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Abstract. Two simple and efficient numerical methods to explore the phase space structure are 
presented, based on the properties of the "dynamical spectra". 1) We calculate a "spectral distance" 
D of the dynamical spectra for two different initial deviation vectors. D —• 0 in the case of chaotic 
orbits, while D —• const ^ 0 in the case of ordered orbits. This method is by orders of magnitude 
faster than the method of the Lyapunov Characteristic Number (LCN). 2) We define a sensitive 
indicator called ROTOR (ROtational TOri Recongnizer) for 2D maps. The ROTOR remains zero in 
time on a rotational torus, while it tends to infinity at a rate oc N = number of iterations, in any case 
other than a rotational torus. We use this method to locate the last KAM torus of an island of stability, 
as well as the most important cantori causing stickiness near it. 

1. Introduction 

Let R = (x\,X2, •••,xn) be the position vector and £ = (dx\,dx2, ...,dxn) be 
the deviation vector in the n-dimensional phase space of a dynamical system. The 
evolution of these vectors can be given by the maps 

dF 
R' = F(R;iO, Z' = -fat CD 

in time steps of At A number of useful quantities can be defined in terms of these 
two vectors. Namely, we can define the 'stretching number' 

a = l l i m l n l | | , |£| - 0 (2) 

(Nicolis 1983,Fujisaka 1983, Froeschle et al 1993, Voglis and Contopoulos 1994) 
which gives the current rate of deviation of nearby orbits. If f ̂  = (dxi, dxj) is 
the projection of £ on the plane (a;;, XJ) we can define the 'helicity angle' 0,-j 
that gives the orientation of the vector £,j with respect to the axis x^ denoted 
by OtJ = ang(xi,£ij). The 'twist angle' 4>ij = •Man9{tij>£ij) gives the current 
angular frequency of rotation of the vector £,- •. Similar quantities can be defined 
also for the position vector, e.g. the rotation angle 6ij = ^ang(Rij,K'ij) gives 
the current angular frequency of rotation of the vector Rt j . 

If Q is one of these quantities, i.e. Q = a, <&;J, fcj, 0ij... at the kth iteration, we 
define as the 'dynamical spectrum of Q' the probability density of the values of Q 
given by 

where N is the total number of iterations and dN(Q, Q + dQ) is the number of 
values of Q in the interval (Q, Q + dQ). 
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2. Detection of Ordered and Chaotic Orbits in 4D Maps 

The dynamical spectra can be used very efficiently to distinguish between ordered 
and chaotic motion. The following properties of invariance of the spectra S(Q) 
are known: (Voglis and Contopoulos 1994, Contopoulos and Voglis 1996, 1997, 
Voglis and Efthymiopoulos 1998, Voglis et al. 1998): 

l)The spectra S(Q) are invariant with respect to the initial conditions Ro along 
an orbit (invariance in time). 

2)The spectra S(Q) are invariant with respect to Ro and £0 provided that R0 

belongs to a connected chaotic domain (invariant in space). 
3) a) In 4D maps: If the motion is ordered, two different initial deviation vectors 

£oi '£02 8 i v e different dynamical spectra, i.e. 

S(Q,toi) ± S(Q,£02), (4) 

while if the motion is chaotic they give the same spectrum 

S(Q,t01) = S{Q,tm). (5) 

3) b) In 2D maps, the property 3a is reduced to a similar property for the 
spectrum of the helicity angles only. Namely, if the motion is ordered, an opposite 
initial deviation vector gives a helicity spectrum shifted by TT 

S(*,t0) = S(9 + ic,-t0), (6) 

while if the motion is chaotic the two helicity spectra are equal and it -symmetric. 

S(4>, £0) = £(*, -£0) = S(<b + TT, Co), O) 

The properties 3a,b are explained as follows. In 4D maps the ordered motion 
occurs on a 2D torus. Any initial deviation vector £0 becomes tangent to this torus 
after a short transient period. In general, two different initial vectors £01 and f 02 

become tangent to different directions on the torus. Thus they produce different 
sequences of vectors £x and £2 and hence different spectra. 

On the other hand, two initially different deviation vectors of a chaotic orbit 
tend to coincide, after a few transient periods, on the direction defined by a nearby 
most unstable manifold. Thus, they produce the same dynamical spectra. 

The convergence of the two deviation vectors is much faster than the conver­
gence of the spectra to their final form (which happens in the same time scale as the 
stabilisation of the LCN to its constant value). Thus, by measuring the difference 
of the spectra we can recognise a chaotic orbit much faster than by calculating the 
LCN (or the final spectra). 

We demonstrate the eficiency of the above method using the model of two 
coupled standard maps, i.e. 

1 2 2 2w " (modi) (8) 
x'3 = XT, + x'4, x'4 — X4 + ^sinl-Kx-i — ^sin27r(xi — £3) 
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Fig. 1. Projections of the orbits (a) Al and (d) B on the plane (x\,X2). The respective 
spectra of (b,e) stretching numbers and (c,f) helicity angles. 

For K = 3 each uncoupled map (/? = 0) has a phase portrait with one main 
island embedded in a chaotic sea. We select the following initial conditions: 
(xi,X2,x-i,x4) = (0.55,0.1,0.62,0.2) for three values of (3, namely f3 = 10~5 

(orbit Al), p - 10_1 (orbit A2), (3 = 0.3051 (orbit A3), and (xi,x2,x3,x4) = 
(0.1,0.5,0.2,0.6), for/? = 10_1 (orbitB). We iterate these orbits with two different 
initial deviation vectors, namely f j = (1,1,1,1), and £2 = (2,2,1,1). 

The projection of the orbit Al on the plane (xt, x2) gives two invariant curves 
(Fig.la). This orbit, corresponding to two weakly coupled ordered 2D orbits, is 
ordered. On the other hand, orbit B is chaotic and its projection covers the plane 
(zi, x2) uniformly (Fig. Id). 

The spectra of the stretching numbers S(a) for the orbit Al and the deviation 
vectors £1 and £2> after 10s iterations, are shown in Fig. lb. Both spectra are 
invariant in time, i.e. the next 105 iterations produce the same spectra. However, 
the two spectra are clearly different from each other. The corresponding spectra of 
the helicity angles S(0) (Fig. lc) are also different. In contrast, the spectra S(a) 
and S(0) of the orbit B, and for the same two initial vectors £1, f2> coincide 
(Figs. le,f). 

In order to quantify this behavior we define the distance D between the two 
spectra of Q ('spectral distance'), namely: 

D2=^/[Sl(Q)-S2(Q)]2 (9) 
allQ 

In Fig. 2a the evolution of the finite time Lyapunov characteristic number 
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LOG„(t)' LOG10(t) 

LOG10(t) LOG„(t) 

Fig. 2. The evolution of (a,c) the finite time Lyapunov characteristic number and (b,d) the 
spectral distance, for the orbits Al and B. 

Lt is given for the orbit Al. As expected for regular orbits, Lt decreases as t~l, 
reaching the value fa 10-4 after 105 iterations. The corresponding spectral distance 
of stretching numbers (fig. 2b), after a transient decrease for about 102 periods, 
is stabilized near the value D2 fa 0.54, showing that the two spectra S(a) have 
constant difference. 

On the other hand, the value of Lt of the chaotic orbit B is stabilized at the value 
« 0.75 after 105 iterations (fig. 2c). The spectral distance D (Fig. 2d) decreases at 
a constant logarithmic rate (D2 <x t~2) and reaches the value of 10~2 after about 
100 iterations, while it becomes smaller than 10""7 after 105 iterations. Thus, the 
distinction between ordered and chaotic motion using D2 is much faster than with 
the LCN criterion. 

We apply now the method to the much more difficult case of the orbits A2 
(regular) and A3 (chaotic with a very small LCN). The projections of these orbits 
on the plane (xi, x2) are shown in Figs.3a,d. The projections of both orbits give 
the impression of motion on a torus. In particular, both projections remain in the 
same limited area even after 109 iterations. 

Despite their visual similarity, the orbit A2 is regular while the orbit A3 is 
chaotic. The character of the two orbits is revealed very efficiently using the 
spectral distance D. Namely, the two spectra S(a) and 5(0) for the orbit A2 (and 
£j, £2 as above) are different (Figs.3b,c), while those of the orbit A3 are identical 
(Figs. 3e,f). 

The evolution of the finite time LCN (£<) for both orbits is shown in Fig. 4. For 
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x, a Phi 

Fig. 3. Same as Fig.l for the orbits A2 and A3. 

the orbit A3 (solid line), Lt converges to a very small positive value 4 x 10-7 after 
109 iterations, while, for the orbit A2 (dashed line) Lt continues falling as t~l. In 
the same figure, the spectral distances log(D2) for the two orbits (dashed for Az, 
solid for A3) after a transient phase of about 103 iterations evolve in a different 
way. The spectral distance for the orbit A2 is stabilized to the value D2 « 0.4, 
while the spectral distance for the orbit A3 keeps decreasing, reaching a level of 
10-3 after about 105 iterations. The distinction of the two orbits A2 and A3 using 
D2 is again much faster than with the finite time LCN. 

Similar results are found in 3D Hamiltonian systems by considering either their 
spectra of stretching numbers along the flow or their 4D Poincar6 sections. In 2D 
maps, this method can be applied by calculating the spectra and spectral distances 
of the helicity angles. 

3. Detection of KAM Tori 

In this section we describe a method for 2D maps that detects KAM tori surrounding 
a central stable periodic orbit at a point 0(XQ, yo) (rotational tori). The method is 
based on finding the average frequency of rotation of both the position vector R 
(with respect to O), and the deviation vector £ (Voglis 1996). 

Two succesive vectors (Rj, R,+i) and (£t-, £i+1) define the rotation angle 8{ = 
ang(R,i, R;+i) and the twist angle fa = ang(£i, £,-+i). The angles 0,- and fa give 
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2.0 4.0 

Fig. 4. The evolution of the finite LCN (Lt) and of the spectral distance D2 for the orbit 
A2 (dashed) and A3 (solid). 

the rotation number v$ and the twist number 1/4 defined respectively as 

n lim 
2TTJV 

v -lim^S^i N 00 (10) 

where N in the number of iterations. The rotation and twist numbers VQ and v$ give 
the average frequency of rotation of the vectors R and £ around O. The difference 
vK~v4>- v6 (epicyclic frequency) gives the average frequency of relative rotation 
of the vector £ with respect to R. 

If the initial position vector R0 belongs to a KAM torus around 0 the epicyclic 
frequency is by definition zero, while it is non zero in all other cases (Voglis and 
Efthymiopoulos 1998). In fact, even in the first case, the limit vK = 0 is reached 
only for N -> 00, while the actual value of vK for finite N is given by 

vR = 0 + 6/N, 0<6<1 . (11) 

We define the 'ROTOR' (acronym of 'Rotational TOri Recognizer') as the integer 
part of NvR, namely 

ROTOR = r = [NuK] = [Nfo - ug)] = [ ££o(&-*)i 
2TT 

(12) 

The ROTOR is a function r(Ro, N) of the initial position vector and the current 
number of iterations. If Ro belongs to a KAM torus, then, as N ->• 00, the value 
of r is constantly zero. Otherwise, r tends to infinity proportionally to N, i.e. 

CR m - / ° if R ° b e l o n S s t 0 a K A M t o r u s H3) 
r(Ro, ^ i - J a ^ ^ 00 otherwise 
In practice, the correct evaluation of v$ and i/$ as well as of the ROTOR is 

not a trivial task because of the multivalued character of the angles 0,- and <&.This 
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difficulty can be avoided if we define v<i, and i/g as the moments of the angular 
dynamical spectra S(<f>) and S(6) (Voglis and Efthymiopoulos 1998), i.e. 

v+= h f ̂ ^ ve = h fs{0)9de (14) 

and select a proper interval of definition of 6 or <j> so that there is no dis­
continuity of the corresponding spectrum due to modulo terms introduced at 
k-K = 0, ±7r, ±27r,.... For example, in the standard map 

x'= x + K$in(x + y) , y'= x + y , (x,y mod2n) (15) 

for K — 0.5 < Kc - 0.97..., the correct twist number v$ = 0 for the rotational 
torus with initial conditions x = 0.8, y = 0 is obtained if <f> is defined in the 
interval (—7r,7r]. In this interval the spectrum S(<f>) (Fig.5a) is continuous. If, 
instead, we defined <f> in the interval (0,2TT], we would obtain a discontinuous 
spectrum S(<f>) (Fig. 5b) and a wrong value of v^, = 0.538157. But for K = -4.2 
and initial conditions x = 0.05, y = 0, the correct twist number v^ = 0.434576 
is obtained in the interval (0, 2K] where the corresponding spectrum S(<j>) (Fig.5d) 
is continuous. If we adopt the interval (-ir, ir] (Fig.5c) we obtain a wrong value 
v+ = 0.042660. 

We apply now the ROTOR method in the standard map (Eqs. 16)foriir = -2.1. 
In this case the phase portrait has one main island around the stable fixed point 
(0,0). This island is surrounded by a chaotic sea. We calculate the ROTOR for 
orbits near the outer limit of the island scanning outwards along the diagonal 
(x = y) with a step dx = 10~6 and Nmax = 105 iterations for every orbit. 

The dependence of the ROTOR on x is shown in Fig. 6a. The right end of this 
figure (e.g. x > 0.7440) is inside the chaotic sea. In this region the ROTOR is 
systematically far from zero. All the inverse U-shapes in this figure indicate first 
order islands, while the smaller U-shapes inside the first order islands correspond 
to second order islands (Voglis and Efthymiopoulos 1998). 

Moving to the left in this figure (towards the center of the main island) we find 
the first place where the ROTOR has zero value at x = 0.743339 . The ROTOR 
maintains this zero value even after 109 iterations. Thus, the ROTOR gives a good 
estimate of the position of the last KAM curve surrounding the main island. 

In the region 0.7436 < x < 0.7438 the ROTOR becomes small (near 1), but 
not zero. The closer approaches of the ROTOR to zero indicate orbits moving near 
cantori that are more efficient in producing stickiness. In Fig.6b the phase portrait 
near the last KAM curve is shown. There are only two orbits drawn in this figure: 
l)the orbit with the above initial condition x - y = 0.743339 (last KAM curve) 
and 2) a nearby chaotic orbit (x = y = 0.7436), which is sticky for about 9 x 108 

periods before escaping to the chaotic sea. The darker regions in Fig. 6b correspond 
to the position of cantori that limit the chaotic diffusion. In these darker regions 
the ROTOR has a value close to 1. The positions of cantori can be located also 
in terms of their nearby periodic orbits (Efthymiopoulos et al. 1997). We find that 
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Fig. 5. The spectrum of twist angles S(<j>) of the orbit with initial conditions x = 0.8, y = 0 
in the standard map (Eq.16) for K = 0.5 in the interval a) (—w, IT] and b) [0,2w). c,d) 
similar as a,b for the orbit x = 0.05, y — 0 and for K — —4.2. 

Fig. 6. a) The ROTOR as a function of x in the standard map (Eq.16) along the scanning 
line x=y from x = 0.743 to x = 0.7441. b) The phase portrait in the same region. The 
vertical line gives the last position where the ROTOR is zero. The intersection of this line 
with the diagonal y = x marks the position of the last KAM torus. 

the values of the ROTOR near 1 indicate the positions of the cantori with good 
accuracy. 

4. Discussion and Conclusions 

In this paper we present two simple numerical methods, based on the properties of 
dynamical spectra, to investigate the structure of phase space in dynamical systems. 
The first method (section 2) distinguishes between ordered and chaotic orbits by 
measuring the spectral distance D for two deviation vectors from the same orbit. 
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The spectral distance either becomes constant in time after a short transient period 
(ordered orbit), or decreases in time reaching a logarithmic slope dlnD/dlnt = - 1 
(chaotic orbit). 

The second method (section 3) is based on a quantity called ROTOR, which 
is the integer part of the product of the epicyclic frequency vK multiplied by the 
time t, i.e. ROTOR = [tvK], where t = N, in a 2D map. If the ROTOR remains 
zero in time, the motion takes place on a KAM rotational torus. In the case of a 
secondary island the curve giving the ROTOR as a function of the initial conditions 
is U-shaped, or inverse U-shaped. In the case of chaos the curve is very irregular. 
This method is very sensitive because t can be made arbitrarily large, thus the 
contrast between the values of ROTOR in rotational tori and in islands, or chaotic 
regions, can be made arbitrarily large. 

In recent years various methods have been proposed for distinguishing between 
ordered and chaotic orbits. Such methods are based on the frequency analysis of 
the orbits, or on the deviations between nearby orbits. 

Examples of methods of the first kind are: 
1) the frequency analysis method of Laskar (1990) and Laskar et al. (1992) 
2) the CLEANEST method of Foster (1995, 1996) and Gallardo and Ferraz-

Mello (1997) 
3) the "H6non method" of continued fraction approximations (Lega and Froeschle 

1996), and 
4) the wavelet transform method (Arneodo et al. 1988, Bendjoya and Slezak 

1993, Michtchenko and Ferraz-Mello 1995, Michtchenko and Nesvorny 1996). 
Examples of methods of the second kind are: 
1) the fast Lyapunov indicators method of Froeschle et al. (1996), and 
2) the methods of dynamical spectra (Voglis and Contopoulos 1994, Contopou-

los and Voglis 1996,1997, Voglis and Efthymiopoulos 1998, Voglis et al. 1998). 
Every method has its own advantages. In the present paper we stress only the 

advantages of our methods. In particular, the methods presented here combine: 
a) Speed. The method of spectral distance described in section 2 can distinguish 

between ordered and chaotic motion without the need of evaluating the fundamental 
frequencies of the orbits. It is based on a property of the variational equations that 
lose the memory of initial conditions exponentially fast in the case of chaotic mo­
tions. This property makes the method faster than the frequency analysis methods 
in which the convergence of the frequencies follows a power law. 

b) Simplicity. As all the methods of dynamical spectra, the two methods pre­
sented here, namely the method of spectral distance and the method of ROTOR, 
require only the integration of an orbit and its variational equations. 

c) Sensitivity and information content. Both our methods can be applied equally 
well in regions of strong or weak chaos. The spectral distance method gives a very 
sensitive distinction of whether the motion is on a torus or not, for systems of any 
number of degrees of freedom. This avoids the need to visualize the orbits on either 
the phase space or the frequency space. On the other hand, in the case of 2D systems, 
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the method of angular dynamical spectra gives also the fundamental frequencies 
(rotation and epicyclic frequency). In particular, the evaluation of the epicyclic 
frequency allows a sharp distinction between islands and KAM tori. This makes 
the method particularly suitable in exploring the resonant structure (i.e. location of 
KAM torijslands, and cantori) near the border of transition to stochasticity. 
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