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TRANSFORMATIONS WITH DISCRETE SPECTRUM 
ARE STACKING TRANSFORMATIONS 

ANDRES DEL JUNCO 

I n t r o d u c t i o n . T h e stacking method (see [1] and [5, Section 6]) has been 
used with great success in ergodic theory to construct a wide var ie ty of 
examples of ergodic transformations (see, for example, [1 ; 3 ; 4; 5; 7]). However 
very little is known in general about the class 5 ^ of t ransformations which can 
be constructed by the stacking method using single stacks. In part icular there 
is no simple characterization of the class £/*. In [1], the following question is 
raised: is every transformation with simple spectrum an ^ - t r a n s f o r m a t i o n ? 
(Since the converse is t rue by [2, Theorem 1], this would give a nice charac­
terization of y7)- T h e simplest case of simple spectrum is discrete spectrum and 
the aim of this paper is to prove t ha t any ergodic transformation T with 
discrete spectrum belongs to 5 ^ (Theorem 2.3). 

The method of proof consists in finding an increasing sequence {&'n] of 
7"-invariant cr-algebras which generate the full cr-algebra and such t h a t T'/'&n 

looks like a cartesian product of several rotat ions and one cyclic permuta t ion . 
T h e result is proved for this concrete case which is where the difficulty lies. 
One then applies a simple lemma which gives the result for T itself. 

I would like to thank Professor AI. A. Akcoglu for suggesting this problem. 

S e c t i o n 0: N o t a t i o n a n d def in i t ions . All measure spaces (X, J ^ , /x) will 
be isomorphic to the uni t interval with Borel sets and Lebesgue measure. A 
transformation (automorphism) of (X, J^~, pt) is an invertible bimeasurable, 
measure-preserving mapping of X onto X. A partition of X is a finite collection 
of mutual ly disjoint sets i nc# \ If {Pn\ is a sequence of part i t ions, Pn —> e means 
M (A A Pn (A )) —» 0 for all A £ J ^ , where Pn(A ) denotes any union of a toms of 
Pn such tha t id(Pn(A) A A) is minimal. If T is a t ransformation of X, a stack 
for T (or T-stack) is an ordered part i t ion S = {Si, . . . , Sn} of X such tha t 
T(Sj) = Sj+i for 1 ^ j < n. Si is called the base of S, St the i-th level and n its 
height. 

S/7 is the class of t ransformations T for which there exists a sequence {Sn} of 
7"-stacks such tha t Sn —* e and the base of Sn is a union of levels of 5 n f i. This is 
jus t the class of t ransformations which can be constructed by the stacking 
method using single stacks. (For the stacking method see [5]). The following 
theorem, due to Baxter ([2, Theorem 2.1]), which we shall use implicitly, shows 
t ha t the requirement t ha t the base of Sn be a union of levels of Sn+i is un­
necessary. 

Received December 4, 1975. 

836 

https://doi.org/10.4153/CJM-1976-080-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-080-3


TRANSFORMATIONS 837 

THEOREM (Baxter). A transformation T belongs to f/ if and only if there is a 
sequence {Sn} of T-stacks such that Sn —> e. 

Section 1. If a Ç [0, 1) we define the transformation Ta on [0, 1) by 
Ta(x) = x + a (mod 1). Let a ( l ) , . . . , a(n) £ [0, 1) and let T be a cyclic 
permutation of 5 = {1, . . . , m). Let T = Ta^) X . . . X ra(m) X ir and assume 
T is ergodic. Denote by (12, Ĵ ~, /z) the measure space on which T acts 
(12 = [0, l)n X S, JF~ the product Borel structure, /x the product of Lebesgue 
measures and normalized counting measure). 

For each a{i) choose a sequence p(i, j)/q(i, j) of irreducible fractions such 
that q(i,j) increases to oo as j —> oo and 

1 

(It is elementary and well known that this can be done. See, for example, 
[6, Section 11.3]). Denote by Tj the transformation 

Tp(ltj)/q(l,j) X . . . X Tp(n<j)/q(ntj) X 7T. 

Consider also the partition Q{j of [0, 1] into sets 

\^r__ r_±l\ Q 

U(*,j) 'q(hj)J ' 
Sr < q(i,j) 

and the partition Qj = Qtj X . . . X Q„j X ?? of 12 where rj denotes the partition 
of S into points. Note that Tj permutes the atoms of Qj. For e > 0 let 
Ee = [0,e)n X {1} CÛ. 

LEMMA 1.1. Gwen e > 0, //zere ex^/s a i£ such that if x £ tt then for some 
k, 0 S k < K, Tkx e Ee. 

Proof. This follows easily from the fact that the T-orbit of any point is dense 
in 12, which in turn follows easily from the ergodicity of T. 

LEMMA 1.2. Given e > 0 there exist K and J such that if j > J and £ is an 
atom of Qj then for some k, 0 ^ k < K, 2"/£ C Ee. 

Proof. By Lemma 1.1 we can choose a K such that for all x £ 12 there is a 
k, 0 ^ k < K such that Tkx £ Ee/i. Then choose J so large that 

K " W ~ 777~lr\ < 7 and —p—FT < 7 4 g(i, 7) 4 

for all i. One checks easily that K and y satisfy the desired condition. 

PROPOSITION 1.3. T 6 5^. 

Proof. It will suffice to show that for each e > 0 we can find a T-stack whose 
base is contained in Ee and which covers a part of the space of measure more 
than 1 — €. Given e, then, choose K and J as in Lemma 1.2 and such that 
2/K < e/2. 
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Now for any j , Qj breaks up into a disjoint union of r r s t a c k s . Let us call 
these stacks £(j, 1), . . . , £(j , nf). I t is easy to see t ha t they all have the same 
height, say hj, and t ha t hj is a t least as large as max* q(i,j), so t ha t hj —> oo. 
Fix for the moment a j such tha t j > J, h (J) > Kz and l/q(i,j) < e for all i. 

Let hj = K2D + r, 0 ^ r < K2. 

For each n,l tk n S nj} and for each d, 1 S d ^ D, choose a level of £(j , n) 

between the (dK2 + l ) - t h level and the (dK2 + K)-th level which is contained 
in Ee (this can be done by our choice of / and K) and let B be the union of all 
these levels. Each of these levels we have chosen has a t least K(K — 1) images 
disjoint from any other chosen level, so B is the base for a Trstack of height 
K(K — 1) + 1 which will cover 12 except for a set of measure less than 
2K2/h(j) g 2/K < e/2. 

We now get a T-stack from this T r s t a c k by shrinking B by a small fraction 
of its measure. This is done as follows. Each a tom y of Qj is a product of 
intervals Itj

y of length l/q(i, j ) , 1 ^ i ^ n, and a single point in S. By chopping 
off from each end of 7 Z / an interval of length K(K — l ) |a* — p(i, j)/q(i, j)\ 

one gets an interval J ^ 7 such t ha t 

Ta{i)li? C Tp{iJ)/q{i,j)Ii3
y for 0 ^ / ^ i£(i£ — 1). 

(Note for future use t h a t since \a(i) — p(i, j)/q(i, j)\ ^ (l/q(i, j ) ) 2 we can 
make the amount chopped off from Ii3

y as small a fraction of its length as we 
like by choosing j large). I t follows tha t if we set y = 1 1 * / ^ X {1} then 
T'y C Tjly for 0 S l S K(K - 1). Finally, if B = {JyeT 7 for T C Qj, we set 
B = U 7 € r 7 and we have again TlB C T3

lB for 0 g / S K(K - 1). Since J , / 
can be made as large a portion of Ii3

y as we wish, the same is t rue of B and B so 
t ha t our 2"-stack can be made to cover a pa r t of 12 of measure more than 1 — e. 
Of course B C B C £ e so this finishes the proof. 

S e c t i o n 2. Our aim in this section is to extend Proposition 1.3 to the case of 
ergodic T with discrete spectrum. We begin with a simple general lemma. 

LEMMA 2.1. Suppose T is a transformation of (X, J^", p) and {@n\ is an 
increasing sequence of T-invariant G-algebras which generate ^ such that 

T\$n e y . Then T t y . 

Proof. If S is a cr-algebra and {En} is a sequence of sets in 2 we'll say {En j is 
an approximating sequence for X if for each E G 2 and e > 0 there is an En 

such t h a t n(En A E) < e. Let {En\ be a sequence of sets in [Jn &n which 
contains an approximating sequence for each rSn. Since any set in ^ can be 
approximated arbitrari ly well by sets in Un ^ \ it follows tha t En is an approxi­
mat ing sequence for J r . Now for each n, {Ai, . . . , An) C Gm for some m and 
since T\^m G j ^ 7 we can find a ( ^ m -measu rab le ) T-stack 5W such t ha t 
n(At A 5W(>1)) < l/n for l g i g » . Then it is clear t ha t n(A A Sn(A)) -> 0 
for every 4̂ G ^ ~ . 
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Now let T be an ergodic transformation with discrete spectrum (see [8, p. 46] 
for the definition). Let {X*} be an enumeration of the eigenvalues of the induced 
uni tary operator and suppose ft is an eigenvector with eigenvalue \ t . Let S$n 

denote the complex algebra of functions generated by {ft, ft : i = 1, . . . , n\. 
Note tha t se n C if œ G <£f 2. Denote by 3tfn the ^ 2 closure of ,rfn. Let ^n 

denote the cr-algebra of sets generated by fi, . . . ,fn ( that is, the cr-algebra 
generated by {fcl{B) : i = 1, . . . ,n, B a, borel set}). Note t ha t ^n is T-
invariant . 

LEMMA 2.2. J^n = i f 2 ( X , ^ n , M) . 

Proof. This can be shown using the Stone-Weierstrass theorem together with 
some straightforward measure-theoretic arguments . 

T H E O R E M 2.3. T G y . 

Proof. Lemma 2.2 implies tha t T\^n has discrete spectrum and tha t its set of 
eigenvalues is the multiplicative group generated by {Xi, . . . , Xn}. This group 
can be generated by a set {e2iriaU) : j = 1, . . . , r) where {«(1), . . . , a(r)} is 
independent over the rationals. Supposing for convenience tha t a(r) = \/m is 
the sole rational member of this set, we have by the discrete spectrum theorem 
([8, p. 46]) tha t T\<gn is isomorphic to Ta{i) X . . . X Ta(r-i) X ir where ir is a 
cyclic permutat ion of {1, . . . , m). Thus T\%n Ç ff by Proposition 1.3. In view 
of Lemma 2.1 we need only show tha t ^ w | & ~ to complete the proof. But this 
follows immediately from the fact tha t i f 2(X, &n, M) | i f 2 ( X , ^ /x). 
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