof of claim: With A, J as in the proof of claim 1 and using induction on length, one
deduces that assuming p; mod J = p, mod J, we have p; ® 0 = p, ® 0(1 + &) with
£ € H'(Gr,adp, ® 0) ® J. Lemma 4.13 again completes the proof.

Now, let (4 x C, p) be a lifting of p, ® . We may assume by claim 1 that
p = po ® 0 for py a lifting of p,. If the projections of p to 4 and C are in D ® 0, then
claim 2 implies that the projections of py to A and C arein D. Hence, (4 x g C, py) € D,
thus proving the theorem.

The statement about tangent spaces is immediate from Lemma 4.13. ]

Proof of Theorem 4.12. Twisting p by a power of the cyclotomic character, we
may assume that 0 < ay,...,a, <s—2. It is then easy to see, using Lemma 4.13,
that p ~ 0, ® 6 where p, is a s-small representation with 55 = k(a;) @ - - - ® k(ap).
Now, let & be the deformation condition for the tamely ramified representation p,
constructed in Section 4.2, and take £ to be the deformation condition & ® 6. All
claims then follow from Proposition 4.14 and properties of &. O

4.4. Induced representations. We now consider the final part in the analysis of
blocks that make up a residual representation given in the outline plan for proof of
Theorem 4.3. Thus, we need to consider when representations induced from liftings
of a given residual representation determine a deformation condition for the induced
residual representation.

The set up for this subsection is as follows. Let F ; L be fixed finite extensions of
Q,, and set n = [L : F]. We assume we are given a representation p : Ggp —> GL,,,(k),
which is induced from 0 : G; — GL,,(k). We also fix, throughout this subsection, a
coset decomposition

Gr=g1GrU---Ug,GL

with g = e.

Now, V(p) has a G invariant vector subspace M, such that
e V(P) = M as G;-modules, and
s V(o) =g M® - - dg.M.
The subspace N := g, M + ---g,M is G invariant and V' = M & N as G -modules.
Let 0 : G —> GL(,—1)m(k) be a representation given by (some fixed choice of basis
of) N. Assume that:
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* Dlg, =0 @7, and
* Homg, (M, N(r)) =(0)forallr e Z.
Under these assumptions, we have canonical isomorphisms

Hi(GF, adﬁ) = Hi(GL, ad?)

by Shapiro’s lemma. Furthermore, Proposition 4.5 shows that any lift p : Gr —>
GL,.,(R) of p restricted to Gy is strictly equivalent to 6 & ¥, where 0, ¢ are lifts of 6
and 9.

LEMMA 4.15. Let A be an Artinian CNL W-algebra, and let p : Gp —> GL,,,(A)
be a lift of p. If
plo, =0 @®v

with 6,9 lifts of 6,0, then p is equivalent to Ind .

Proof. We fix a basis for V(p) as follows: View V(6) as a subspace of V(p) via
V(p) = V(0) ® V(¥), and take the basis {g;€; |1 <i <n, 1 <j<m}with {&,...,&}
a basis of V(9). Now, V(p) = V(0) ® V(9) as A[G;]-modules, and so we can pick a
basis {ey, ..., ¢,} of V(0) such that ¢; is a lift of €;. It is now clear that

V(p) =1V (0)+ -+, V(0) + m4V(p),
and therefore, by Nakayama’s lemma, one sees that
Vip)=a1V(O) & ©g.V(0).

This completes the proof (using, for instance, Proposition 10.5 of [5]). O

Now, let F be a deformation condition for 6, and denote by IndF the full
subcategory of Rep,,,(Gr; k) whose objects are (A4, p) € Rep,,,(Gr; k) with V(p) =
Ind V() for some (4, 0) € F.

PROPOSITION 4.16. IndF is a deformation condition for p. If F is well-behaved then
so is IndF.

Proof. To show that Ind.F is a deformation condition, we need only check (DC2).
Suppose, givenao : A — C, B : B— C, with g small, and a lift

p GF —> GLmn(A XcB)

of p with (4, ap), (B, Bp) in IndFRep,,,. Conjugating by an element of GL,,,,(4 x ¢ B),
we can take p to be a lift of p, and that p|g, = @ @ © where 0, ¢ are lifts of § and ¥.
Since p ~ Ind 6 by Lemma 4.15, we need to verify that (4 x ¢ B, 6) is in FRep,),.

Let (4,0’) be an object of FRep,, with Indd’ ~ ap. By Proposition 4.5, the
composite

V(') — Viap) = V(ad) ® V(at) — V(ab)

is an isomorphism of A[Gr]-modules. Hence, (4, «f) is an object of FRep,,. Similarly,
(B, B0) is an object of FRep,,, and hence (4 x ¢ B, 6) is in FRep,),.

Clearly, IndF is smooth if F is, and the tangent space for IndF is the image of
TD under the Shapiro isomorphism. The (uni)versal deformation ring for IndF is a
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power series ring over W, the restriction of the determinant of the (uni)versal IndF
deformation is the Teichmiiller lift of det p. The second statement of the proposition
now follows. O

4.5. Proof of Theorem 4.3. We will now complete the proof of Theorem 4.3
by decomposing a given residual representation suitably so that the results we have
discussed apply.

Recall we are assuming that our representation p : Gp —> GLy(k) has all
irreducible components occurring in the semi-simplification of p absolutely irreducible,
and that [F(g) : F] > 3N if p < N and p is wildly ramified. Our task is to construct
a well-behaved deformation condition for p. Throughout this subsection, we fix
absolutely irreducible continuous representations

E[ZGF—>GL,1[(]€), i:l,...,n

occurring in the semi-simplification of p, such that
e if i #j, then 6, and 6,(r) are not equivalent for any r € Z;
e o%”isadirect sumoff;, i =1,...,n, and Tate twists of 6,’s.

LEMMA 4.17. Let V be the underlying k|Ggl-module for p. Then V has a submodule
isomorphic to V(0;) for each i. If V; denotes the maximal submodule of V whose
composition series consists only of 0; and Tate twists of 0;, then V=V, ®---® V,,.
Furthermore, for any r € Z,i # j, we have

Homg, (V,-, V,(r)) = (0).

Proof. We may suppose that V" has a submodule U isomorphic to 6. Using
induction, we get an exact sequence of k[Gr] modules

0 —U—V-—>M>e& - &M, — 0,

where each M; composition series consisting only of 6, and Tate twists of 6. Thus, V'
corresponds to an element of

H' (Gp, Hom(M; & --- & M,, U)).

By Tate local duality, H'(Gr, Hom(M;, U)) is trivial if i # 1, and the proposition
follows. O

By Theorem 4.4 and the above lemma, we can assume that the semi-simplification
of p is a direct sum of Tate twists of a single absolutely irreducible representation 0 :
Gr —> GL,(k). If 9 is tamely ramified, we proceed as in Section 4.2, Proposition 4.7.

Now, assume that 6 is wildly ramified. We shall deal with the case when p < N
first. Let s be the smallest positive integer such that 6 ~ 6(s), and let m be the number
irreducible components of p* isomorphic to some Tate twist of 6. The inequalities
ns > 3N (obtained by comparing determinants of 6 and 0(s)) and nm < N imply that
1 <m < s — 2. The existence of a well-behaved deformation condition then follows
from Theorem 4.12.

Finally, assume from here on that 6 is wildly ramified and p > N. Let p* =
0(i1) @ - - - ® 0(i,y), and denote by F(p) the extension of F through which 7 factorises.
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Since n < p, twisting by a character Gp —> k™ if necessary, we can assume that the p-
part of the determinant of @ is trivial. A consideration of ramification subgroups shows
that we can find an abelian normal, wildly ramified, p-subgroup Z <1 Gal(F(p)/F). Our
assumption that the determinant has no p-part then shows that 8| is not central.

We now give a characterisation of p as an induced module. The representation p
when restricted to Z splits as a direct sum of characters. Clearly, if 0|z ~ x1 @ - - - ® xa,
then plz ~ (x1 @ - - - ® xa)™? . We fix one such character x and set

Vix]l:={ve V() pi)(v)= x(z)v forallze Z}.
If g € Gal(F(p)/F), then the character 8y, defined by
x(2) = x(gzg "),

is also a constituent character of 8|, and we have V[¥x] = gV[x]. Thus, Gal (F(p)/F)
acts transitively on the distinct constituent characters of 6|, and there are at least two
distinct constituent characters. Let L be the finite extension of F' inside F(p) cut out
by the stabiliser of x, and fix a coset decomposition

Gr=g1GU---Ug,Gp,

with gy =e. Then, V=g V[x]® - - ®g,V[x], and so V is induced from the G-
module V|x]. Since yx is a wildly ramified character,

Hom (V[gx], V[g'x]) = (0),
if gG; # ¢'Gy, and so for any r € Z, we have

Homg, (V[x]. (2VIx]® - - @ g VIxD(r)) = (0).

Finally, inductively on N, one can find a well-behaved deformation condition
for the representation of G arising from V[x]. Using Theorem 4.16, the induced
deformation condition is a well-behaved deformation condition for p.

4.6. Deformations at special unramified primes. We conclude this section with a
look at a special class of smooth local deformations, which are of great significance in
reducing dimensions of (global) dual Selmer groups.

Let F be a finite extension of Q, and let p : Gr — GL,(k) be the diagonal

representation
5)}171
~n—2
p= ;
1
We assume that the order of the mod ¢ cyclotomic character @ is greater than n. Fix a
basis {eg, €2, ..., €,} with p acting on ¢; by the character @"~' and an identification
adp = @ Hom(ke; ke) = @ k(i —)).
1<ij<n 1<ij<n
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LEMMA 4.18. Any lifting of p is strictly equivalent to an upper triangular
representation.

Proof. We use Artinian induction. So, let p : Gp —> GL,(A4) be a lift of p with 4
Artinian, and let J be a non-zero ideal of 4 killed by m . We assume that p; : Gp —>
GL,(A/J), the reduction of p modulo J, is upper triangular (after conjugating by a
matrix that reduces to the identity modulo m 4 if necessary).

We write B, for the standard Borel subgroup of GL,, consisting of upper triangular
matrices, and let bp be the subspace of adp consisting of upper triangular matrices. A
standard calculation then shows that H*(Gr, adp) = H*(Gf, bp) when * = 0, 1, 2.

The obstruction to lifting p; to B,(A4) is given by an element of H? (G, bp) @ J.
The obstruction vanishes because its image in H>(Gr, adp) ® J is trivial (since p lifts
ps to A). Thus, there is an upper triangular lift p’ : Gr — GL,(A) of p;, and we can
write

p=U+v)p with ¢ € H(Gr,adp) ® J.

Now, deformations of p; to B,(A) are precisely given by (I + &)p’ where & is a cocycle
in H' (G, bp) ® J. The lemma follows since H'(Gr, adp) ® J = H' (Gr, bp) @ J. O

Let B be the full subcategory of Rep,(Gr; k) with objects (A4, p) satistying p
mod my = p and

Lemma 4.18 then readily implies that %, which we shall refer to as the Ramakrishna
condition, is in fact a deformation condition for p. (When n =2, these are the
deformation conditions discussed in Section 3 of [13].)

PROPOSITION 4.19. B is smooth and its tangent space is

n—1

@ H' (Gr, Hom(kes 1. kep) .-

i=1
Proof. Let p : Gp —> GL,(B) be a representation, say p = (bjw/~'), where b; :
Gr —> B are functions with

0, ifi >,

bﬁ(")z{l, ifi=

for any o € Gp. Each b;;.1 € H'(Gr, B(1)). The calculation in example E4 of [15]
shows that for a surjection ' : A —> B, the map

H'(Gp, A(1)) — H'(Gr, B(1))

is surjective. If we assume /' to be small and identify the K[Gr]-module of n x n matrices
with entries from ker(f) with adp, it follows that the obstruction to there being a lift
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of type 9B of p to A4 is given by an element of
H? (Gp, ®,_i=> Hom(ke;, ke;)) .
But, this cohomology group vanishes because
dimy H(Gp, k(j — i)) = dimg H*(GF, k(j — i)) = dimy H*(Gr, k(i — j + 1)) = (0)
for j — i > 2 as @ has order greater than n. Consequently
H' (Gr, ®;_i=1 Hom(ke;, ke;)) = &;H' (G, Hom(ke,s 1, ke;)) ,

from which the statement about the tangent space follows. O

5. Constructing global deformation conditions with trivial dual Selmer group. In
this section, we show how to transform a given global deformation condition in such
a way that the dual Selmer group decreases in size while at the same time retaining
smoothness properties of local components (of the original deformation condition).

We begin by fixing a number field F and a finite field k& of characteristic £. We
also fix, throughout this section, a representation p : Gr —> GLy(k) and a character
x : G —> WX lifting detp (so x (mod ¢) = detp).

We shall say that a global deformation condition D with determinant x for p
satisfies the tangent space inequality if the inequality

> dmTD,>(N-2)+ Y dimH’ (G, ad’p) (5.1)

veX(D) vex(D)

holds. Recall that X (D) is the finite set consisting of those primes v of F where D, is
not unramified, primes lying above ¢ and oo, and primes where p and yx are ramified.
By Wiles’ formula 2.1, D as satisfies the tangent space inequality if

dim Hrp,, (F, ad*p) — dim H /7., (F, ad"p(1)) = N - 2.

DEFINITION 5.1. The residual representation p : Gg —> GLy(k) is said to be a big
representation if the following properties hold:

(R1) ad®p is absolutely irreducible and
H' (Gal(F(ad"p)/F), ad"p) = H' (Gal(F(ad5(1))/F). ad*5(1)) = (0).

(R2) There is a non-archimedean prime wy of F with wy { £, such that

CT)N_I

ﬁ|w0 ~ . ®77,

where 77 is an unramified character, and the mod ¢ cyclotomic character @
has order strictly greater than N.
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Note that if p is big, then R2 implies that F' does not contain all £th roots of
unity, that ad°s and ad °5(1) are inequivalent, and that £ > N. Also, if 7 is big and k¥’
is a finite extension of k, then the extension of scalars of p to GLy(k') is again a big
representation. Further examples of big representations are supplied by the following
proposition:

PROPOSITION 5.2.

(i) Let F be a number field, and fix an integer N > 2. There is a constant C
such that if 'k is a finite field of characteristic £ > C, then any representation
0 : Gp —> GLy(k) with Imip containing SLy(k) is a big representation.

(ii) Let p: Gg —> GL3(k) be a representation with Imp containing SL;(k).
Assume that €, the characteristic of k, is at least 7. Furthermore, assume
that if € =7 then the fixed field of ad’p does not contain cos(2r /7). Then o
is a big representation.

Proof. We fix the following notation first:

e 7 :Gr —> PGLy(k) is the projectivization of 7 and ¥ : Gr —> k*/k*V is the
determinant of .

e F(X,®) is the extension of F through which ¥ and @ factors. Similarly F(¥)
(respectively F(@), F(p)) is the extension of F through which ¥ (respectively @, 0)
factors.

Finally, we set

d:=[F):F] and e:=(— D/[FX &) :FR).

We shall now show that the proposition holds with C = 2edN + 1.
The extension F(p)/F(X) has Galois group PSLy(k), and so F(p), F(X, ) are
linearly disjoint over F(). Since & (Grz)) = F¢, the image of the homomorphism

o xw:Gr — PGLy(k) x |/

contains PSLy(k) x F;°.
Fix a generator a of the cyclic group F, and set b = ¢**?. It is then straightforward
to check that

bel
X := the projective image of the diagonal matrix K
b
1

is an element of PSLy(k). By the Chebotarev density theorem, there is an unramified
prime v such that p(Frob,) = X and @(Frob,) = b. Hence,

PlF, ~ A @,

where 7 is an unramified character. Now, the order of @|f, is the order of b, and this
is greater than N if 2ed N < ¢ — 1; so, (R2) holds.
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We now verify condition (R1). Note that £ >7 since C > 5. We use the
representation p : Gp —> GLy(k) to identify Gal(F(ad®p)/F) with a subgroup of
PGLy(k), and view ad°5 as a PGL,(k)-module. Since the image of 5 contains SLy(k),
we see that PSLy (k) is a normal subgroup of Gal(F(ad*5)/F) of index coprime to £.
Hence,

H' (Gal(F(ad"p)/F), ad"p) < H' (PSLy(k), ad"p).

Now, the inflation map H'(PSLy(k),ad’s) — H'(SLy(k),ad’p) is an
isomorphism because PSLy(k) is the quotient of SLy(k) by its centre, which has
order coprime to ¢. Since H' (SLN(k), adoﬁ) = (0) by Theorem 4.2 of [3], we can
therefore conclude H' (Gal(F(ad"p)/F), ad°p) = (0).

The verification that H' (Gal(F(ad°5(1))/F), ad°5(1)) = (0) is similar but needs
an extra step. Set K to be the Galois extension of F generated by F(ad°5(1)) and F(®).
By considering the extension K/F(®) so that the Tate twist becomes trivial, we see
that Gal(K/F) contains a subgroup of index coprime to £ and isomorphic to PSLy(k).
Thus, as in preceding case, we deduce H' (Gal(K /F), ad Oﬁ(l)) = (0) and therefore, by
the inflation-restriction exact sequence we have

H' (Gal(F(ad"5(1))/F). ad°5(1)) = (0).

This completes the proof of part (i) of the proposition.

We now prove part (ii), which deals with the case when N = 3 and F = Q. Note
that d = [Q()) : Q)]s either 1 or 3, and since £ > 7 we must have [Q(¥, @) : Q(})] > 4
except in the case Q(¥) = Q(cos(27r/7)) (which we are excluding). Hence, the image of
0 x @ contains an element of the form

a 0 0
0 1 0 | xa,
0 0 a
where a € F; has order at least 4. The rest of the proof is then as before. 4

Remark 5.3. Keep the notation introduced in the proof of Proposition 5.2. Since
F(X, ®) D Q(®), we have [F(¥X, @) : Q] > [Q(®) : Q] and so d[F : Q] > e. Along with
d < N, we see that if £ > 2[F: Q]N?+ 1 then 2edN < ¢ — 1. Hence, if ¢ > 2[F :
QIN? + 1, then Imp contains SLy(k) and 5 : Gr —> GLy(k) is a big representation.

PROPOSITION 5.4. Let p: Gp —> GLy(k) be a big representation, and let x :
Grp —> W™ be a character lifting detp. Fix a prime wq of F such that p|,, satisfies
condition R2 of Definition 5.1.

If'Dy is a global deformation condition with determinant y for p satisfying the tangent
space inequality, then there exists a global deformation condition D with determinant x
for o with (D) 2 X(Dy), such that
4 va € Z(D()), then Dy, = D,.

o Ifv e X(D)— X(Dy) then D, is smooth and p(Frob,) = p(Frob,,). Furthermore, the
tangent space TD, satisfies

H'(F,,ad"p) = H) (F,, ad"p) ® TD,.

e We have H'

iro,y (F ad’p(1)) = (0).
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Proof. 1If H {ITDOi  (F.ad %5(1)) = (0) then we can take D = D and there is nothing
to check. So, we suppose that we can find

0#& e Hipp  (Fad’s(1).
Then, using Wiles’ formula 2.1, we see that
dimy H/yp, | (F.ad’p) = N — 1.

We now use Theorem 3.1 to produce a prime w; ¢ X(Dy) such that
(a) p(Frob,,) = p(Frob,,) and &(Frob,, ) = w(Frob,,);
(b) The restriction

H{lTDOU} (F’ ad 05) - Hr11r (le ,ad 05)

is surjective; and,
(¢) The image of & when restricted to H,, (F,,, ad (1)) is non-trivial.

In order to do this, let K/ F be the extension of F through which ad °5 and @ split, and set
G := Gal(K/F). Then, ad’5 and ad°5(1) are non-isomorphic absolutely irreducible
k[G]-modules. Using the inflation-restriction exact sequence together with property
(R1) of big representations and the observation that [K : F(ad°p)] and [K : F(ad°5(1))]
are coprime to £, we conclude that

H'(G,ad’p) = H(G, ad*s(1)) = (0).

We now apply Theorem 3.1 to the k[G]-module ad°% & ad°5(1) and place wy of
F as follows. Fix subspaces

Vl - H{ITD()l,} (Fs adoﬁ) - HI(GFv adoﬁ)
of dimension N — 1 and

Vo= ke € Hlpp, | (F.ad"B(1) € H'(Gr, ad"5(1).

Now, dimy H,, (F,,, ad"p) = dimy H,, (F,,,ad (1)) = N — 1. Take w; to be a place
of F given by the conclusion of Theorem 3.1. Then, condition (a) above follows since
the images of Frob,,,, Frob,,, in G are the same. The injectivity of

Vi@V, — H,, (F.,,ad’p) @ H,, (F,,,ad"p(1))

then ensures conditions (b) and (c¢) also hold. (For condition (b) one needs to use
that the restriction ¥, —> H,, (F,,, ad°p) is an isomorphism, which follows from the
injectivity by a dimension count.)

We now use the prime w; and define a new deformation condition D; for p
with determinant y with the following local conditions: At primes not equal to wy,
the local deformation conditions Dy, and D;, are the same. At the prime wy, the
local deformation condition Dy, is determined by a Ramakrishna condition (cf.
Section 4.6). Thus, D, is smooth at w;.
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The proof now proceeds as in Lemma 1.2 of [15]: Denote by {S,} the local Selmer
conditions

S — TDy,, ifv+# wy;
), ifv=w.
Using Wiles’ formula 2.1,
dim H{s , (F,ad’p) — dim H{ISH (F,ad"p(1))

= (dim 8, — dim H(F,,adp)) - > H’ (F,, adp)
vfoo v|oo
= dim Hirp, , (F.ad’p) — dim H ., (F.ad (1)) — dim Hy, (F,,.ad’5),
and by (b), the sequence
0 — Hls,(F.ad"p) — H|;,, (F.ad"p) — H,, (F,,.ad’p) — 0
is exact. Hence, we have

Hisyy (F.adp(1)) = Hizp ) (Fad (D).

Using condition (c) along with H'(F,,,ad’s(1)) = H,, (F,,,ad"ps(1)) & TDy,, . we

see that
1 0—, 0—
0#& & Hyp, | (F,ad%(1)) < H{ITD&V} (F,ad%p(1)).
Thus, dim H{ITD . (F,ad’p(1)) S dim H{ITD&U} (F,ad’p(1)), and the proposition
follows inductively. O

An application of Theorem 2.2 then gives the following:

THEOREM 5.5. We keep the notations and assumptions of Proposition 5.4 above. If
for each v € £(Dy) the local deformation condition Dy, is smooth, then the universal
deformation ring for deformations of type D is a power series ring over W in

> dimy TDo, — Y dimy H(F,, ad’p)
veX(Dy) veX(Dy)

variables.
6. Lifting Galois representations to characteristic 0. In this section, we complete

the proof of the main theorem. We also show how the general arguments we have used,
with some care, produce strong lifting results in the GL; case.

6.1. Proof of the main theorem. Recall that we are given a continuous
representation p : Gg —> GLy(k) and a character x : Gp — W™ lifting the
determinant of p such that
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(1) the image of p contains SLy(k);
(2) pis not totally even;
(3) if v is a place of F lying above £ then H° (GF adoﬁ(l)) = (0).
We are assuming that the characteristic of & satisfies the inequality £ > N3V with
N > 3. We then need to produce a smooth global deformation condition D with
determinant x for p and dimension of tangent space at least N — 2.

Twisting by an Nth root of the pro-¢ part of y if necessary (possible as £ > N)
and extending scalars, it follows from Proposition 5.2 and Lemma 2.1 that it suffices
to prove the following.

PROPOSITION 6.1. Suppose we are given a representation p : Gp —> GLy(k)
satisfying the following hypotheses:

(HO) for any open subgroup H < Gp all irreducible components of the semi-
simplification of p|y are absolutely irreducible;

(H1) p: Gp —> GLy(k) is a big representation;

(H2) p is not totally even, and,

(H3) for every prime v|t, we have H(F,, ad"5(1)) = (0).
Assume that the characteristic of k satisfies the inequality £ > N3O ywith N > 3, and
let x : Gg —> W™ be a character lifting det o and minimally ramified away from ¢.

Under the above assumptions, there is a global deformation condition D with
determinant x for p such that the universal deformation ring is a power series ring
over Win

> dimy D, — Y dimg H(F,, ad’p) = N -2

veX(D) veX(D)

variables.

Proof. Observe that £ > N3 implies [F, (&) : F,] = 3N for every v|N!. Now,
let Dy be the deformation condition with determinant x for p given by the following
local conditions:

e At a prime v|{, the local deformation condition is given by the single restriction
that the determinant is x.
e At a prime v where p is ramified, the local condition Dy, is the one given by
Theorem 4.3.
* Dy, is unramified at all other primes.
Let v be a prime of F lying above £. By assumption H3 and local duality, we have

dim H (F,, ad’p) = dim H® (F,, ad*5(1)) = 0.

Hence, the deformation condition Dy, is smooth and, by the local Euler characteristic
formula, we have

dim 7Dy, — dim H° (F,, ad*p) = [F, : QJ(N? - 1).
Adding up over primes above ¢, we get

> dimTDy, — Y _dimH® (F,.ad’p) = [F : Q)(N* — ).
|l |l
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We are assuming that  is not totally even. We can therefore find a real prime ooy
of F, a choice ¢ € Gr of complex conjugation under the embedding given by cor such
that 0(c) is not a scalar. Let m be the number of +1 eigenvalues of p(c). Then,

> dim H' (F,, ad"p)

v|oo
<(F:0Q]- )N — 1)+ dim H® (Fa,, ad"p)
=([F:Q]- DH(N> =) +m*+ (N —m)* — 1.

At a finite prime v € X(Dy), which is coprime to ¢, we have dim 7Dy, =
dim H(F,, ad°p). Hence,

Y dimTDy, — Y  dimH(F, ad’p)

veX(Dy) veX(Dy)
>[F:QN> =) —(F:Q]— DHN> = 1) —m* — (N —m)>+ 1
=2m(N — m).

From (m —1)(N —m—1)>0, we get m(N —m)> N — 1, and consequently D,
satisfies the tangent space inequality.

Applying Theorem 5.5, we obtain a deformation condition D with determinant x
such that the universal deformation ring is a power series ring over W in

> dimD, — ) dimy H(F,, ad’p)

vex(D) vex(D)
= Y dimD,— Y dim; H%F,,ad"p)
veX(Dy) veX(Dy)
>N-2
variables. O

6.2. A lifting result when N = 3 and F = Q. We now discuss how to improve on
the main theorem for the case when N = 3 and F = Q. From here on, & is a finite field
of characteristic £. An odd representation is one with complex conjugation having two
distinct eigenvalues.

THEOREM 6.2. Let p : Go —> GL3(k) be an odd representation with image of p
containing SL3(k) and let x : Gog —> W™ be a character lifting the determinant of p.
Suppose that £ > 7, and further assume that if € = T then the fixed field of ad% does not
contain cos(2m /7). Then, there is a continuous representation p : Gg —> GL3(W) with
determinant y, unramified outside finitely many primes, such that p (mod £) = p.

A significant feature of Theorem 6.2, distinguishing it from other lifting results, is
that there are no restrictions imposed at £. Although not stated explicitly Theorem 6.2
constructs families of characteristic 0 liftings (because the universal deformation ring in
play is a power series ring in at least N — 2 = 1 variable). For explicit examples, we need
to be able to write down odd representations p : Gg —> GL3(k) with p(Gg) 2 SL;(k);
this can be done for certain residue fields & (see [16]).
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Proof of Theorem 6.2. As in the proof of the main theorem, we may extend
scalars and assume that p : Gg —> GL3(k) satisfies the three conditions HO, H1 (by
Proposition 5.2) and H2 of the preceding Section 6.1. Thus, p is a big odd representation
such that for any open subgroup H < Gg all irreducible components in the semi-
simplification of p|y are absolutely irreducible.

Let p, denote the restrictions of p to Gg,. We will now find for each prime
p a smooth local deformation condition Dy, with determinant x for , such that

dim 7Dy, = dim H(Q,, ad°p) if p # ¢ and
dim 7Dy, > dim H°(Q,, ad°p) + 5. (6.1)

There is no issue at a primes away from 2, 3 and ¢: If p > 3 and p # ¢ we take Dy, to
be the one obtained through Theorem 4.3.

If we can find the above local conditions at 2, 3 and £, then Theorem 6.2 follows
immediately from Theorem 5.5 once we verify that the global deformation condition
Doy = {Dg,} with determinant y satisfies the tangent space inequality (5.1). By our
assumption on tangent spaces away from £, we therefore need to check if the inequality

dim 7Dy, > 1 + dim H°(Q;, ad*p) + dim H°(R, ad°p)

holds. But, this follows from (6.1) since dim H°(R, ad’s) =4 as 7 is not totally
even. ]

Now, let p be one of 2, 3 or £. We then have the following descriptions of the local
representation p,,.

PROPOSITION 6.3. Let p be as above and let p be one of 2, 3 or £. If H*(Q,, adoﬁp) #*
(0) then, after conjugating if necessary, we can put p, into one of the following forms.

1 * %
TypeA 0, =10 & x |n

0 0 &

1 x vy
TypeB p,=|0 ¢ =z |n

0 D)

where x is non-split if ¢ = @' and z is non-split if ¢ = &°. (The non-split
condition ensures that p, is not of Type A.)

Type C p, is absolutely irreducible and induced from a character of Ga,,). This case
occurs only when (p, £) = (2,7) or (3, 13).

Proof. Let V be the underlying k-vector space for the representation p. We write
elements of V(1) = V' ® k(1), the underlying space for p(1), simply as v(1) forv € V.
Thus, g € Gg, acts on v(1) by sending it to w(l) where w = @(g)p(g)(v) € V. The
assumption H*(Q,, ad’5) # (0) then implies that

Homg, (V, V(1)) = H"(@,, ad *5(1)) # (0),

and we can therefore find a non-zero homomorphism ¢ : V' — V(1) of Gg,-modules.

First, suppose dimker ¢ = 1. Set ker ¢ = (u) and write ¢(V) = U(1) where U is a
two-dimensional Gg,-submodule of V. We then claim u(1) € ¢(V), or equivalently
ker¢ C U. To see this, we note that if the claim is not true then the restriction
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¢ly: U —> U(1) is an isomorphism of Gg,-modules. On taking determinants of
the underlying two-dimensional representations, we then obtain @’ = 1. This is not
possible as quadratic extensions of Q, for p = 2, 3, £ cannot contain all £th roots of 1
when ¢ > 7.

We therefore obtain Gg, stable filtrations

o (W) &V and w1) & o~ (1) & V(D).

Using these filtrations, we can assume that

a  x * an * *
p,=10 B = and p,()=1|0 Bo =
0 0 vy 0 0 yo

The isomorphism ¢~ '((u(1)))/(u) —> (u(1)) shows that B = a®. The injection
V /o~ ((u(1))) — V(1)/(u(1)) then implies that y = & or y = y@. As ® is non-
trivial, we must have y = B@ = a@°. Consequently 7 is of Type A.

We now consider the case when dim ker ¢ = 2. Let ¢(V) = (u(1)). Then, u € ker ¢
for otherwise ¢ induces an isomorphism (1) — (u(1)) of Gg,-modules. Using the Gg,
stable filtrations

(uy G kerg &V and  (u(1)) & kerp(1) & V(1),

W€ can assume

o % % ab  x *
=10 B =* and p,()=10 o *
0 0 vy 0 0 yow

The isomorphism V' /ker ¢ —> (u(1)) implies that y = aw. Hence, p is of either of
Type B or of Type A.

Finally, suppose that dimker¢ = 0. Thus, » ~ p(1). Taking determinants, we
obtain @ = 1. Hence, [Q,(Ze) : Qp] =3 and (p, £) = (2, 7) or (3, 13).

If » is not absolutely irreducible then its semi-simplification must contain a
character x. The isomorphism 5 ~ 5(1) then implies that * = x @ x& ® x@” and so
0 will be of Type A or Type B.

So, let us now suppose 7 is absolutely irreducible and MpM ' = 5(1) for some
invertible matrix M € GL3(k). If the restriction of p to Gg,(, is still absolutely
irreducible then M is a scalar matrix and p = p(1) (equality of matrices!), which
is clearly false. Thus, V" has an absolutely irreducible Gg,(,) stable subspace U of
dimension 1 or 2.

Let g € Gg, be a lift of the generator of Gal(Q,(¢¢)/Q,). If dim U = 2 then U N
gU is a non-zero Gq,(,) stable subspace and so, by irreducibility, we have U = gU.
Thus, U is in fact stable under Gg,-action, contradicting absolute irreducibility of
V.So, dimU =1 and V = U +gU + g*U. Hence, p is induced from a character
of G@”(Q) . Il

We can now proceed with our construction of suitable local deformation
conditions.

https://doi.org/10.1017/5S0017089518000149 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089518000149

LIFTING N-DIMENSIONAL GALOIS REPRESENTATIONS 147

Local conditions when p =2 or 3. If H 2(@,,, ad Oﬁp) = (0) then we take Dy, to
be the class of liftings with determinant x (cf. Example 4.2). Thus, D, is smooth and
dim 7Dy, = dim H°(Q,, ad*p).

Suppose, now H*(Q,,ad"p) # (0). We assume that P, 1s in the matrix forms
specified by Proposition 6.3, and specify local deformations as follows.

First, assume that p,, is either of Type A, or of Type B with & unramified. Thus,
P, is a twist of a tamely ramified representation. We then take Dy, to be any smooth
deformation condition Dy, with determinant x and dim 7Dy, = dim H °(Q,, ad’p).
The existence of such a deformation condition is assured by Theorem 4.3.

We now consider the remaining cases. Thus, p, is of Type B with ¢ ramified,
or of Type C. Note that ¢ does not divide the order of the image of inertia
under p,. (If p, is Type B with ¢ ramified then we can assume x =z =0 since
Hl(@),,, k(e~')) and Hl((@,,, k(@) are both trivial, and then we can make y = 0
because H'(Q,, k(@ ")) = (0).)

The construction and argument now proceeds as in [15, Example E1]. Take K to
be fixed field of , over @;r, the maximal unramified extension of @,, and then take
Dy, to be lifts of p,, with determinant x which factor through Gal(K/Q,). Since £ does
not divide cardinality of Gal(K/Q,"), we have

H" (Q,,ad"p) = H"(Gal(K/Q)), ad °p),

for all n > 1. It follows that Dy, is a smooth deformation condition and its tangent
space has dimension dim A O(QP, ad"p).

Local conditions at £. Our target is to find a smooth local deformation condition
Dy for p, with determinant y, and satisfying inequality 6.1:

dim TDy, > dim H°(Q,, ad°p) + 5.

If H*(Qy, ad’5) = (0) then there aren’t any obstructions and, following Example 4.2,
we take Dy, to be the class of liftings with determinant y,. This is smooth and

dim TDy, — dim H°(Q,, ad°p) = dimad s = 8.

Assume now that H*(Qy, ad’p) # (0) and that P, 18 of the form specified in
Proposition 6.3. We now describe the choice of deformations and specify a Gg,
subspace N of ad’5 where the tangent space can be computed as follows. (Essentially
we only allow those liftings which can be conjugated to certain parabolic subgroups of
GLj and N is the corresponding adjoint. The same constructions work when p = 2 or
3 provided &> # 1.)

(a) Suppose g, is either of Type A or of Type B with ¢ different from 1 or @ or @ ! or
@*. Take Dy to be upper triangular deformations of 5 with determinant x and set
N to be the space of trace 0 upper triangular matrices in ad 5.

(b) Suppose 5, is of Type B and ¢ is 1 or &~ !. Take Dy, to be deformations of the form

* ok %
* ok ok
0 0 =«
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with determinant x, and set N to be the matrices of the same form in
ad’p.
(c) Suppose 7, is of Type B and ¢ is @ or @>. Take Dy, to be deformations of the form

* ok ok
0 *x =x
0 *x x%

with determinant x, and set N to be the matrices of the same form in ad 5.

The composition series for ad’s/N shows that H°(Q,, ad’s/N) = (0).
Consequently, the exact sequence

0 — N — ad’s — ad’s/N — 0
implies that H°(Qy, ad°p) = H°(Q,, N) and that
H'(Qq, N) — H'(Q, ad’p)

is injective. Since the tangent space of Dy is the image of H'(Q,, N) in H'(Q,, adp),
we obtain

TDy = H'(Qq, N).

We now sketch a verification that Dy, is a deformation condition as defined in
Section 2.1 for upper triangular deformations, that is, case a above when p, is either of
Type A or of Type Bwith ¢ ¢ {1, @, ®*, @ '}; the other cases are similar. The argument
relies on the following two observations.

CLAIM 6.4. Let py, p2 : Gg, —> GL3(A) be two strictly equivalent upper triangular
liftings of p, in Dy,. Then, there exist an upper triangular matrix X’ = / (mod m,) such
that p; = X,Oinl.

Proof. We can take A4 to be Artinian. Now, choose an element t € 4 withm 7 = (0)
and t4 = tk. Using induction on length, we can find an upper triangular matrix
Y € GL3(A) such that Y = I (mod m,) and

o1 =Y y! (mod tA4).
Thus, we canwrite Y ™! p; Y = (I + t€)p, with& € H'(Q,, N). By assumption the image

£ in H'(Qy, ad®p) is trivial. The injectivity of H'(Q,, N) — H'(Q,, ad’p) implies
that & = 0, and the claim follows. [l

CLAIM 6.5. Let p : Gg, —> GL3(A) be an upper triangular lifting of p, and let M
be a 3 x 3 matrix over 4, such that

p(@Mp(g)™' =M forallg € Ga,.

Then, M is an upper triangular matrix.

Proof. We can assume that A4 is Artinian and use induction on length. The claim
when A = k is the content of H°(Q,, ad’p) = H*(Q,, N).
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For the inductive step, choose ¢ € 4 with m4¢ = (0) and 74 = tk. Let M and N
be the set of 3 x 3 matrices over A of the form

% ok ok * ok ok
B % % and 0 * x
t* otk % 0 0 =%

respectively. Thus, M € M, and Gg, acts on M, A by conjugation via p. Now, M /N =
ad’5/N and since H°(Q;, ad"5/N) = (0), we obtain

HO(GQW N) = HO(G@{, M).
Therefore, M € N, that is, M is upper triangular. O

We now return to the verification that Dy, is a deformation condition. The only
non-trivial part is to show that Dy, satisfies (DC2), and one checks that this justification
reduces to the following claim.

CLAIM 6.6. Let 7 : A — C be a surjection and let p4 : Gg, —> GL3(A4) be a
representation in Dy, with the property that pc := wp4 : Gg, — GL3(C) is already
upper triangular. Then, there is an X € GL3(A) such that 7(X) =7 and Xp, X' is
upper triangular.

Proof. Let Y € GL3(4) with Y = I (mod m) be such that the conjugate Yp, Y !
is upper triangular. Thus, pc and 7(Y)pcr(Y)~! are two strictly equivalent upper
triangular lifts of p to GL3(C). Using Claim 6.4, we can find an upper triangular
matrix ¥ € GL3(A) with ¥ = I (mod m), such that

7(Vpcn(Y) ™ =a(Y)pcr(Y)~\.

Set Z := Y~ 'Y. Then, Zp,Z ' is upper triangular and 1(Z)pcr(Z)~" = pe. By
Claim 6.6, the matrix 77(Z) is upper triangular. Let Z € GL3(A4) be an upper triangular
matrix lifting 7 (Z), and set X := Z~'Z. Then, Xp,X ! is upper triangular and 7 (X) =
I ]

Finally, we need to show that Dy, is smooth and that dim 7Dy, satisfies
inequality 6.1. Smoothness follows from H*(Q;, N) = (0) (cf. [2, Theorem 1.2]). To
verify the vanishing of this second cohomology group, assume otherwise. Then, by
local duality,

H(Qg, Hom(N, k(1)) # (0),

and so NV has a quotient isomorphic to k(1). However, consideration of the composition
series for N shows that NV has no quotient isomorphic to k(1) except possibly when p is
of Type Band ¢ is @' or @*. These cases can then be discounted using the non-splitting
of x and z, respectively.

Now, for inequality 6.1. We know that H°(Q,, ad’s) = H°(Q,, N) and TDy =
H'(Qy, N). The local Euler characteristic formula now implies that

dim 7Dy, — dim H°(Q,, ad°p) = dim N + dim H*(Q,, N) = dim N > 5,

and this completes the proof.
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