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Moving Frames for Lie Pseudo–Groups

Peter J. Olver and Juha Pohjanpelto

Abstract. We propose a new, constructive theory of moving frames for Lie pseudo-group actions on

submanifolds. The moving frame provides an effective means for determining complete systems of dif-

ferential invariants and invariant differential forms, classifying their syzygies and recurrence relations,

and solving equivalence and symmetry problems arising in a broad range of applications.

1 Introduction

Local Lie groups of transformations and their infinite-dimensional counterparts are

collectively known as Lie pseudo-groups [18, 19, 33, 34, 53, 56]. Lie pseudo-groups

arise in a wide range of applications including gauge theories [5], conformal geom-
etry and field theory [17, 20], fluid mechanics [7, 47], and geometric numerical in-

tegration [43]. However, development of suitable mathematical theory and com-
putational algorithms has lagged far behind the well-studied and well-understood

situation of finite-dimensional Lie group actions.

Given a Lie pseudo-group G acting on an m-dimensional manifold M, we will
study the induced action of G on submanifolds S ⊂ M. A particularly important

case is when the pseudo-group represents the symmetry group of a system of differ-

ential equations and the submanifolds are the graphs of candidate solutions [7, 47].
As in the classical theory of moving frames [8, 24], we will concentrate on the in-

duced action of G on jets of submanifolds. Equivalence and symmetry properties of
submanifolds are then, in accordance with Cartan’s general philosophy, completely

prescribed by the differential invariants [48]. For these and a host of other applica-

tions, the key foundational issue is to understand, in as much detail as possible, the
structure of the algebra of differential invariants. In this paper, we develop a theory of

moving frames for Lie pseudo-group actions on submanifold jets that algorithmically

reveals this structure.
In the finite-dimensional theory [21], a moving frame is defined as an equivari-

ant map ρ(n) : Jn → G from an open subset of the submanifold jet bundle to the Lie
group. For Lie pseudo-groups, we still lack a suitable abstract object that can play

the role of the group, and instead we define a moving frame to be an equivariant

section of a suitable bundle (or, more accurately, groupoid) H(n) → Jn constructed
from the jets of pseudo-group transformations. For finite-dimensional Lie group ac-

tions, the existence of a moving frame requires that the action be free, i.e., have triv-

ial isotropy. Clearly, an infinite-dimensional pseudo-group action never has trivial
isotropy, and so we must modify the definition of freeness to require that all elements
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Moving Frames for Lie Pseudo–Groups 1337

of the isotropy sub-pseudo-group of a point in Jn have the same n-th order jet as the
identity diffeomorphism. Our freeness condition constrains the dimensions of the

groupoids H(n), and thereby assumes the role of the Spencer cohomological growth
conditions imposed by Kumpera [32] in his analysis of differential invariants. A word

of caution: freeness of a prolonged pseudo-group action does not reduce to the usual

freeness condition when the pseudo-group is a finite-dimensional Lie group! Indeed,
an interesting future direction of research would be to investigate the repercussions

of this more general notion of freeness for finite-dimensional Lie group actions.

Assuming freeness, the explicit construction of the moving frame is founded on

the Cartan normalization procedure associated with a choice of local cross-section to

the group orbits in Jn, cf. [21]. The moving frame induces an invariantization pro-
cess that canonically maps general differential functions and differential forms on

J∞ to their invariant counterparts. In particular, invariantization of the standard jet

coordinates results in a complete system of functionally independent normalized dif-
ferential invariants, while invariantization of the horizontal and contact one-forms

yields an invariant coframe. The corresponding dual invariant total differential oper-
ators will map invariants to invariants of higher order. The structure of the algebra of

differential invariants, including the specification of a finite generating set of differ-

ential invariants and the syzygies or differential relations among the generators, will
then follow from the recurrence relations that relate the differentiated and normal-

ized differential invariants. Remarkably, this final step requires only linear algebra

and differentiation based on the infinitesimal generators of the pseudo-group action,
and not the explicit formulae for either the differential invariants, the invariant dif-

ferential operators, or even the moving frame. In the final section of the paper, we
develop an alternative computational technique based on formal power series expan-

sions that can be effectively used to specify compactly complete systems of moving

frame normalizations and recurrence relations.

We shall illustrate all our constructions with two elementary examples, which,

nevertheless, already underscore many of the underlying features of the theory. More

substantial applications in geometry, physics, symmetries of differential equations,
and so on will appear elsewhere [12, 13, 14]. Extensions of these methods to Carte-

sian product pseudo-group actions, leading to joint invariants and joint differential
invariants as in [50], and multi-invariants and invariant numerical approximations

[51], are readily incorporated into our general “moving framework”.

2 Prolongation of Diffeomorphisms

Throughout this paper, M will be a smooth m-dimensional manifold, and we will

study its regular, smooth submanifolds S ⊂ M of a fixed dimension 0 < p < n.

We will assume that the reader is familiar with basic jet bundle constructions as pre-
sented, for example, in [1, 47, 48]. Our first task is to analyze the prolonged action of

the diffeomorphism pseudo-group on jets of submanifolds with the aim of placing
the implicit differentiation formulae of multivariable calculus in a conducive geomet-

ric setting. To ease the reader into the formalism, let us look at the simplest situation:

regular plane curves.
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Remark: As in [53], we will consistently follow Cartan’s notational convention that
lower case letters z, x, u, etc., refer to source coordinates, while their capitalized coun-

terparts Z,X,U , refer to the target coordinates of local diffeomorphisms Z = ϕ(z).

Example 1 Let M = R2 have coordinates z = (x, u). For 0 ≤ n ≤ ∞, the n-jet

of a local diffeomorphism X = χ(x, u), U = ψ(x, u), at a source point in R2, is

prescribed by its derivatives (Taylor coefficients) up to order n, which we denote by

Xx =
∂χ

∂x
, Xu =

∂χ

∂u
, Ux =

∂ψ

∂x
, Uu =

∂ψ

∂u
, Xxx =

∂2χ

∂x2
, Xxu =

∂2χ

∂x∂u
, . . . .

We use

(2.1)
(z,Z(n)) = (x, u,X(n),U (n))

= (x, u,X,U ,Xx,Xu,Ux,Uu,Xxx,Xxu,Xuu,Uxx, . . . )

to denote the induced local coordinates on the diffeomorphism jet bundle D(n) =

D(n)(R2), which is the subbundle of Jn(R2,R2) that is specified by the local invert-
ibility constraint XxUu−XuUx 6= 0. In view of the chain rule, composition and inver-

sion of diffeomorphisms induce composition and inversion operations on their jets,

endowing D(n) with the structure of a groupoid, cf. [18, 40, 53]. The term “groupoid”
refers to the fact that composition of jets (Taylor polynomials/series) is only well de-

fined when the target of the initial jet matches the source of its successor.
Consider the action of local diffeomorphisms on curves C ⊂ R2, that is,

p = 1-dimensional regular smooth submanifolds. Since our viewpoint is local, we

can focus our attention on curves which are the graphs of smooth functions u =

f (x). (Curves with vertical tangents are handled by a different choice of local coor-

dinates, e.g., interchanging the roles of independent and dependent variables. Exten-

sions to general parametrized curves are straightforward.) The n-jet of such a curve
is prescribed by its derivatives, denoted

ux = f ′(x), uxx = f ′ ′(x), . . . un = f (n)(x),

and so

(2.2) z(n)
= (x, u(n)) = (x, u, ux, uxx, . . . , un)

are the induced local coordinates on the curve jet space Jn = Jn(R2, 1). The action

of local diffeomorphisms on curves induces an action on their jets, known as the
prolonged action of the diffeomorphism pseudo-group. Moreover, as a consequence

of the chain rule, the n-jet of the transformed curve only depends on the n-jet of the

diffeomorphism, and so there is an induced action of the diffeomorphism groupoid
D(n) on Jn.

The explicit formulae for the prolonged action are, as usual, obtained by implicit

differentiation. We will use

Ẑ(n)
= (X, Û (n)) = (X,U , Û X , Û XX, . . . , Û n)
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to denote the jet coordinates of the transformed curve:

Û = U = F(X), Û X = F ′(X), Û XX = F ′ ′(X), . . . Û n = F(n)(X).

(The hats are added to avoid confusion with the diffeomorphism jet coordinates
Ux,Uu, Uxx,Uxu, . . . .) Let

(2.3)

Dx =
∂

∂x
+ Xx

∂

∂X
+ Ux

∂

∂U

+ Xxx

∂

∂Xx

+ Xxu

∂

∂Xu

+ Uxx

∂

∂Ux

+ Uxu

∂

∂Uu

+ · · · ,

Du =
∂

∂u
+ Xu

∂

∂X
+ Uu

∂

∂U

+ Xxu

∂

∂Xx

+ Xuu

∂

∂Xu

+ Uxu

∂

∂Ux

+ Uuu

∂

∂Uu

+ · · · ,

be the total derivative operators on the diffeomorphism jet bundle D(n), cf. [53,

(2.12)]. Further, let

(2.4) Dx = Dx + ux Du + uxx

∂

∂ux

+ uxxx

∂

∂uxx

+ · · ·

be the total derivative operator with respect to all variables — both diffeomorphism

jets (2.1) and curve jets (2.2). (For the moment, we defer the discussion of precisely

which bundle this operator lives on.) The required implicit differentiation operator
is then given by

(2.5) DX =
1

DxX
Dx =

1

Xx + ux Xu

Dx.

Indeed, the local coordinate formulae for the prolonged action of a diffeomorphism

jet on a curve jet are found by applying DX recursively to the dependent variable U :

(2.6)

Û X = DXU =
DxU

DxX
=

Ux + ux Uu

Xx + ux Xu

,

Û XX = D2
XU =

D2
xU DxX − DxU D2

xX

(DxX)3

= (Xx + ux Xu)−3
[

(Uxx + 2 ux Uxu + u2
x Uuu + uxx Uu)(Xx + ux Xu)

− (Ux + ux Uu)(Xxx + 2 ux Xxu + u2
x Xuu + uxx Xu)

]
,

and so on, reproducing the well-known implicit differentiation formulae of elemen-

tary calculus.
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Let us now discuss how to properly formalize this basic example in a general
framework. For 0 ≤ n ≤ ∞, let Jn = Jn(M, p) denote the n-th order extended1

jet bundle consisting of equivalence classes of p-dimensional submanifolds S ⊂ M

under the equivalence relation of n-th order contact, cf. [48]. We use the standard

local coordinates

(2.7) z(n)
= (x, u(n)) = (. . . , xi , . . . , uαJ , . . . )

on Jn induced by a splitting of the local coordinates

z = (x, u) = (x1, . . . , xp, u1, . . . , uq)

on M into p independent and q = m− p dependent variables [47, 48]. When k > n,

we let π̃k
n : Jk → Jn denote the usual projection, so π̃k

n(z(k)) = z(n).

The choice of independent variables induces a decomposition of the differential
one-forms on J∞. The basis horizontal forms are the differentials dx1, . . . , dxp of the

independent variables, while the basis contact forms are denoted by

(2.8) θαJ = duαJ −

p∑

i=1

uαJ,i dxi , α = 1, . . . , q, # J ≥ 0.

This decomposition2 splits the differential d = dH + dV on J∞ into horizontal
and vertical (or contact) components, and locally endows the space of differential

forms with the structure of a variational bicomplex3 [1, 31, 61]. In particular, given

a differential function F : Jn → R, its horizontal differential is

(2.9) dH F =

p∑

j=1

(Dx j F) dx j , where Dx j =
∂

∂x j
+

q∑

α=1

∑

# J ≥ 0

uαJ, j
∂

∂uαJ
,

are the usual total derivative operators, while its vertical differential

(2.10) dV F =

q∑

α=1

∑

# J ≥ 0

∂F

∂uαJ
θαJ

can be interpreted as its “first variation” [48].

For example, in the planar situation of Example 1, the basis contact forms are

(2.11) θ = du − ux dx, θx = dux − uxx dx, θxx = duxx − uxxx dx, . . . .

1In other words, we are not assuming that M has any preassigned bundle structure, so as to allow jets
of arbitrary embedded p-dimensional submanifolds S ⊂ M. Since all our constructions are local, they
are equally valid when M → N is a fiber bundle with p-dimensional base N , and JnM ⊂ Jn(M, p) is the
dense open subbundle prescribed by jets of sections.

2The decomposition only works at infinite order, which is one of the main reasons for passing to the
infinite jet bundle.

3We reemphasize that this construction is only valid in a local coordinate chart, relying further on the
selection of independent and dependent variables. See Itskov’s thesis [26, 27] for an intrinsic reformulation
based on the C–spectral sequence induced by the contact filtration of differential forms on J∞.
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The exterior derivative of a differential function F(x, u(n)) accordingly splits into hor-
izontal and contact constituents:

dF =
∂F

∂x
dx +

∂F

∂u
du +

∂F

∂ux

dux +
∂F

∂uxx

duxx + · · ·

= (DxF) dx +
( ∂F

∂u
θ +

∂F

∂ux

θx +
∂F

∂uxx

θxx + · · ·
)

= dH F + dV F.

Let D = D(M) be the pseudo-group of all local diffeomorphisms4 ϕ : M → M.

For each n ≥ 0, let D(n) = D(n)(M) ⊂ Jn(M,M) denote the subbundle formed by

their n-th order jets. Composition and inversion of local diffeomorphisms induces
the composition and inversion of their jets, so

(2.12) jnψ|ϕ(z) · jnϕ|z = jn(ψ ◦ϕ)|z, (jnϕ|z)−1
= jn(ϕ−1)|ϕ(z),

whenever z ∈ domϕ and ϕ(z) ∈ domψ. In particular, the product of jets is only
defined when the target of the initial jet matches the source of its successor. The

resulting operations endow each D(n) with the structure of a groupoid.
Local coordinates of a diffeomorphism jet in D(n) are indicated by (z,Z(n)), where

z = (x, u) = σ
(n)(z,Z(n)) are the source coordinates on M, while the fiber jet coor-

dinates

(2.13) Z(n)
= (. . . ,Zb

A, . . . ) = (X(n),U (n)) = (. . . ,Xi
A, . . . ,U

α
A , . . . ),

where b = 1, . . . ,m, i = 1, . . . , p, α = 1, . . . , q, A = (a1, . . . , ak), with 1 ≤ aν ≤
m and 0 ≤ k = #A ≤ n, indicate partial derivatives of the target coordinates
Z = (X,U ) = τ

(n)(z,Z(n)) with respect to all source variables z = (x, u). The source

map σ
(n) and target map τ

(n) serve to define the double fibration

(2.14)

D(n)

�
�

	
σ

(n) @
@R
τ

(n)

M M

A local diffeomorphism ϕ ∈ D preserves the contact equivalence relation between
p-dimensional submanifolds S ⊂ M, and thus induces an action on the jet bundle

Jn = Jn(M, p), known as the n-th prolonged action. As in (2.6), the chain rule implies

that the n–jet of the transformed submanifold depends only on the n–jet of the dif-
feomorphism, and hence there is a corresponding action of the diffeomorphism jet

groupoid D(n) on Jn, given by

(2.15) jnϕ|z · jnN|z = jnϕ(N)|ϕ(z).

As we saw in (2.6), the local coordinate formulae for the prolonged action of D(n)

on Jn involve both sets of jet coordinates. Together, they naturally coordinatize the

4Our notational conventions allow the domain of such a map to be a proper open subset: domϕ ⊂ M.
Also, when we write ϕ(z) we implicitly assume z ∈ domϕ.
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pull-back bundle E (n) → Jn of the diffeomorphism jet bundle D(n) → M via the
standard projection π̃n

0 : Jn → M. For k > n we let π̂k
n : E (k) → E (n) denote the

projection induced by π̃k
n : Jk → Jn and πk

n : D(k) → D(n).
Points in E (n) are characterized by two quantities:

• a jet z(n) ∈ Jn of a p-dimensional submanifold passing through z = π̃n
0 (z(n)) ∈ M,

and
• a jet (z,Z(n)) ∈ D(n) of a local diffeomorphism based at the same point z =

σ
(n)(z,Z(n)).

The combined actions of local diffeomorphisms on submanifold jets (2.15) and on

diffeomorphism jets (2.12) induces an action of D, and hence also the diffeomor-

phism jet groupoid D(n), on the bundle E (n).
Local coordinates on E (n) are indicated by Z(n)

= (z(n),Z(n)), where z(n) = (x, u(n))

are identified with the usual coordinates (2.7) on Jn, while Z(n) = (X(n),U (n)) are
identified with the fiber coordinates (2.13) of the diffeomorphism jet bundle. For

instance, in the plane curve case of Example 1, the coordinates on E (n) are

Z(n)
= (z(n),Z(n)) = (x, u(n),X(n),U (n))

= (x, u, ux, uxx, . . . ,X,U ,Xx,Xu,Ux,Uu,Xxx,Xxu,Xuu,Uxx, . . . ).

Here ux, uxx, . . . are curve jet coordinates, whereas X,U ,Xx,Xu,Ux,Uu, Xxx, . . . are
diffeomorphism jet coordinates.

The groupoid structure on E (n) is induced by that on D(n), namely composition
and inversion of jets of diffeomorphisms (2.12), coupled with the prolonged action

of diffeomorphisms on submanifold jets (2.15). For the associated double fibration

(2.16)

E (n)

�
�

	
σ̃

(n) @
@R
τ̃

(n)

Jn Jn

the source map is merely the projection σ̃
(n)(z(n),Z(n)) = z(n), while the target is

defined by the prolonged action of D(n) on Jn, namely

(2.17) (X, Û (n)) = Ẑ(n)
= τ̃

(n)(Z(n)) = τ̃
(n)(z(n),Z(n)) = Z(n) · z(n).

Here, as noted above, we place hats on the target submanifold jet coordinates to avoid
confusion with the diffeomorphism jet coordinates. In local coordinates, the entries

of the target map encode the implicit differentiation formulae

(2.18) Ûα
J = FαJ (z(n),Z(n)) = FαJ (x, u(n),X(n),U (n))

for the jets of transformed submanifolds, which we now determine.

The bundle structure σ̃
(∞) : E (∞) → J∞ induces a splitting of its cotangent bun-

dle T∗E (∞) into jet and group components, spanned respectively by5 the jet forms,
consisting of the horizontal and contact one-forms

(2.19) dxi , θαJ , i = 1, . . . , p, α = 1, . . . , q, # J ≥ 0,

5In all cases, to avoid unnecessary clutter, we identify functions and forms with their pull-backs to

E (∞) under the appropriate bundle projection.
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from the submanifold jet bundle J∞, and the contact one-forms

(2.20) Υ
b
A = dG Zb

A = dZb
A −

m∑

c=1

Zb
A,c dzc, b = 1, . . . ,m, #A ≥ 0,

from the diffeomorphism jet bundle D(∞) ⊂ J∞(M,M), cf. [53]. We will call the

latter group forms, in order to distinguish them from the contact forms on the sub-
manifold jet bundle. For instance, in the planar case of Example 1, the group forms

are

(2.21)
Υ

1
= dX − Xx dx − Xu du, Υ

2
= dU −Ux dx −Uu du,

Υ
1
x = dXx − Xxx dx − Xxu du, Υ

1
u = dXu − Xxu dx − Xuu du,

and so on. Accordingly, we decompose the differential on E (∞) into jet and group

components, the former further splitting into horizontal and vertical components:

(2.22) d = d J + dG = dH + dV + dG .

The resulting operators satisfy

(2.23)
d 2

J = d 2
G = d 2

H = d 2
V = 0, d J dG = − dG d J,

dH dV = − dV dH, dH dG = − dG dH , dV dG = − dG dV ,

and so form a pseudo-group generalization of the “lifted tricomplex” introduced in

[30, 31].
The horizontal differential of a function F(Z(n)) = F(z(n),Z(n)) has the local coor-

dinate formula

(2.24) dH F =

p∑

j=1

(Dx j F) dx j ,

where

(2.25) Dx j = Dx j +

q∑

α=1

(
uαj Duα +

∑

# J ≥ 1

uαJ, j
∂

∂uαJ

)

are the lifted total derivative operators on E (∞), which are obtained from the usual
total derivatives (2.9) by replacing the order zero partial derivatives6 ∂/∂x j, ∂/∂uα

by the corresponding total derivative operators

(2.26) Dza =
∂

∂za
+

m∑

b=1

∑

#A ≥ 0

Zb
A,a

∂

∂Zb
A

, a = 1, . . . ,m,

6We only need to replace the order zero partial derivatives because we are dealing with pseudo-groups
of point transformations. With a little extra work, our methods can be straightforwardly extended to
pseudo-groups of (first order) contact transformations [48].
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on the diffeomorphism jet bundle D(∞). We use the same notation for the total
derivative operators on Jn and E (n), since they coincide when F(z(n)) = F(x, u(n))

does not actually depend upon the diffeomorphism jet coordinates. When comput-
ing, it is important to remember that the horizontal differential dH also includes

differentiation with respect to the pseudo-group parameters. The local coordinate

formulas for the vertical and group differentials are given by

(2.27)

dV F =

q∑

α=1

[
(DuαF) θα +

∑

# J ≥ 1

∂F

∂uαJ
θαJ

]
,

dG F =

m∑

b=1

∑

#A ≥ 0

∂F

∂Zb
A

Υ
b
A.

In the planar case, the differentials of F(x, u, ux, uxx, . . . ,Xx,Xu,Ux, . . .) are

dH F = (DxF) dx

dV F = (DuF) θ +
∂F

∂ux

θx +
∂F

∂uxx

θxx +
∂F

∂uxxx

θxxx + · · · ,

dG F =
∂F

∂X
Υ

1 +
∂F

∂U
Υ

2 +
∂F

∂Xx

Υ
1
x +

∂F

∂Xu

Υ
1
u +

∂F

∂Ux

Υ
2
x + · · · ,

where Dx is the total derivative operator (2.4), while Du is given in (2.3).
Recall that the capitalized notation Z = (X,U ) refers to the target coordinates of

the diffeomorphism, and hence its entries can be viewed as functions on D(∞) and,

through a further pull-back, on E (∞). We use the target independent variables Xi on
E (∞) to construct the lifted horizontal coframe

(2.28) dH Xi
=

p∑

j=1

(Dx j X
i) dx j , i = 1, . . . , p,

whose coefficients

Dx j X
i
= Xi

x j +

q∑

α=1

uαj Xi
uα

depend linearly on the first order jet coordinates Z(1) = (X(1),U (1)) ∈ D(1) and on

the submanifold jet coordinates u(1). In local coordinate computations, to ensure

that the one-forms (2.28) are linearly independent, we restrict our attention to the
dense open subset where the total Jacobian determinant is non-zero,

(2.29) det
(

Dx j X
i
)
6= 0,

which excludes jets of submanifolds which no longer intersect the vertical fibers

transversally when acted on by the diffeomorphism jet. Again, the excluded subman-

ifolds can be handled by adopting an alternative system of local coordinates. The
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horizontal differentiation formula

(2.30) dH F =

p∑

i=1

(DXi F) dHXi ,

which is valid for any differential function F(z(n),Z(n)), serves to define the dual total

differentiation operators

(2.31) DXi =

p∑

j=1

W
j

i Dx j ,

where (W
j

i ) = (Dx j Xi)−1 indicates the entries of the inverse total Jacobian matrix.

For instance, in the planar case, the horizontal one-form

dH X = (DxX) dx = (Xx + ux Xu) dx

has dual differentiation

DX =
1

Xx + ux Xu

Dx,

as noted above in (2.5).
With all this in hand, the chain rule formulae (2.18) for the higher-order pro-

longed action of D(n) on Jn, i.e., the target map τ̃
(n) : E (n) → Jn, are obtained by

successively differentiating the target dependent variables Uα with respect to the tar-

get independent variables Xi , whereby

(2.32) Ûα
J = D J

XUα
= DX j1 · · ·DX jk Uα.

These are the multi-dimensional versions of the implicit differentiation formulae
(2.6).

For later purposes, we introduce the right-invariant contact one-forms on D(∞),

which, according to [53], are to be interpreted as the Maurer–Cartan forms for the
diffeomorphism pseudo-group. To this end, we use the product bundle structure

of D(∞) ⊂ J∞(M,M) to split its differential d = dM + dG into horizontal and

group (or vertical or contact) components — as in the standard variational bicom-
plex construction noted above. This splitting is invariant under right composition

of diffeomorphisms. Since the target coordinates Za are obviously right-invariant, so
are their horizontal differentials

(2.33) σa
= dM Za

=

m∑

i=1

Za
i dzi , a = 1, . . . ,m.

Let DZ1 , . . . ,DZm denote the corresponding dual right-invariant total derivative op-

erators, so that

(2.34) dM F =

m∑

a=1

(DZa F) σa whenever F : D(∞) → R.
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Then the basis Maurer–Cartan forms are obtained by successively Lie differentiating
the (right-invariant) order 0 contact forms Υb = dG Zb:

(2.35) µb
A = DA

ZΥ
b, b = 1, . . . ,m, A = (a1, . . . , ak), 1 ≤ aν ≤ m,

where DA
Z = DZa1 · · ·DZak and k = #A ≥ 0. The complete collection of one-forms

σa, µb
A in (2.33, 2.35) forms a right-invariant coframe on D(∞). See [53] for the

explicit form of the resulting diffeomorphism structure equations.

Example 2 In the planar case of Example 1, the right-invariant horizontal forms
(2.33) on D(∞)(R2) are

(2.36) σ1
= dM X = Xx dx + Xu du, σ2

= dM U = Ux dx + Uu du,

with dual total derivative operators

(2.37) DX =
Uu Dx −Ux Du

XxUu − XuUx

, DU =
−Xu Dx + Xx Du

XxUu − XuUx

.

The zeroth order Maurer–Cartan forms coincide with the zeroth order contact forms

(2.38)
µ = Υ

1
= dG X = dX − Xx dx − Xu du,

ν = Υ
2
= dG U = dU −Ux dx −Uu du,

while the higher-order Maurer–Cartan forms are obtained by repeatedly applying the
right-invariant differential operators (2.37) to the one-forms (2.38). In particular, the

first order Maurer–Cartan forms are expressed in terms of the basis contact forms
(2.21) as follows:

(2.39)

µX = DXµ =
Uu Υ1

x −Ux Υ1
u

XxUu − XuUx

, µU = DUµ =
Xx Υ1

u − Xu Υ1
x

XxUu − XuUx

,

νX = DXν =
Uu Υ2

x −Ux Υ2
u

XxUu − XuUx

, νU = DUν =
Xx Υ2

u − Xu Υ2
x

XxUu − XuUx

.

3 Moving Frames for Pseudo–Groups

Roughly speaking, a sub-pseudo-group G ⊂ D is called a Lie pseudo-group if its local
diffeomorphisms ϕ ∈ G are a complete system of local solutions to a formally inte-

grable system of partial differential equations. We will impose technical assumptions
of regularity and tameness on the pseudo-group; see [53] for details. In particular,

for each n∗ ≤ n < ∞, for a fixed n∗ ≥ 0, the subgroupoid G(n) ⊂ D(n) consisting

of the pseudo-group jets jnϕ for ϕ ∈ G is assumed to form a smooth, embedded
subbundle with fiber dimension rn = dimG(n)|z for any z ∈ M. In the limit, the infi-

nite pseudo-group jet bundle G(∞) ⊂ J∞(M,M) can be identified with the complete

determining system of partial differential equations for the pseudo-group. We use

g(n)
= (z, g(n)) = (x, u, g(n))
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to indicate local coordinates of a jet g(n) ∈ G(n), with the “pseudo-group parameters”
g(n) = (g1, . . . , grn

) parametrizing the jet fiber G(n)|z .

We let H(n) ⊂ E (n) denote the subgroupoid obtained by pulling back G(n) ⊂ D(n)

via the projection π̃n
0 : Jn → M. The groupoid structure on H(n) is induced by that of

E (n); the explicit formulae are obtained either by specializing the general prolonged
diffeomorphism transformations (2.17) to the pseudo-group subbundle, or by direct

construction via implicit differentiation of the pseudo-group transformations on M.

In this context, the notion of a differential invariant for the pseudo-group G can

be formulated as follows.

Definition 3 A differential invariant is a differential function7 I : Jn → R which is

unaffected by the prolonged action of G(n) on Jn, and so

(3.1) I(X, Û (n)) = I(g(n) · (x, u(n))) = I(x, u(n)),

for all (x, u(n)) ∈ Jn, and all pseudo-group jets g(n) ∈ G(n) such that both the source
and target submanifold jets, namely (x, u(n)) and (X, Û (n)) = g(n) · (x, u(n)), belong

to the domain of I.

In other words, differential invariants are constant on the prolonged pseudo-

group orbits in Jn. Morally, the entire collection of differential invariants forms an

algebra; however, since they are in general only locally defined, they in fact define a
sheaf of algebras over J∞ [32, 63]. But, to foster intuition at the expense of precision,

we will usually refer to the “algebra of differential invariants”. One of our main goals

is to understand its structure in complete detail.

If G is a finite-dimensional transformation group acting locally effectively on sub-
sets of M, as in [49], then, for n ≫ 0, the bundle H(n) can be locally identified with

the principal bundle Jn × G introduced in [21]. So, working by analogy with the
finite-dimensional version, we define a moving frame to be an equivariant section of

this bundle. Therefore, our pseudo-group moving frame construction will include

the finite-dimensional version in [21, 30, 31] as a special subcase.

Definition 4 A moving frame ρ(n) of order n is a G(n) equivariant local section of the

bundle H(n) → Jn.

More explicitly, we require ρ(n) : Jn → H(n) to satisfy

σ̃
(n)(ρ(n)(z(n))) = z(n), ρ(n)(g(n) · z(n)) = ρ(n)(z(n)) · (g(n))−1,

for all g(n) ∈ G(n)|z , with z = π̃n
0 (z(n)), and groupoid inverse (g(n))−1 ∈ G(n)|

τ
(n)(g(n)),

such that both z(n) and g(n) · z(n) lie in the domain of definition of ρ(n).

Remark: Definition 4 defines a right-equivariant moving frame [21]. Classical mov-

ing frames for finite-dimensional Lie group actions [8, 24] are always left-equivariant.
It is not difficult to formulate the notion of a left moving frame in the pseudo-group

7We continue to use the convention that functions need only be defined on an open subset of their
domain space.
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context. As usual, the inversion map converts between right and left moving frames,
and so we can concentrate on the slightly simpler right-equivariant version from here

on.

In the finite-dimensional construction [21] the existence of a moving frame re-

quires that the group action be free and regular on an open subset of the jet space.

Similar conditions are required in the pseudo-group framework. The crucially im-
portant freeness condition is defined as follows. Let

G(n)
z =

{
g(n) ∈ G(n)

∣∣ τ
(n)(g(n)) = σ

(n)(g(n)) = z
}
⊂ G(n)|z

denote the n-th order isotropy jet subgroup of the point z ∈ M, which, as a con-

sequence of our definition of a Lie pseudo-group, is a finite-dimensional Lie group
when n < ∞. The isotropy subgroup of z(n) = (x, u(n)) ∈ Jn is then defined as the

closed Lie subgroup

(3.2) G(n)
z(n) =

{
g(n) ∈ G(n)

z

∣∣ g(n) · z(n)
= z(n)

}
⊂ G(n)

z , where z = π̃n
0 (z(n)).

Thus, the isotropy subgroup of a submanifold n-jet only contains diffeomorphism

jets of order n, and ignores their higher order derivatives. The n–jet of the identity
diffeomorphism 11 : M → M at z, denoted 11(n)

z , clearly lies in G(n)
z(n) . Freeness requires

that this be the only isotropy jet.

Definition 5 The pseudo-group G acts freely at z(n) ∈ Jn if G(n)
z(n) =

{
11(n)

z

}
, and

locally freely if G(n)
z(n) is a discrete subgroup of G(n)

z . The pseudo-group G is said to act

(locally) freely at order n if it acts (locally) freely on an open subset Vn ⊂ Jn, called
the set of regular n-jets.

In other words, freeness of the action means that every pseudo-group transforma-

tion that fixes the jet z(n) ∈ Jn|z must have the same derivatives (jet) as the identity

map up to order n, irrespective of the values of its derivatives of order > n. Note
that the freeness condition for a pseudo-group is, in fact, equivalent to the freeness of

the action of the isotropy jet subgroup G(n)
z on the jet fiber Jn|z. At order n = 0, any

pseudo-group action trivially satisfies the freeness condition, because G(0)
z = {11(0)

z }.

Thus, freeness is only of interest when n ≥ 1.

Warning: According to the standard definition [21] any (locally) free action of a

finite-dimensional Lie group satisfies the (local) freeness condition of Definition 5,
but the converse is not valid. For instance, the four-dimensional Lie group

(x, u) 7−→ (x + a, u + b x2 + c x + d)

defines a free pseudo-group action on Jn(R2, 1) for all n ≥ 0. But, as a Lie group, the

action is only free when n ≥ 2. In this paper, even for finite-dimensional Lie group
actions, we will use “free” in the more general sense of Definition 5. An interesting

project would be to revisit the study of differential invariants of finite-dimensional

Lie group actions using this more refined notion of freeness.
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Let

(3.3) O(n)
z(n) =

{
g(n) · z(n)

∣∣ g(n) ∈ G(n)|z, z = π̃n
0 (z(n))

}
⊂ Jn

denote the prolonged pseudo-group orbit passing through the submanifold jet z(n) ∈
Jn. The tameness condition of [53, Definition 5.2] implies, by a theorem of Sussmann
[60], that the pseudo-group orbits are immersed submanifolds. Regularity requires

that the orbits form a regular foliation, i.e., that its leaves intersect small open sets in

pathwise connected subsets. Further details can be found in [52].

Proposition 6 The pseudo-group G acts locally freely on the subset

(3.4) { z(n) ∈ Jn | dimO(n)
z(n) = rn } ,

consisting of those jets whose orbit dimension equals the fiber dimension of the n-th order

jet groupoid G(n) → M.

Thus, freeness of the pseudo-group at order n requires, at the very least, that the

fiber dimension satisfy the inequality

(3.5) rn = dimG(n)|z ≤ dim Jn
= p + (m − p)

(
p + n

p

)
.

Therefore, freeness is an alternative — and simpler — means of quantifying the

Spencer cohomological growth conditions imposed by Kumpera [32]. Pseudo-

groups having too large a fiber dimension rn will, typically, act transitively on (a
dense open subset of) Jn, and thus possess no non-constant differential invariants. A

familiar example is the pseudo-group of canonical transformations of a symplectic

manifold. In such cases, all (generic) submanifolds are locally equivalent, and the
local theory is trivial. But there are, of course, deep global issues not addressed by the

local moving frame theory [23].
In a forthcoming paper [54], we will establish the following fundamental result,

thereby rigorously justifying the general constructions used in this paper.

Theorem 7 Let G be a regular pseudo-group acting on an m-dimensional manifold

M. If G acts locally freely at z(n) ∈ Jn for some n > 0, then it acts locally freely at any

z(k) ∈ Jk with π̃k
n(z(k)) = z(n), for k ≥ n.

As in the finite-dimensional Lie group version [21], moving frames are con-
structed through a normalization procedure based on a choice of cross-section to the

pseudo-group orbits, i.e., a transverse submanifold of the complementary dimen-
sion.

Theorem 8 Suppose G(n) acts freely and regularly on Vn ⊂ Jn. Let Kn ⊂ Vn be a

(local) cross-section to the pseudo-group orbits. Given z(n) ∈ Vn, define ρ(n)(z(n)) ∈
H(n) to be the unique groupoid jet such that τ̃

(n)(ρ(n)(z(n))) ∈ Kn (when such exists).

Then ρ(n) : Jn → H(n) is a moving frame for G defined on an open subset of Vn. The

local cross-section coordinates of the induced map I(n) = τ̃
(n) ◦ρ(n) : Jn → Kn provide

a complete system of functionally independent n-th order differential invariants on the

domain of definition of the moving frame.
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In most practical situations, we select a coordinate cross-section, defined by fixing
the values of rn of the individual jet coordinates z(n) = (x, u(n)). We first write out the

implicit differentiation formulae for the prolonged pseudo-group action

(3.6) (X, Û (n)) = F(n)(x, u(n), g(n))

in terms of the submanifold jet coordinates (x, u(n)) and a convenient system of group

parameters g(n) = (g1, . . . , grn
) which, when combined, serve to coordinatize the

bundle H(n) → Jn. The rn components of (3.6) corresponding to our choice of cross-
section variables serve to define the normalization equations

(3.7) F1(x, u(n), g(n)) = c1, . . . Frn
(x, u(n), g(n)) = crn

.

Solving them for the group parameters

(3.8) g(n)
= γ(n)(x, u(n))

(a solution is assured by their arising from a bona fide cross-section) yields the ex-

plicit formula for the moving frame section:

ρ(n)(x, u(n)) = (x, u(n), γ(n)(x, u(n))).

Substituting the moving frame formulae for the pseudo-group parameters (3.8) into

the unnormalized components of (3.6) yields the normalized differential invariants:

(3.9)
I(n)(x, u(n)) = F(n)(x, u(n), γ(n)(x, u(n)))

=
(
. . . ,Hi(x, u(n)), . . . , IαK (x, u(n)), . . .

)
.

The rn components of I(n) appearing in the normalization equations (3.7) will be
constant, and are known as the phantom differential invariants. The remaining sn =

dim Jn−rn components are the cross-section coordinates, and hence form a complete

system of functionally independent differential invariants of order ≤ n.

Definition 9 A moving frame ρ(k) : Jk → H(k) of order k > n is compatible with a
moving frame ρ(n) : Jn → H(n) of order n provided π̂k

n
◦ρ(k) = ρ(n) ◦ π̃k

n where defined.

A complete moving frame is provided by a mutually compatible collection of mov-

ing frames of all orders k ≥ n. To avoid technical problems with shrinking domains

of definition, we further assume that the lowest order moving frame ρ(n) is defined
on a domain Vn ⊂ Jn, while each higher order compatible moving frame ρ(k) is de-

fined on Vk
= (π̂k

n)−1(Vn). In applications, we typically deal with complete moving
frames, and we use ρ(∞) : J∞ → H(∞) to denote the limiting equivariant local sec-

tion. Before continuing, let us understand how the moving frame algorithm works

in two basic examples.
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Example 10 Consider the intransitive pseudo-group action

(3.10) X = f (x), Y = y, U =
u

f ′(x)
,

on M = R3 \ {u = 0}. This pseudo-group was introduced by Lie in his study [36,

p. 373] of second order partial differential equations integrable by the method of

Darboux, and also considered by Vessiot in his paper [62] on group splitting and
automorphic systems. More recently, Kumpera [32] again employed this pseudo-

group as the one example used to illustrate his Spencerian formalization of the Lie

theory of differential invariants. Our methods reproduce Kumpera’s final results with
minimal effort, and, subsequently, elucidate the structure of its differential invariant

algebra, which was not exposed in previous treatments of this elementary example.
We are interested in the induced action of (3.10) on surfaces S ⊂ M, which, for

simplicity, we assume to be the graph of a function u = h(x, y). (Extending the

method to more general parametric surfaces, cf. [21], is not difficult.) We adopt
the Taylor coordinates f , fx, fxx, . . . of the diffeomorphism f (x) to parametrize the

pseudo-group. The lifted horizontal coframe is

(3.11) dH X = fx dx, dH Y = dy,

and hence the dual implicit differentiations are

(3.12) DX =
1

fx

Dx, DY = Dy.

The prolonged pseudo-group transformations on the surface jet bundle Jn =

Jn(M, 2) are obtained by repeated application of the implicit differentiation opera-
tors (3.12) to U = u/ fx, and so

(3.13)

X = f , Y = y, Û = U =
u

fx

, Û X =
ux

f 2
x

−
u fxx

f 3
x

,

ÛY =
uy

fx

, Û XX =
uxx

f 3
x

−
3 ux fxx

f 4
x

−
u fxxx

f 4
x

+
3 u f 2

xx

f 5
x

,

Û XY =
uxy

f 2
x

−
uy fxx

f 3
x

, ÛYY =
uy y

fx

,

and so on. Since u 6= 0, the isotropy subgroup G(n)
z(n) of any (x, u(n)) ∈ Jn consists

only of the identity jet, f = x, fx = 1, fxx = 0, . . . , and hence the pseudo-group acts

freely at every order n ≥ 0.
We choose the coordinate cross-section

x = 0, u = 1, ux = uxx = uxxx = · · · = 0.

The associated moving frame map is found by solving the corresponding normaliza-

tion equations

(3.14) X = 0, U = 1, Û X = 0, Û XX = 0, . . .
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for the group parameters:

(3.15) f = 0, fx = u, fxx = ux, fxxx = uxx, . . . .

Substituting (3.15) into the prolonged transformation formulae (3.13) yields the nor-

malized second order differential invariants; those corresponding to the normaliza-

tion variables (3.14) are the constant phantom differential invariants, while the re-
mainder, namely

(3.16)

Y 7−→ y, ÛY 7−→ J =
uy

u
,

Û XY 7−→ J1 =
u uxy − ux uy

u3
, ÛYY 7−→ J2 =

uy y

u
,

form a complete system of functionally independent second order differential invari-

ants. Moreover, substitution of the moving frame formulae (3.15) into the lifted
horizontal forms (3.11), i.e., pulling back by the moving frame, leads to the basic

invariant horizontal coframe

(3.17) dH X 7−→ u dx, dH Y 7−→ dy,

and corresponding dual invariant differential operators

(3.18) D1 =
1

u
Dx, D2 = Dy.

As we shall subsequently prove — see Examples 26, 29, and 31 — all the higher-
order normalized differential invariants can be obtained by successively applying the

invariant operators (3.18) to the basic differential invariant J. For example,

(3.19) D1 J =
u uxy − ux uy

u3
= J1, D2 J =

u uy y − u2
y

u2
= J2 − J2.

Later, we will learn how to algorithmically derive such recurrence formulae relating

the differentiated invariants to the normalized differential invariants.

Example 11 Consider the action of the pseudo-group

(3.20) X = f (x), Y = f ′(x) y + g(x), U = u +
f ′ ′(x) y + g ′(x)

f ′(x)
,

on surfaces u = h(x, y). To obtain the prolonged pseudo-group transformations, we

begin with the lifted horizontal coframe,

(3.21) dH X = fx dx, dH Y = ex dx + fx dy,

where, for convenience, we set e(x, y) = f ′(x) y + g(x), and so ey = fx and fy = 0.

The prolonged pseudo-group transformations are found by applying the dual im-

plicit differentiations

DX =
1

fx

Dx −
ex

f 2
x

Dy, DY =
1

fx

Dy,

https://doi.org/10.4153/CJM-2008-057-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-057-0


Moving Frames for Lie Pseudo–Groups 1353

successively to

Û = U = u +
ex

fx

= u +
fxx y + gx

fx

,

so that

(3.22)

Û X =
ux

fx

+
exx − ex uy

f 2
x

− 2
fxx ex

f 3
x

, ÛY =
uy

fx

+
fxx

f 2
x

,

Û XX =
uxx

f 2
x

+
exxx − exx uy − 2 ex uxy − fxx ux

f 3
x

+

+
e2

x uy y + 3 ex fxx uy − 4 exx fxx − 3 ex fxxx

f 4
x

+ 8
ex f 2

xx

f 5
x

,

Û XY =
uxy

f 2
x

+
fxxx − fxx uy − ex uy y

f 3
x

− 2
f 2
xx

f 4
x

, ÛYY =
uy y

f 2
x

,

and so on. The pseudo-group cannot act freely on J1 since r1 = dimG(1)|z = 6 >
dim J1 = 5. On the other hand, r2 = dimG(2)|z = 8 = dim J2, and the action
on J2 is, in fact, locally free and transitive on the sets V 2

+ = J2 ∩ {uy y > 0} and

V 2
− = J2 ∩ {uy y < 0}. Moreover, in accordance with Theorem 7, G(n) acts locally

freely on the corresponding open subsets of Jn for any n ≥ 2.

To construct the moving frame, we restrict our attention8 to V 2
+ and adopt the

following normalizations:

(3.23)

X = 0 : f = 0,

Y = 0 : e = 0,

U = 0 : ex = − u fx,

ÛY = 0 : fxx = − uy fx,

Û X = 0 : exx = (u uy − ux) fx,

ÛYY = 1 : fx =
√

uy y ,

Û XY = 0 : fxxx = −
√

uy y

(
uxy + uuy y − u2

y

)
,

Û XX = 0 : exxx = −
√

uy y

(
uxx − uuxy − 2 u2uy y − 2uxuy + uu2

y

)
.

At this stage, we have normalized enough parameters to find the first two fundamen-
tal differential invariants of the pseudo-group, namely,

(3.24) Û XYY 7−→ J1 =
uxy y + uuy y y + 2 uyuy y

u
3/2
y y

, ÛYYY 7−→ J2 =
uy y y

u
3/2
y y

.

8To cover V 2
−

, just insert an absolute value inside the square root and keep track of signs.
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The two remaining third order jet coordinates can be normalized to Û XXX = Û XXY =

0, to produce formulae for the pseudo-group parameters fxxxx and exxxx. In general,

for n ≥ 2, there are

dim Jn − rn =

[ (n + 1)(n + 2)

2
+ 2

]
− (2 n + 4) =

(n + 1)(n − 2)

2

functionally independent differential invariants of order ≤ n.

Finally, substituting the pseudo-group normalizations into (3.21) fixes the invari-

ant horizontal coframe

(3.25) dH X 7−→ ω1
=

√
uy y dx, dH Y 7−→ ω2

=
√

uy y (dy − u dx).

The dual invariant total differential operators are

(3.26) D1 =
1√
uy y

(Dx + u Dy), D2 =
1√
uy y

Dy.

As we shall subsequently prove — see Example 32 — the higher-order differential
invariants can be generated by successively applying these differential operators to

the pair of basic differential invariants (3.24). According to the general theorem in
[54], all syzygies or functional relations among the differentiated invariants in this

example are consequences of the lowest order such syzygy, which is

(3.27) D1 J2 −D2 J1 = 2.

4 Infinitesimal Generators

Our subsequent analysis will rely heavily on the infinitesimal generators of the

pseudo-group action. Let X (M) denote the space of locally defined smooth vec-
tor fields on M, i.e., local sections of the tangent bundle TM. In terms of the local

coordinates z = (x, u) on M, a vector field takes the form

(4.1) v =

m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
,

where the coefficients (ζ1, . . . , ζm) = (ξ1, . . . , ξp, ϕ1, . . . , ϕq) are smooth functions.
Given 0 ≤ n ≤ ∞, let JnTM denote the n-th order jet bundle of the tangent

bundle, whose elements are n-jets jnv of locally defined vector fields v ∈ X (M).

In local coordinates, the n-jet (z, ζ(n)) ∈ JnTM of the vector field (4.1) at a point
z = (x, u) is determined by the partial derivatives of its coefficients with respect to all

variables z = (x, u) up to order n, which we denote by

(4.2) ζ(n)
= (. . . , ζb

A, . . . ) = (ξ(n), ϕ(n)) = (. . . , ξi
A, . . . , ϕ

α
A . . . ),

where b = 1, . . . ,m, i = 1, . . . , p, α = 1, . . . , q, A = (a1, . . . , ak), with 1 ≤ aν ≤
m and 0 ≤ k = #A ≤ n.
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Given v ∈ X (M), let v(n) ∈ X (Jn) denote the corresponding prolonged vector
field on the submanifold jet bundle Jn. At each jet z(n) ∈ Jn|z , the prolongation

operation prescribes a linear map

(4.3) p(n)
= p(n)

z(n) : JnTM|z −→ T Jn|z(n) .

In terms of the local coordinates z(n) = (x, u(n)) on Jn, the n-th prolongation of the

vector field (4.1) has the form

(4.4) v(n)
=

p∑

i=1

ξi ∂

∂xi
+

q∑

α=1

∑

# J ≤ n

ϕ̂ α
J

∂

∂uαJ
.

As with the Ûα
J , we place hats on the prolonged vector field coefficients ϕ̂ α

J so as

to distinguish them from the partial derivatives (jet coordinates) ϕαA in (4.2). The
coefficients are computed via the usual prolongation formula, cf. [47, 48]:

(4.5) ϕ̂ α
J = D J

x Qα +

p∑

i=1

uαJ,i ξ
i , where Qα

= ϕα −

p∑

i=1

uαi ξ
i , α = 1, . . . , q,

are the components of the characteristic of v. Consequently, each prolonged vector
field coefficient

(4.6) ϕ̂ α
J = Φ

α
J (u(n), ζ(n))

is a certain universal linear combination of the vector field jet coordinates (4.2),

whose coefficients are polynomials in the submanifold jet coordinates u
β
K for 1 ≤

#K ≤ n.

Example 12 On R2, with coordinates (x, u) as in Example 1, the prolongation of a
vector field

(4.7) v = ξ(x, u)
∂

∂x
+ ϕ(x, u)

∂

∂u

to Jn = Jn(R2, 1) takes the familiar form

v(∞)
= ξ

∂

∂x
+ ϕ

∂

∂u
+ ϕ̂ x ∂

∂ux

+ ϕ̂ xx ∂

∂uxx

+ · · · + ϕ̂ n ∂

∂un

,

where

(4.8)

ϕ̂ x
= Dxϕ− ux Dxξ = ϕx + ux(ϕu − ξx) − u2

x ξu,

ϕ̂ xx
= D2

xϕ− ux D2
xξ − 2 uxx Dxξ

= ϕxx + ux(2ϕxu − ξxx) + u2
x(ϕuu − 2 ξxu) − u3

x ξuu

+ uxx(ϕu − 2 ξx) − 3 ux uxx ξu,

and so on.
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Given a pseudo-group G, let g ⊂ X (M) denote the local Lie algebra consisting
of its infinitesimal generators, i.e., the set of locally defined vector fields whose flows

belong to the pseudo-group. Let Jn
g ⊂ JnTM denote the subbundle9 prescribed by

their jets. In local coordinates, Jn
g is defined by a linear system of partial differential

equations

(4.9) L(n)(z, ζ(n)) = 0

for the vector field coefficients, called the linearized or infinitesimal determining equa-

tions for the pseudo-group. They are obtained by linearizing the nonlinear determin-
ing equations for the pseudo-group transformations at the identity. If G is the sym-

metry group of a system of differential equations, then the linearized determining

equations (4.9) are the (involutive completion of) the usual determining equations
for its infinitesimal generators obtained via Lie’s algorithm, [13, 14, 37, 38, 47].

Let

g
(n)|z(n) = p(n)(Jn

g|z) ⊂ T Jn|z(n)

denote the subspace spanned by the prolonged infinitesimal generators of the

pseudo-group. Since we are assuming tameness of the prolonged pseudo-group ac-
tion, g

(n)|z(n) = TO(n)
z(n) |z(n) is equal to the tangent space to the pseudo-group orbit

through z(n) [52]. The infinitesimal characterization of local freeness of the pro-

longed pseudo-group action is immediate:

Proposition 13 The pseudo-group acts locally freely near z(n) if and only if the pro-

longation map p(n) : Jn
g|z −→ g

(n)|z(n) is a monomorphism.

Example 14 Consider the pseudo-group

(4.10) X = f (x), U =
u

f ′(x)
,

where f (x) ∈ D(R) is an arbitrary local diffeomorphism, acting on the open domain

M = R2 \ {u = 0}. Its infinitesimal generators consist of all vector fields v =

ξ ∂x + ϕ∂u that are subject to the linear determining equations

ξx = −
ϕ

u
, ξu = 0, ϕu =

ϕ

u
,

along with all their differential consequences; see [53] for details. When solved, the
determining equations yield ξ = a(x), ϕ = − a′(x) u, where a(x) is an arbitrary

scalar function, resulting in the explicit formula

(4.11) v = a(x)
∂

∂x
− a′(x) u

∂

∂u

for the infinitesimal generators of this pseudo-group.

9The fact that this forms a subbundle is a consequence of our definitions and local solvability.
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The prolonged infinitesimal generators are obtained by substituting (4.11) into
the prolongation formula (4.8):

(4.12)

v(n)
= a

∂

∂x
− axu

∂

∂u
− (axxu + 2 axux)

∂

∂ux

− (axxxu + 3 axxux + 3 axuxx)
∂

∂uxx

− · · · .

Since u 6= 0, the only vector fields satisfying v(n) = 0 are those with trivial n-th order

jet: a = ax = axx = · · · = an+1 = 0. Proposition 13 implies that the pseudo-group
acts locally freely on Jn for all n ≥ 0.

5 Lifted Differential Forms

The next order of business is to establish complete systems of invariant differential

forms on the lifted diffeomorphism jet groupoid E (∞). Recall the induced splittings
(2.22) of the differential:

d = d J + dG = dH + dV + dG .

While the initial split into jet and group components is invariant under the action
of the diffeomorphism jet groupoid D(∞) on E (∞), the finer split into horizontal

and vertical components is only invariant under the sub-groupoid generated by the
projectable (or fiber-preserving) diffeomorphisms X = χ(x), U = ψ(x, u). As in

[30, 31], we decompose the space of differential forms on E (∞) into

Ω
∗

=
⊕

k,l Ω
k,l

=
⊕

i, j,l Ω
i, j,l,

where l indicates the number of Maurer–Cartan forms µb
A, (2.35) (or, equivalently,

group forms (2.20)), k = i + j indicates the number of jet forms (2.19), i indicates

the number of horizontal forms dxi , and j indicates the number of contact forms θαJ .
We let

Ω
∗
J =

⊕
k Ω

k,0
=

⊕
i, j Ω

i, j,0

denote the subspace of jet forms, i.e., those containing no Maurer–Cartan forms —

although their coefficients are allowed to depend upon the pseudo-group parameters.

Let π J : Ω
∗ → Ω

∗
J be the natural projection that takes a differential form Ω̂ on E (∞)

to its jet component π J(Ω̂). Formally, π J(Ω̂) is obtained by annihilating all Maurer–

Cartan forms in Ω̂, i.e., by setting all µb
A 7→ 0. If Ω̂ is invariant under the right action

of local diffeomorphisms ϕ ∈ D on E (∞), so is π J(Ω̂).

Given any differential form ω on J∞, its pull-back Ω̂ = (τ̃ (∞))∗ω by the target

map τ̃
(∞) : E (∞) → J∞ is automatically invariant. The jet components of the pulled-

back forms are also invariant and play a crucial role in our constructions.

Definition 15 The lift of a differential form ω on J∞ is the jet form

(5.1) Ω = λ(ω) = π J

[
(τ̃ (∞))∗ω

]
.
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The lift map is an exterior algebra morphism:

(5.2) λ(ω + σ) = λ(ω) + λ(σ), λ(ω ∧ σ) = λ(ω) ∧ λ(σ).

In local coordinates, λ maps the jet coordinates xi , uαK , to their lifted counterparts10

Xi , Ûα
K , the latter being prescribed by the implicit differentiation formulae (2.32).

Similarly, their differentials dxi , duαK lift to the jet differentials of their lifts. In other

words, when computing d J Xi , d J Ûα
K , we only differentiate with respect to the sub-

manifold jet coordinates xi , uβJ , and not with respect to the diffeomorphism jet coor-

dinates Xi
A,U

α
A . The resulting one-forms

(5.3)

Ω
i
= λ(dxi) = d J Xi

=

p∑

j=1

Dx j X
i dx j +

q∑

α=1

Xi
uαθ

α, i = 1, . . . , p,

Θ
α

= λ(θα) = d J Uα −

p∑

i=1

DXiU
α d J Xi

=

q∑

β=1

(
Uα

uβ −

p∑

i=1

Xi
uβ Ûα

Xi

)
θβ ,

Θ
α
K = λ(θαK) = DK

XΘ
α

= d J Ûα
K −

p∑

i=1

Ûα
K,i d J Xi , α = 1, . . . , q, #K ≥ 0,

form a basis for the space of lifted jet forms.

Example 16 In the case of plane curves, the lift map takes the curve jet coordinates

x, u, ux, . . . to their lifted counterparts, as given by (2.6):

(5.4) λ(x) = X, λ(u) = U , λ(ux) = Û X , λ(uxx) = Û XX , . . . .

The lifts of the basis horizontal and contact one-forms, (2.11), are given by11

(5.5)

Ω = λ(dx) = d J X = Xx dx + Xu du

= (Xx + ux Xu) dx + Xu θ = DxX dx + Xu θ,

Θ = λ(θ) = d J U − Û X d J X =
Xx Uu − Xu Ux

DxX
θ,

ΘX = λ(θx) = d J Û X − Û XX d J X = DXΘ

=
1

DxX
Dx

( Xx Uu − Xu Ux

DxX
θ
)
.

10The jet projection π J has no effect on functions.
11Within this example, Ω is used to denote the lift of dx, and not a generic differential form.
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The higher order lifted contact forms

Θn = λ(θn) = Dn
XΘ

are obtained by repeated Lie differentiation with respect to the implicit differentia-

tion operator (2.5).

The formulas for the differentials of a lifted form are of critical importance. The
jet differential is straightforward.

Proposition 17 Let Ω = λ(ω) be a lifted form. Then d J Ω = λ(dω).

To describe the formula for the group differential, we will extend the lift map to
vector field jets. The required construction is most easily explained in local coor-

dinates. With additional effort, it can be placed in a fully intrinsic framework by
introducing suitable tensor product bundles. However, the constructions are a bit

elaborate, and so, in the interests of brevity, will not be presented here.

We define the lift of a vector field jet coordinate (4.2) to be the corresponding
Maurer–Cartan form (2.35); specifically,

(5.6) λ(ζb
A) = µb

A, for b = 1, . . . ,m, #A ≥ 0.

At first sight this definition might strike the reader as a bit odd; however, keep in

mind that, at each point, ζb
A defines a linear function on the space of vector fields

X (M), and so should be regarded as a kind of differential form. Thus, defining its lift

to be another differential form should not be so surprising. Slightly more generally,
suppose

P(z(n), ζ(n)) =

m∑

b=1

∑

0≤#A≤n

Pb
A(x, u(n)) ζb

A

is any finite linear combination of vector field jet coordinates whose coefficients are

differential functions, i.e., a section of the bundle ˜(JnTM)∗ → Jn which is obtained

by pulling back the dual bundle (JnTM)∗ → M via the projection π̃n
0 : Jn → M. We

define its lift to be the group one-form

(5.7) λ
[

P(z(n), ζ(n))
]

= P(Ẑ(n), µ(n)) =

m∑

b=1

∑

0≤#A≤n

Pb
A(X, Û (n))µb

A

on E (n). Of particular importance are the lifts of the vector field prolongation coeffi-

cients (4.6), which are denoted by

(5.8) Ξ
i
= λ(ξi) = µi , Ψ̂

α
J = λ(ϕ̂ α

J ) = λ
[

Φ
α
J (u(n), ζ(n))

]
= Φ

α
J (Û (n), µ(n)).

Thus, each Ψ̂α
J is a particular linear combination of Maurer–Cartan forms whose

coefficients are polynomials in the lifted coordinates Ûα
K for 1 ≤ #K ≤ # J. More
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generally, the lift of a differential form whose coefficients are linear combinations of

vector field coefficient jets, i.e., a section of
∧k

T∗Jn
⊗ ˜(JnTM)∗ → Jn, is defined as

(5.9) λ

( m∑

b=1

∑

#A≤n

ζb
A ω

b
A

)
=

m∑

b=1

∑

#A≤n

µb
A ∧ λ(ωb

A),

which is a differential form in Ω
k,1. With the above conventions, we can write the

group differential of a lifted form compactly as follows.

Proposition 18 Let Ω = λ(ω) be a lifted form. Then its group differential is the

lift of its Lie derivative with respect to the prolonged vector field v(∞), so dG Ω =

λ
[

v(∞)(ω)
]
.

Combining Propositions 17 and 18, we arrive at the fundamental formula for the
differential of a lifted form.

Theorem 19 Let Ω = λ(ω) be a lifted differential form on E (∞). Then

(5.10) dΩ = dλ(ω) = λ
[

dω + v(∞)(ω)
]
.

Before presenting the proof of Proposition 18, let us look closely at our running
planar example.

Example 20 We continue analyzing the pseudo-group action in Example 16. Ac-

cording to (5.6), the lifts of the derivatives of the coefficients of a planar vector field,

cf. (4.7), are the Maurer–Cartan forms (2.38–2.39):

λ(ξ) = µ, λ(ϕ) = ν, λ(ξx) = µX , λ(ξu) = µU ,

λ(ϕx) = νX, λ(ϕu) = νU , λ(ξxx) = µXX , . . . .

Thus, by (5.8), the lifts of the prolonged vector field coefficients (4.8) are the follow-

ing linear combinations of Maurer–Cartan forms:

(5.11)

Ψ = λ(ϕ) = ν,

Ψ̂
X

= λ(ϕ̂ x) = νX + Û X(νU − µX) − Û 2
XµU ,

Ψ̂
XX

= λ(ϕ̂ xx) = νXX + Û X(2 νXU − µXX) + Û 2
X(νUU − 2µXU )

− Û 3
X µUU + Û XX(νU − 2µX) − 3 Û X Û XX µU ,

and so on.
With these in hand, and recalling (5.5), we apply our key formula (5.10) to deter-

mine the differentials of the implicit differentiation formulae (2.6):

dX = dλ(x) = λ
[

dx + v(∞)(x)
]

= λ(dx + ξ) = Ω + µ,

dU = dλ(u) = λ
[

du + v(∞)(u)
]

= λ(ux dx + θ + ϕ) = Û X Ω + Θ + ν,

dÛ X = dλ(ux) = λ
[

dux + v(∞)(ux)
]

= λ(uxx dx + θx + ϕ̂ x)

= Û XX Ω + ΘX + Ψ̂
X,

dÛ XX = dλ(uxx) = λ
[

duxx + v(∞)(uxx)
]

= λ(uxxx dx + θxx + ϕ̂ xx)

= Û XXX Ω + ΘXX + Ψ̂
XX,
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and so on. In each case, the group differential is the final term, while the preceding
one or two terms are the jet differential; for instance,

d J Û X = Û XX Ω + ΘX, while dG Û X = Ψ̂
X.

By the same reasoning, and recalling the prolongation formulae (4.8), the differen-

tials of the basis lifted forms (5.5) are

dΩ = dλ(dx) = λ
[

d(dx) + v(∞)(dx)
]

= λ(dξ) = λ
[

(ξx + ux ξu) dx + ξu θ
]

= (µX + Û X µU ) ∧ Ω + µU ∧ Θ,

dΘ = dλ(θ) = λ
[

dθ + v(∞)(θ)
]

= λ
[
− θx ∧ dx + dϕ− ux dξ − ϕ̂ x dx

]

= λ
[
− θx ∧ dx + (ϕu − ux ξu)θ

]
= −ΘX ∧ Ω +

(
νU − Û X µU

)
∧ Θ,

dΘX = dλ(θx) = λ
[

dθx + v(∞)(θx)
]

= λ
[
− θxx ∧ dx + dϕ̂ x − uxx dξ − ϕ̂ xx dx

]

= −ΘXX ∧ Ω +
[
νXU + Û X(νUU − µXU ) − Û 2

X µUU − Û XX µU

]
∧ Θ

+
[
νU − µX − 2 Û X µU

]
∧ ΘX.

The higher-order formulae are similarly established. The direct verification of these

formulae is a tedious, but instructive computation.

Proof of Proposition 18 As noted in [53], associated to each vector field

v =

m∑

a=1

ζa(z)
∂

∂za
∈ X (M)

with prolongation v(∞) ∈ X (J∞), there is a unique diffeomorphism invariant vector
field V̂(∞) ∈ X (E (∞)) on the groupoid which is tangent to the source fibers. We note

that V̂(∞) and v(∞) are τ̃
(∞)–related vector fields, that is,

dτ̃
(∞)

(
V̂(∞)|g(∞)

)
= v(∞)|

eτ (∞)(g(∞)).

Therefore, the Lie derivatives of Ω = λ(ω) and ω are similarly related:

V̂(∞)(Ω) = (τ̃ (∞))∗
[

v(∞)(ω)
]
.

Applying the jet projection π J to both sides of this identity and using (5.1) results in

(5.12) V̂(∞)(Ω) = λ
[

v(∞)(ω)
]
,

since the Lie derivative of the jet form Ω ∈ Ω
∗
J with respect to V̂(∞) is also a jet form

and hence unaffected by π J . We expand the left hand side of (5.12) using Cartan’s

formula relating Lie derivatives and interior products, cf. [47, (1.65)]:

(5.13) V̂(∞)(Ω) = V̂(∞) d Ω + d(V̂(∞)
Ω).
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Since V̂(∞) is tangent to the source fibers, V̂(∞)
Ω = 0 for any jet form Ω ∈ Ω

∗
J .

Thus, decomposing d Ω = d J Ω + dG Ω, the only nonzero term on the right hand

side of (5.13) is V̂(∞) dG Ω. Hence, substituting back into (5.12), we deduce the

identity

(5.14) V̂(∞) dG Ω = λ
[

v(∞)(ω)
]
.

In local coordinates, since Ω is a jet form, its group differential is a finite sum

(5.15) dG Ω =

m∑

b=1

∑

#A≤n

µb
A ∧ Ω

b
A,

involving wedge products of the Maurer–Cartan forms µb
A, with certain jet forms

Ωb
A ∈ Ω

∗
J . Thus, the left hand side of (5.14) is

(5.16) V̂(∞) dG Ω =

m∑

b=1

∑

#A≤n

∂#Aζb

∂zA
(Z) Ω

b
A,

where we use the fact that the left hand side is invariant on a source fiber, and hence

can simply be evaluated at the identity jet, which is easily done in local coordinates.
On the other hand, the right hand side of (5.14) is

(5.17) λ
[

v(∞)(ω)
]

= λ

( m∑

b=1

∑

#A≤n

∂#Aζb

∂zA
(z) ωb

A

)
=

m∑

b=1

∑

#A≤n

∂#Aζb

∂zA
(Z) λ(ωb

A),

Since (5.16) and (5.17) must be equal for any vector field v ∈ X (M), we deduce that
λ(ωb

A) = Ωb
A. Substituting this relation back into (5.15) and recalling (5.9) completes

the proof of Proposition 18.

Next, given a pseudo-groupG, we restrict the invariant differential forms to the as-

sociated subgroupoid H(∞) ⊂ E (∞). Clearly, the restricted12 Maurer–Cartan forms
µb

A will no longer be linearly independent. The remarkable fact, proved in [53, The-

orem 6.1], is that the linear constraints among the restricted Maurer–Cartan forms

are precisely given by the lifts, cf. (5.7), of the linearized determining equations (4.9):

(5.18) L(n)(Z, µ(n)) = λ
[

L(n)(z, ζ(n))
]

= 0, n ≥ 0.

Subject to these constraints, the preceding constructs can be used effectively to deter-
mine recurrence relations for pseudogroup actions, as we illustrate in the subsequent

examples.

12For simplicity, we do not explicitly indicate the pull-back map when restricting the forms to H(∞).

https://doi.org/10.4153/CJM-2008-057-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-057-0


Moving Frames for Lie Pseudo–Groups 1363

6 Invariant Differential Forms

We now use the moving frame to construct the invariant differential forms corre-

sponding to the prolonged action of the pseudo-group on the submanifold jet bun-

dles Jn. The general invariantization procedure introduced in [30, 31] in the finite-
dimensional case adapts straightforwardly — provided the prolonged pseudo-group

actions are eventually free and hence admits a complete moving frame on (an open
subset of) J∞. Invariantization of a differential function or form on J∞ is imple-

mented by first lifting it to the bundle E (∞) as in the preceding section, and then

pulling back the lifted function or form with the moving frame map.

Definition 21 Let13 ρ(∞) : J∞ → H(∞) be a complete moving frame. If Ω is any
differential form on J∞, then its invariantization is the invariant differential form

(6.1) ι(Ω) = (ρ(∞))∗
[

λ(Ω)
]
.

Lemma 22 The invariantization of an arbitrary differential form is an invariant dif-

ferential form. Moreover, if Ω is already invariant, then ι(Ω) = Ω on their common

domains of definition.

Thus, in view of (5.2), invariantization defines an exterior algebra morphism,

(6.2) ι(Ω + Θ) = ι(Ω) + ι(Θ), ι(Ω ∧ Θ) = ι(Ω) ∧ ι(Θ),

that projects the spaces of ordinary functions and forms to the spaces of invariant

functions and forms. The proof of this result follows the finite-dimensional version
in [31]. Indeed, the invariantization of a differential function/form is the unique

invariant differential function/form that has the same values when restricted to the

cross-section defining the moving frame.

In particular, invariantizing the coordinate functions on J∞ leads to the normal-

ized differential invariants

(6.3)
Hi

= ι(xi), i = 1, . . . , p,

IαJ = ι(uαJ ), α = 1, . . . , q, # J ≥ 0,

which are the individual components of I(∞) described in (3.9). Secondly, invarianti-

zation of the basis horizontal one-forms leads to the invariant horizontal one-forms

(6.4) ̟i
= ι(dxi ) = ωi + κi, i = 1, . . . , p,

where ωi, κi , are, respectively, the horizontal and vertical (contact) components. If

the pseudo-group acts projectably, then the contact components vanish: κi = 0.
Otherwise, the two components are not individually invariant, although the hori-

zontal forms ω1, . . . , ωp are, in the language of [48], a contact-invariant coframe on

J∞.

13As usual, functions and forms may only be defined on an open subset of their domain space.
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The dual invariant differential operators D1, . . . ,Dp are uniquely defined by the
formula

(6.5) dF =

p∑

i=1

(DiF)̟i + · · · ,

valid for any differential function F, where we omit the invariant contact components

(although these do play an important role in the study of invariant variational prob-
lems, cf. [30, 31]). The invariant differential operators do not, in general, commute,

but are subject to linear commutation relations of the form

(6.6)
[
Di ,D j

]
=

p∑

k=1

Y k
i, j Dk, i, j = 1, . . . , p,

where the coefficients Y k
i, j are certain differential invariants that must also be deter-

mined. Finally, invariantizing the basis contact one-forms

(6.7) ϑαK = ι(θαK ), α = 1, . . . , q, #K ≥ 0,

provide a complete system of invariant contact one-forms. They are contact forms

because both the lift map and the moving frame pull-back preserve the relevant con-
tact ideals.

Theorem 23 The invariant horizontal and contact one-forms (6.4) and (6.7) form

an invariant coframe on a dense open subset of the domain of definition of the moving

frame.

From now on, we restrict the domain of definition of our complete moving frame

ρ(∞), which we continue to denote by V∞ ⊂ J∞, to the subset where the one-forms
(6.4) and (6.7) form an invariant coframe. The exceptional points correspond to jets

z(∞) = j∞S of submanifolds that become tangent to the vertical fibers under the ac-

tion of the groupoid in the chosen coordinate system; see (2.29). In particular, if the
pseudo-group acts projectably, the one-forms (6.4) and (6.7) prescribe an invariant

coframe on the entire domain of definition of ρ(∞).
On V∞, the invariant horizontal and contact forms induce an invariant split-

ting of T∗J∞. The contact component remains as in the standard, non-invariant

splitting, while the invariant horizontal component agrees with the usual horizon-
tal component if and only if the pseudo-group acts projectably. As a result, the in-

variant coframe serves to define the invariant variational quasi-tricomplex for the

pseudo-group. See [30, 31] for further developments in the finite-dimensional case,
all of which carry over to infinite-dimensional pseudo-group actions. Analysis of the

resulting pseudo-group-invariant characteristic cohomology, cf. [4, 27], is left to a

future project.

Example 24 Let us use the moving frame to derive the invariant differential forms
for the pseudo-group of Examples 10, 16 and 20. First, invariantization of the hori-

zontal forms leads to the invariant horizontal coframe elements (6.4), namely

̟1
= ω1

= ι(dx) = u dx, ̟2
= ω2

= ι(dy) = dy.
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Since G acts projectably, there are no “contact corrections”, so κ1
= κ2

= 0. The dual
invariant differential operators are, as before, D1 = (1/u)Dx, D2 = Dy .

To obtain the order zero invariant contact form, we apply the invariantization map
to θ = du − ux dx − uy dy. First, in view of the prolonged pseudo-group formulae

(3.13) coupled with (5.3), the lifted contact form is

Θ = λ(θ) = π J(dU −UX dX −UY dY ) = (Uu −UX Xu −UY Yu) θ =
θ

fx

.

Second, we use the moving frame normalizations (3.15) to pull back Θ, and so the

invariantized zero-th order contact form is

(6.8) ϑ = ι(θ) =
θ

u
=

du − ux dx − uy dy

u
.

Higher order invariant contact forms are obtained by similarly invariantizing the

higher-order contact forms, e.g.,

ϑ1 = ι(θx) =
θx

u2
−

ux θ

u3
, ϑ2 = ι(θy) =

θy

u
.

Alternatively, we can generate higher-order invariant contact forms by invariant (Lie)
differentiation; a direct computation shows that

(6.9) D1ϑ =
θx

u2
−

ux θ

u3
= ϑ1, D2ϑ =

θy

u
−

uy θ

u2
= ϑ2 − J ϑ .

The recurrence relations, to be derived shortly, can be used to establish all of the

formulae connecting the differentiated and invariantized forms.

7 Recurrence Formulae

The recurrence formulae, cf. [21, 30, 31], relate the differentiated invariants and in-

variant forms to their normalized counterparts. These formulae are fundamental,

since they completely determine the structure of the algebra of differential invariants
and thereby enable the systematic classification of generating differential invariants

and their syzygies (differential identities). They also underly the intrinsic calculus of
invariant variational problems and, indeed, the local structure of the entire invariant

variational bicomplex. As in the finite-dimensional setting, the recurrence formulae

are established using purely infinitesimal information, requiring only linear algebra
and differentiation. In particular, they do not require the explicit formulae for ei-

ther the Maurer–Cartan forms, or the normalized differential invariants and invari-

ant forms, or the invariant differential operators, or even the moving frame itself !
Beyond the standard formulae for the prolonged infinitesimal generators, the only

information required is the specification of the moving frame cross-section.
Under the moving frame map, the pulled-back Maurer–Cartan forms will be de-

noted

ν(∞)
= (ρ(∞))∗ µ(∞),
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with individual components

(7.1) νb
A = (ρ(∞))∗ (µb

A), b = 1, . . . ,m, #A ≥ 0.

As such, they are invariant one-forms, and so are certain invariant linear combi-

nations of our invariant coframe elements (6.4) and (6.7). Fortunately, the precise

formulas need not be established a priori, as they will be a direct consequence of the
recurrence formulas for the phantom differential invariants. In accordance with our

interpretation of the invariantization process as the composition of the lift map fol-
lowed by the moving frame pull-back, we identify the pulled-back Maurer–Cartan

forms as the invariantizations of the vector field coefficient jet coordinates (4.2):

(7.2) ι(ζb
A) = νb

A, b = 1, . . . ,m, #A ≥ 0.

As with the lift map (5.9), we extend the invariantization process to differential func-
tions or forms whose coefficients are linear combinations of vector field coefficient

jets in the evident manner:

(7.3) ι
( m∑

b=1

∑

#A≤n

ζb
A ω

b
A

)
=

m∑

b=1

∑

#A≤n

νb
A ∧ ι(ωb

A).

If ωb
A are k–forms on J∞, then the result is an invariant differential (k + 1)-form on

J∞.

Applying (ρ(∞))∗ to (5.18), we find that the pulled-back Maurer–Cartan forms
νb

A are subject to the linear relations

(7.4) L(n)(I(0), ν(n)) = ι
[

L(n)(z, ζ(n))
]

= 0, n ≥ 0,

obtained by invariantizing the original linear determining equations (4.9). Here,

I(0)
= ι(z) = ι(x, u) = (H, I)

are the differential invariants in (6.3) obtained by invariantizing the coordinates on

M. Further, the invariantizations of the prolonged infinitesimal generator coefficients
(4.6),

(7.5)
ηi

= (ρ(∞))∗ Ξ
i
= ι(ξi) = ν i ,

ψ̂ α
J = (ρ(∞))∗ Ψ̂

α
J = ι(ϕ̂ α

J ) = Φ
α
J (I(n), ν(n)),

are certain linear combinations of the pulled-back Maurer–Cartan forms (7.2),
whose coefficients are polynomials in the normalized differential invariants I

β
K for

1 ≤ #K ≤ # J.
With all these in hand, the desired universal recurrence formula is immediately

obtained by applying (ρ(∞))∗ to (5.10), using (6.1) and the fact that the exterior

derivative commutes with any pull-back map.
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Theorem 25 If ω is any differential form on J∞, then

(7.6) d ι(ω) = ι
[

d ω + v(∞)(ω)
]
.

We now specialize the universal formula (7.6) to establish the complete system
of recurrence formulae for the normalized differential invariants and invariant one-

forms. As first noted in [21, (13.7)] and [31, (5.21)], each recurrence formula equates
an invariant exterior derivative of an invariantized function or form to the invari-

antization of its derivative plus a certain correction term, arising from ι
[

v(∞)(ω)
]

,

which is an invariant linear combination of the pulled-back Maurer–Cartan forms
ν(∞). The latter are uniquely prescribed by the recurrence formulae for the phantom

differential invariants. The resulting correction terms can be interpreted as a kind

of “moving frame connection”. We defer any development of a geometry of moving
frame connections to a future research project.

First, taking ω in (7.6) to be one of the coordinate functions xi , uαJ yields recur-
rence formulae for the normalized differential invariants (6.3),

(7.7)

dHi
= ι

(
dxi + ξi

)
= ̟i + ηi ,

dIαJ = ι
(

duαJ + ϕ̂ α
J

)
= ι

( p∑

i=1

uαJ,i dxi + θαJ + ϕ̂ α
J

)

=

p∑

i=1

IαJ,i ̟
i + ϑαJ + ψ̂ α

J ,

where the correction terms are the invariantized prolonged vector field coefficients

(7.5), each of which is a certain invariant linear combination of pulled-back Maurer–
Cartan forms νb

A, which are subject to the linear constraints (7.4). Each phantom

differential invariant is, by definition, normalized to a constant value, and hence

has zero differential. Therefore, the phantom recurrence formulae in (7.7) form a
system of linear equations for the pulled-back Maurer–Cartan forms. If the pseudo-

group acts locally freely on Jn, then, as we shall prove in [54], these equations can be

uniquely solved for the Maurer–Cartan forms of order ≤ n as invariant linear com-
binations of the invariant horizontal and contact one-forms ̟i , ϑαJ . Substituting the

resulting formulae into the remaining, non-phantom recurrence formulae in (7.7)
leads to a complete system of recurrence relations for both the vertical and horizon-

tal differentials of all the normalized differential invariants.

Next, if we let ω in (7.6) be a one-form in the coordinate coframe dxi , θαJ , and
use the previously derived expressions for the pulled-back Maurer–Cartan forms, we

are led to the corresponding recurrence formulae for differentials of the invariant
coframe ̟i, ϑαJ . In particular, the formulae for the differentials of the invariant hor-

izontal forms,

(7.8) d̟k
= −

∑

i< j

Y k
i, j ̟

i ∧̟ j + · · · , k = 1, . . . , p,

https://doi.org/10.4153/CJM-2008-057-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-057-0


1368 P. J. Olver and J. Pohjanpelto

where we only display the terms that do not involve invariant contact forms, pre-
scribe the differential invariant coefficients Y k

i, j in the commutation relations (6.6)

among the invariant differential operators. (As in [21], this follows from writing
out the non-contact components in d2F = 0, using formula (6.5), for a differential

function F.) The full justification of these claims and more substantial illustrative

examples will appear in the forthcoming papers [14, 54].

Let us see how this all works in our running pseudo-group example.

Example 26 Consider the pseudo-group (3.10). For the particular moving frame

constructed in Example 10, the normalized differential invariants are obtained by
invariantizing the jet coordinates:

ι(x) = H = 0, ι(y) = y, ι(u) = I00 = 1, ι(ux) = I10 = 0,

ι(uy) = I01 = J, ι(uxx) = I20 = 0, ι(uxy) = I11 = J1, ι(uy y) = I02 = J2,

ι(uxxx) = I30 = 0, ι(uxxy) = I21 = J3,

ι(uxy y) = I12 = J4, ι(uy y y) = I03 = J5,

and so on, where J, J1, J2 are the differential invariants (3.16), while the formulae for
J4, J5, J6 remain to be determined. According to Example 24, the invariant coframe

on J∞ consists of the invariantized horizontal forms

̟1
= ι(dx) = u dx, ̟2

= ι(dy) = dy,

along with the invariantized contact forms

ϑ = ι(θ) =
θ

u
, ϑ1 = ι(θx), ϑ2 = ι(θy), ϑ3 = ι(θxx), ϑ4 = ι(θxy), . . . .

The dual invariant differential operators are

D1 =
1

u
Dx, D2 = Dy.

The recurrence formulae for the invariantly differentiated invariant functions and

forms all follow from our fundamental identity (7.6). The first task is to compute the
coefficients

v(∞)
= ξ

∂

∂x
+ η

∂

∂y
+ ϕ

∂

∂u
+ ϕ̂ x ∂

∂ux

+ ϕ̂ y ∂

∂uy

+ ϕ̂ xx ∂

∂uxx

+ · · ·

of the prolonged infinitesimal generator v = a(x)∂x − a′(x) u ∂u. Invoking the stan-
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dard prolongation formula (4.5), we find

(7.9)

ξ = a,

η = 0,

ϕ = − u ax,

ϕ̂ x
= Dx(− u ax − uxa) + uxxa = − u axx − 2 uxax,

ϕ̂ y
= Dy(− u ax − uxa) + uxya = − uyax,

ϕ̂ xx
= D2

x(− u ax − uxa) + uxxxa = − u axxx − 3 ux axx − 3 uxxax,

ϕ̂ xy
= DxDy(− u ax − uxa) + uxxya = − uy axx − 2 uxyax,

ϕ̂ y y
= D2

y(− u ax − uxa) + uxy ya = − uy yax,

and so on. According to (7.5), their invariantizations are linear combinations of
pulled-back Maurer–Cartan forms, which are subject to the invariantized determin-

ing equations. Thus, a basis is provided by the one-forms

(7.10) αk = ι(ak) = ι(Dk
xa)

obtained by invariantizing the jet coordinates (derivatives) of the function a(x). We

do not need to compute the one-forms αk directly, since the required formulas will
shortly follow from the recurrence formulae for the phantom differential invariants.

We now apply (7.7) to obtain the differentials of the phantom invariants

0 = dH = ι(dx + ξ) = ι(dx + a) = ̟1 + α,

0 = dI00 = ι(du + ϕ) = ι(ux dx + uy dy + θ − u ax)

= I10 ̟
1 + I01 ̟

2 + ϑ− I00 α1 = J̟2 + ϑ− α1,

0 = dI10 = ι(dux + ϕ̂ x) = ι(uxx dx + uxy dy + θx − u axx − 2 uxax)

= I20 ̟
1 + I11 ̟

2 + ϑ10 − I00 α2 − 2 I10 α1 = J1 ̟
2 + ϑ1 − α2,

0 = dI20 = ι(duxx + ϕ̂ xx)

= ι(uxxx dx + uxxy dy + θxx − u axxx − 3 ux axx − 3 uxxax)

= I30 ̟
1 + I21 ̟

2 + ϑ20 − I00 α3 − 3 I10 α2 − 3 I20 α1

= J3 ̟
2 + ϑ3 − α3, etc.

Solving the resulting linear system produces the formulae for the pulled-back
Maurer–Cartan forms:

α = −̟1, α1 = J̟2 + ϑ, α2 = J1 ̟
2 + ϑ1, α3 = J3 ̟

2 + ϑ3, . . . .

Observe that, to deduce these formulae for the pulled-back Maurer–Cartan forms,

we did not require any of our explicit formulae for either the moving frame map or

the original Maurer–Cartan forms.
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Substituting these expressions into the differentials of the non-constant differen-
tial invariants, we deduce

dy = ι(dy + η) = ̟2,

d J = dI01 = ι(duy + ϕ̂ y) = ι(uxy dx + uy y dy + θy − uyax)

= I11 ̟
1 + I02 ̟

2 + ϑ01 − I01 α1

= J1 ̟
1 + ( J2 − J2)̟2 + ϑ2 − J ϑ,

d J1 = dI11 = ι(duxy + ϕ̂ xy) = ι(uxxy dx + uxy y dy + θxy − uy axx − 2 uxyax)

= I21 ̟
1 + I12 ̟

2 + ϑ11 − I01 α2 − 2 I11 α1

= J3 ̟
1 + ( J4 − 3 J J1)̟2 + ϑ4 − J ϑ1 − 2 J1 ϑ,

d J2 = dI02 = ι(duy y + ϕ̂ y y) = ι(uxy y dx + uy y y dy + θy y − uy yax)

= I12 ̟
1 + I03 ̟

2 + ϑ02 − I02 α1

= J4 ̟
1 + ( J5 − J J2)̟2 + ϑ5 − J2 ϑ.

Breaking these formulae up into horizontal and vertical14 components yields the ex-

plicit recurrence formulae for the differential invariants,

D1 J = J1, D2 J = J2 − J2, dV J = ϑ2 − J ϑ,

D1 J1 = J3, D2 J1 = J4 − 3 J J1, dV J1 = ϑ4 − J ϑ1 − 2 J1 ϑ,

D1 J2 = J4, D2 J2 = J5 − J J2, dV J2 = ϑ5 − J2 ϑ,

the first couple of which we produced earlier by direct calculation. Proceeding by

induction (or, more directly, by (8.32) below), we easily verify that all higher-order

differential invariants are obtained by successively applying the invariant total deriva-
tive operators to the fundamental invariant J = I01:

J1 = D1 J, J2 = D2 J + J2, J3 = D2
1 J,

J4 = D1D2 J + 2 J D1 J = D2D1 J + 3 J D1 J,

J5 = D2
2 J + 3 J D2 J + J3, . . . .

Similarly, we can determine the differentials of the basic invariant horizontal and

contact forms. Taking ω to be dx or dy in (7.6), we find

d̟1
= dι(dx) = ι

[
d(dx) + v(∞)(dx)

]
= ι(da) = ι(ax dx) = α1 ∧̟

1

= − J̟1 ∧̟2 + ϑ ∧̟1,

d̟2
= dι(dy) = ι

[
d(dy) + v(∞)(dy)

]
= 0.

14Since the pseudo-group acts projectably, the invariant horizontal forms contain no contact compo-
nents, and hence the invariant vertical differential coincides with the usual vertical differential. Non-
projectable actions are slightly more complicated; see [31] for details.
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In view of (7.8), we deduce the basic commutation formula

(7.11) [D1,D2 ] = J D1

for the invariant differential operators. Finally, taking ω = θ to be the order 0 contact

form, we deduce

dϑ = dι(θ) = ι
[

dθ + v(∞)(θ)
]

= ι
[

dx ∧ θx + dy ∧ θy − ax θ
]

= ̟1 ∧ ϑ1 + ̟2 ∧ ϑ2 − α1 ∧ ϑ = ̟1 ∧ ϑ1 + ̟2 ∧
(
ϑ2 − J ϑ

)
.

Therefore,

(7.12) D1ϑ = ϑ1, D2ϑ = ϑ2 − J ϑ,

which reproduces (6.9). The recurrence formulae for the higher order contact forms

are similarly constructed.

Our second pseudo-group Example 11 can be handled by analogous manipula-

tions. But we prefer to wait for the alternative, more powerful computational ap-

proach based on power series expansions, which will be presented next.

8 Power Series

A practical disadvantage of the computational algorithms developed above is that
they must be implemented order by order, and so may require an excessive amount

of computing. In [53], we showed how formal power series expansions can be used

to concisely formulate the structure equations for general pseudo-groups. In this sec-
tion, we explain how power series can streamline the computation of moving frame

normalizations and resulting recurrence formulae. Throughout, the symbols h, k,H
and K will be used to denote formal parameters in power series. Keep in mind that
these parameters are not affected by any pseudo-group transformations.

Given a local diffeomorphism of M mapping the source variables z = (x, u) to the
target variables Z = (X,U ), we introduce the formal power series

(8.1) Xi[[ h, k ]] =

∑

#I,# J≥0

1

I! J!
Xi

I J hIk J , Uα[[ h, k ]] =

∑

#I,# J≥0

1

I! J!
Uα

I J hIk J ,

in h = (h1, . . . , hp) and k = (k1, . . . , kq) to represent its infinite jet or, equivalently,

Taylor expansion at the source point. The groupoid structure of D(∞) is recovered

by formal composition and inversion of power series, making sure that the target of
the initial series matches the source of its successor. Similarly, the infinite jet of a

submanifold S at a point z = (x, u) ∈ S is represented by the power series

(8.2) uα[[ h ]] =

∑

# J ≥ 0

1

J!
uαJ h J

in h = (h1, . . . , hp).
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Given a diffeomorphism represented by (8.1), we let

(8.3) Ûα[[ H ]] =

∑

# J ≥ 0

1

J!
Ûα

J H J, where H = (H1, . . . ,Hp),

denote the corresponding Taylor expansion of the transformed submanifold15 at the

target point Z = (X,U ). The transformed power series (8.3) can be explicitly deter-
mined by eliminating h from the composite power series

(8.4)

Û [[ H ]] = U [[ h, u[[ h ]] − u[[ 0 ]] ]], when H = X[[ h, u[[ h ]] − u[[ 0 ]] ]] − X[[ 0, 0 ]].

In other words one inverts the second equation to rewrite the parameters h = F[[ H ]]

as power series in H, and then substitutes these expressions into the first power series
to produce (8.3). The individual coefficients of the resulting power series yield the

implicit differentiation formulae (2.32).

Example 27 Consider the planar case, M = R2, with a single independent variable

x and a single dependent variable u. The Taylor expansion for a plane curve C ⊂ R2

at a point (x, u) ∈ C has the form

u[[ h ]] = u + ux h + 1
2

uxx h2 + · · · .

Let
X[[ h, k ]] = X + Xx h + Xu k + 1

2
Xxx h2 + Xxu h k + 1

2
Xuu k2 + · · · ,

U [[ h, k ]] = U + Ux h + Uu k + 1
2

Uxx h2 + Uxu h k + 1
2

Uuu k2 + · · · ,

be the Taylor expansion of a general local diffeomorphism of R2. According to (8.4),
to obtain the Taylor series

(8.5) Û [[ H ]] = U + Û X H + 1
2

Û XXH2 + · · ·

for the transformed curve, we first invert the power series

H = X[[ h, u[[ h ]] − u[[ 0 ]] ]] − X[[ 0, 0 ]] =

∞∑

k=1

1

k!
Dk

xX hk

= (Xx + ux Xu) h + 1
2

(Xxx + 2 Xxu ux + Xuu u2
x + Xuuxx)h2 + · · · ,

to produce the expansion

h =
1

Xx + ux Xu

H −
1

2

Xxx + 2 Xxu ux + Xuu u2
x + Xuuxx

(Xx + ux Xu)3
H2 + · · · .

15As before, we assume that the transformed submanifold continues to be represented locally as the
graph of a function.
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Substituting this series into

U [[ h, u[[ h ]] − u[[ 0 ]] ]] =

∞∑

k=0

1

k!
Dk

xU hk

= U + (Ux + ux Uu) h + 1
2

(Uxx + 2 Uxu ux + Uuu u2
x + Uuuxx)h2 + · · ·

leads to the power series Û [[ H ]] = U + Û X H + 1
2

Û XX H2 + · · · , whose coefficients

U , Û X , Û XX , . . . are precisely the implicit differentiation formulae (2.6).

Given a pseudo-group G, we will identify the infinite jets of its transformations

with their Taylor series at the source point. The induced action of G(∞) on the sub-
manifold jet bundle J∞ is obtained by restricting the general prolonged action (8.3)

to the pseudo-group jets, as constrained by the determining equations. A complete

coordinate cross-section K∞ ⊂ J∞ is specified by normalizing an appropriate subset
of the Taylor coefficients in Û [[ H ]] to suitably prescribed constants. Solving the nor-

malization equations for the pseudo-group jet parameters yields a complete moving

frame ρ(∞) : J∞ → H(∞), now expressed in power series form. Moreover, substi-
tuting the induced moving frame formulae back into the series Û [[ H ]] leads to a

(vector-valued) power series

(8.6) I[[ H ]] = (ρ(∞))∗
(

Û [[ H ]]
)
,

whose coefficients IαJ are the normalized differential invariants (3.9).

Definition 28 The invariantization of a formal power series

F[[ h ]] =

∑

# J ≥ 0

F J h J,

whose coefficients F J are differential functions, or, more generally, differential forms,
is the formal power series

(8.7) ι
(

F[[ h ]]
)

=

∑

# J ≥ 0

ι(F J)H J,

obtained by invariantizing the individual coefficients. For clarity, we will consistently

distinguish the formal parameters h in the original series from the formal parameters
H in its invariantization, i.e., formally, ι(h) = H.

In particular, the invariantization of the dependent variable series (8.2) is the nor-

malized differential invariant series (8.6),

(8.8) I[[ H ]] = ι
(

u[[ h ]]
)
.

The power series moving frame method is best assimilated by working through an

explicit example.
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Example 29 The transformations of the pseudo-group (3.10) can be written in
power series form

(8.9) X = f [[ h ]], Y = y + k, U =
u[[ h, k ]]

f ′[[ h ]]
,

where
f [[ h ]] = f + fx h + 1

2
fxx h2 + 1

6
fxxx h3 + · · · ,

while

f ′[[ h ]] = fx[[ h ]] =
∂ f

∂h
[[ h ]] = fx + fxx h + 1

2
fxxx h2 + · · ·

indicates the differentiated series. The prolonged pseudo-group action on the surface

jet space J∞ = J∞(R3, 2) is found by inverting the power series

(8.10) H = f̃ [[ h ]] ≡ f [[ h ]] − f [[ 0 ]] = fx h + 1
2

fxx h2 + · · · , K = k.

Substituting the resulting expressions for h = f̃ −1[[ H ]], K = k, into the series (8.9)
for U leads to

(8.11) Û [[ H,K ]] =

∑

m,n≥0

1

m! n!
Û m,n Hm Kn

=
u[[ f̃ −1[[ H ]],K ]]

f ′[[ f̃ −1[[ H ]] ]]
,

whose coefficients Û m,n = Dm
X Dn

YU are the prolonged pseudo-group transformations

(3.13).
Let us employ this formulation to construct a power series expansion for the mov-

ing frame. The normalizations chosen in Example 10 are equivalent to setting

(8.12) Û [[ H, 0 ]] = 1, so that Û 0,0 = 1, Û m,0 = 0, m ≥ 1,

or, expressed in another way, setting

(8.13) Û [[ H,K ]] = 1 + K V [[ H,K ]],

for some power series V [[ H,K ]]. We solve the normalization equations for the

derivative parameters fm = ∂m
x f , or, equivalently, the power series f [[ h ]]. Using

(8.10) and (8.11), the normalization equations (8.12) can be written in the series
form

(8.14) 1 = Û [[ H, 0 ]] =
u[[ h, 0 ]]

f ′[[ h ]]
and hence f ′[[ h ]] = u[[ h, 0 ]].

The result is equivalent to the individual normalizations fmT = um−1,0, m ≥ 1, the
first few of which were found, much more laboriously, in Example 10.

We substitute the moving frame formulae (8.14) into the lifted series (8.11), re-

sulting in

(8.15) Û [[ H,K ]] 7−→ I[[ H,K ]] = 1 + K J[[ H,K ]],
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where the coefficients of J[[ H,K ]] are the independent (non-phantom) normalized
differential invariants. We use (8.10) and (8.14) to write

(8.16) J[[ H,K ]] =
u[[ h, k ]] − u[[ h, 0 ]]

k u[[ h, 0 ]]
,

where the first parameter

H = f̃ [[ h ]] =

∫ h

0

f ′[[ η ]] dη =

∫ h

0

u[[ η, 0 ]] dη = u h + 1
2

ux h2 + 1
6

uxx h3 + · · ·

is obtained using term-by-term integration. Explicitly inverting the power series:

(8.17) h = f̃ −1[[ H ]] =
1

u
H −

ux

2 u3
H2 −

uuxx − 3 u2
x

6 u5
H3 − · · · , k = K.

On the other hand,

u[[ h, k ]] − u[[ h, 0 ]]

k u[[ h, 0 ]]
=

uy

u
+

uuxy − uxuy

u2
h +

uy y

2 u
k

+
u2uxxy − u uyuxx − 2 u uxuxy + 2 u2

xuy

2 u3
h2

+
u uxy y − uxuy y

2 u2
h k +

uy y y

6 u
k2 + · · · .

Substituting (8.17) into this series produces the formulae

(8.18)

J[[ H,K ]] =
uy

u
+

u uxy − uxuy

u3
H +

uy y

2 u
K

+
u2uxxy − u uyuxx − 3 u uxuxy + 3 u2

xuy

2 u5
H2

+
u uxy y − uxuy y

2 u3
HK +

uy y y

6 u
K2 + · · · .

The individual coefficients of (8.18) are the fundamental normalized differential in-

variants for our pseudo-group.

We can also use power series to re-express the prolongation formula for vector

fields. Given a vector field v as in (4.1), let

(8.19) ξi[[ h, k ]] =

∑

#I,#L ≥ 0

ξi
IL

hI kL

I! L!
, ϕα[[ h, k ]] =

∑

#I,#L ≥ 0

ϕαIL

hI kL

I! L!
,

be the Taylor expansions representing its infinite jet at a point z = (x, u). The coeffi-

cients in the composite series

ϕα[[ h, u[[ h ]] − u[[ 0 ]] ]] =

∑

# J ≥ 0

D J
xϕ

α h J

J!
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are the total derivatives of ϕα with respect to x. Define the vector-valued power series
ϕ̂ [[ h ]], whose components

(8.20) ϕ̂ α[[ h ]] =

∑

# J ≥ 0

ϕ̂ α
J

h J

J!
, α = 1, . . . , q,

provide the prolonged vector field coefficients. The prolongation formula (4.5) can
then be written in vector-valued series form

(8.21)

ϕ̂ [[ h ]] = ϕ[[ h, u[[ h ]] − u[[ 0 ]] ]] −∇hu[[ h ]]
(
ξ[[ h, u[[ h ]] ]] − ξ[[ 0, 0 ]]

)
,

where ∇hu[[ h ]] is the matrix-valued power series obtained by forming the q × p

Jacobian matrix of u[[ h ]] with respect to the formal parameters h.

Example 30 According to (7.9), the prolonged infinitesimal generator of the

pseudo-group (3.10) has the form

(8.22)

v(∞)
= a ∂x − u ax ∂u −

(
u axx + 2 ux ax

)
∂ux

− uy ax ∂uy

−
(

u axxx + 3 ux axx + 3 uxx ax

)
∂uxx

−
(

uy axx + 2 uxy ax

)
∂uxy

− uy y ax ∂uyy
− · · · .

In this case, the prolonged infinitesimal generator series (8.21) has the explicit form

(8.23)

ϕ̂ [[ h, k ]] = − u[[ h, k ]] ah[[ h ]] − uh[[ h, k ]]
(

a[[ h ]] − a[[ 0 ]]
)

= −
∂

∂h

{
u[[ h, k ]]

(
a[[ h ]] − a[[ 0 ]]

) }
,

where

(8.24) a[[ h ]] = a + axh + 1
2

axxh2 + · · ·

is the Taylor series representing the infinite jet of the function a(x).

Finally, we employ power series to establish a complete system of recurrence for-
mulae for the normalized differential invariants. Let ψ̂ [[ H ]] be the vector-valued

power series whose coefficients are the invariant forms (7.5). Its components

(8.25) ψ̂ α[[ H ]] =

∑

# J ≥ 0

ψ̂ α
J

H J

J!
= ι

(
ϕ̂ α[[ h ]]

)
, α = 1, . . . , q,

are obtained by invariantizing the prolonged vector field series (8.20) as described in

Definition 28. Our key recurrence formula (7.6), when evaluated on the differential

invariant series I[[ H ]] = ι(u[[ h ]]), takes the form

(8.26)
dI[[ H ]] = ι

(
du[[ h ]] + ϕ̂ [[ h ]]

)
= ι

(
∇hu[[ h ]] dx + θ[[ h ]] + ϕ̂ [[ h ]]

)

= ∇HI[[ H ]]̟ + ϑ[[ H ]] + ψ̂ [[ H ]].
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Applying (8.21), we obtain the explicit formulae for
(8.27)

ψ̂ [[ H ]] = ψ[[ H, I[[ H ]] − I[[ 0 ]] ]] −∇HI[[ H ]]
(
η[[ H, I[[ H ]] ]] − η[[ 0, 0 ]]

)
,

in which

(8.28) η[[ H,K ]] = ι
(
ξ[[ h, k ]]

)
, ψ[[ H,K ]] = ι

(
ϕ[[ h, k ]]

)
,

are power series whose coefficients are the pulled-back Maurer–Cartan forms ν(∞),
(7.1), or, equivalently, the invariantizations of the expansions (8.19). The phantom

coefficients in I[[ H ]] are used to uniquely prescribe the pulled-back Maurer–Cartan

forms ν(∞), and thus the correction terms in the recurrence formulae.

Example 31 Let us return to the pseudo-group in Example 29. Let

(8.29) α[[ H ]] = α + α1 H + 1
2
α2 H2 + · · · = ι

(
a[[ h ]]

)

be the series whose coefficients are the pulled-backed Maurer–Cartan forms (7.10),

which we identify as the invariantization of the series (8.24). Then, according to
formula (8.26),

(8.30)

dI[[ H,K ]] =
∂I

∂H
[[ H,K ]]̟1 +

∂I

∂K
[[ H,K ]]̟2 + ϑ[[ H,K ]]

−
∂

∂H

{
I[[ H,K ]]

(
α[[ H ]] − α[[ 0 ]]

) }
,

where we used (8.23) to compute

ψ̂ [[ H,K ]] = ι
(
ϕ̂ [[ h, k ]]

)
= ι

(
−

∂

∂h

{
u[[ h, k ]]

(
a[[ h ]] − a[[ 0 ]]

) })

= −
∂

∂H

{
I[[ H,K ]]

(
α[[ H ]] − α[[ 0 ]]

) }
.

Since we are normalizing Û [[ H, 0 ]] = 1, we have

I[[ H, 0 ]] = 1 and hence IH[[ H, 0 ]] = 0, dI[[ H, 0 ]] = 0.

Therefore, when we substitute K = 0 in (8.30), we can solve for the pulled-back
Maurer–Cartan forms

αH[[ H ]] = IK [[ H, 0 ]]̟2 + ϑ[[ H, 0 ]] =

∞∑

j=0

H j

j!

(
I j,1 ̟

2 + ϑ j,0

)
,

and so, upon integrating with respect to H,

(8.31)

α[[ H ]] − α[[ 0 ]] =

∫ H

0

(
IK [[ Ĥ, 0 ]]̟2 + ϑ[[ Ĥ, 0 ]]

)
dĤ

=

∞∑

j=1

H j

j!

(
I j−1,1 ̟

2 + ϑ j−1,0

)
.
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Substituting into (8.30), we find that the horizontal recurrence formulae are given in
power series form by

dH I[[ H,K ]] = IH[[ H,K ]]̟1

+
[

IK [[ H,K ]] −
∂

∂H

(
I[[ H,K ]]

∫ H

0

IK [[ Ĥ, 0 ]] dĤ
) ]

̟2,

or, in components,

(8.32) D1I jk = I j+1,k, D2I jk = I j,k+1 −

j∑

i=0

(
j + 1

i

)
Iik I j−i,1.

Consequently, the lowest order differential invariant J = I01 serves to generate the

entire differential invariant algebra through invariant differentiation. Since the I jk are
functionally independent, there are no syzygies among the differentiated invariants

D
j
1D

k
2 J. Furthermore, the vertical component of (8.30) yields

dV I[[ H,K ]] = ϑ[[ H,K ]] −
∂

∂H

(
I[[ H,K ]]

∫ H

0

ϑ[[ Ĥ, 0 ]] dĤ
)
,

with individual coefficients

(8.33) dV I jk = ϑ jk −

j∑

i=0

(
j + 1

i

)
Iik ϑ j−i,0.

The initial cases reproduce our earlier results found in Example 26.

Finally, using (8.23) and the fact that the group acts projectably, the differentials
of the invariant contact forms are provided by the power series

dϑ[[ H,K ]] = ι
(

dθ[[ h, k ]] + dV ϕ̂ [[ h, k ]]
)

= ι
(

dx ∧
∂θ

∂h
[[ h, k ]] + dy ∧

∂θ

∂k
[[ h, k ]]

−
∂

∂h

{ (
a[[ h ]] − a[[ 0 ]]

)
∧ θ[[ h, k ]]

} )

= ̟1 ∧
∂ϑ

∂H
[[ H,K ]] + ̟2 ∧

∂ϑ

∂K
[[ H,K ]]

−
∂

∂H

{ (
α[[ H ]] − α[[ 0 ]]

)
∧ ϑ[[ H,K ]]

}
.

Substituting the formula (8.31) for the normalized Maurer–Cartan forms, we find

dϑ[[ H,K ]] = ̟1 ∧
∂ϑ

∂H
[[ H,K ]] −

∂

∂H

[ ( ∫ H

0

ϑ[[ Ĥ, 0 ]] dĤ
)
∧ ϑ[[ H,K ]]

]

+ ̟2 ∧

{
∂ϑ

∂K
[[ H,K ]] −

∂

∂H

[ ( ∫ H

0

∂I

∂K
[[ Ĥ, 0 ]] dĤ

)
ϑ[[ H,K ]]

] }
,
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which give both the horizontal and vertical recurrence formulae for the invariantized
contact forms. In particular, the horizontal components yield

D1ϑ jk = ϑ j+1,k, D2ϑ jk = ϑ j,k+1 −

j∑

i=0

(
j + 1

i

)
I j−i,1 ϑ jk,

of which the case j = k = 0 appears in (6.9).

Example 32 As our ultimate illustrative example, we apply the power series moving
frame method to analyze the action of the pseudo-group (3.20) on surfaces S ⊂ R3.

We first write the power series expansions

(8.34)

X = f [[ h ]],

Y = f ′[[ h ]] (y + k) + g[[ h ]] = f ′[[ 0 ]] y + g[[ 0 ]] + f ′[[ h ]]
(

k − a[[ h ]]
)
,

U = u[[ h, k ]] +
f ′ ′[[ h ]] k + g ′[[ h ]]

f ′[[ h ]]

= u[[ h, k ]] +
f ′ ′[[ h ]]

f ′[[ h ]]

(
k − a[[ h ]]

)
− a′[[ h ]] ,

for the pseudo-group transformations, where we have introduced the power series

a[[ h ]] = −

(
f ′[[ h ]] − f ′[[ 0 ]]

)
y + g[[ h ]] − g[[ 0 ]]

f ′[[ h ]]

for later computational convenience. Inverting the power series

(8.35) H = f̃ [[ h ]] ≡ f [[ h ]] − f [[ 0 ]], K = f ′[[ h ]]
(

k − a[[ h ]]
)
,

and substituting the result into the series for U in (8.34) yields the power series

Û [[ H,K ]] for the prolonged action on the surface jet bundle J∞ = J∞(R3, 2), whose

first few coefficients were given in (3.22).
The moving frame normalizations chosen in Example 11 are equivalent to setting

(8.36) Û [[ H,K ]] =
1
2

K2 V [[ H,K ]], where V [[ H,K ]] = 1+V1 H +V2 K + · · ·

is a power series whose constant term equals 1. When we substitute (8.35) into the
normalization equations (8.36), the left hand side becomes the third power series in

(8.34), while the right hand side becomes

1
2

f ′[[ h ]]2
(

k − a[[ h ]]
) 2

v[[ h, k ]],

where we set v[[ h, k ]] = V [[ H,K ]] when their parameters are related by (8.35). The

resulting power series equation,

(8.37)

u[[ h, k ]] = a′[[ h ]] −
f ′ ′[[ h ]]

f ′[[ h ]]

(
k − a[[ h ]]

)
+ 1

2
f ′[[ h ]]2

(
k − a[[ h ]]

) 2
v[[ h, k ]],
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will prescribe the complete moving frame formulae for the pseudo-group parameters
in f [[ h ]], a[[ h ]] as follows. First, setting k = a[[ h ]] in (8.37), we find

(8.38) a′[[ h ]] = u[[ h, a[[ h ]] ]].

We can view (8.38) as the power series analog of the first order nonlinear ordinary
differential equation

da

dx
= u(x, a(x)) with initial conditions a(0) = 0,

reflecting the fact that the power series

a[[ h ]] = axh + 1
2

axxh2 + · · ·

has no constant term. The series solution to this ordinary differential equation has

coefficients
ax = u, axx = ux + axuy = ux + u uy,

axxx = uxx + 2 u uxy + u2uy y + uxuy + u u2
y,

and, in general,

(8.39) a j = (Dx + u Dy) j−1 u.

Second, differentiating (8.37) with respect to k and then setting k = a[[ h ]] yields

(8.40) f ′ ′[[ h ]] = − uy[[ h, a[[ h ]] ]] f ′[[ h ]],

which is the power series form of the second order linear ordinary differential equa-
tion

d2 f

dx2
= − uy(x, a(x))

d f

dx
.

The series solution, based upon (8.39), yields the normalization formulae

fxx = − uy fx, fxxx = − (uxy + axuy y) fx − uy fxx = − (uxy + u uy y − u2
y) fx,

and, in general,

(8.41) f j = fx (Dx + u Dy − uy)
1

fx

f j−1 = fx (Dx + u Dy − uy) j−1(1) , j ≥ 2.

To normalize the one remaining coefficient fx, we differentiate (8.37) twice with re-

spect to k and set h = k = 0, yielding

uy y = f 2
x , so that fx =

√
uy y .

Thus, our pseudo-group normalization formulae (8.39) and (8.41) become

(8.42)
f j =

√
uy y (Dx + u Dy − uy) j−1(1), a j = (Dx + u Dy) j−1u, j = 1, 2, . . . .
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Substituting these normalized values into the power series (8.36) produces the differ-
ential invariant power series

(8.43) I[[ H,K ]] =
1
2

K2 J[[ H,K ]],

where the non-constant coefficients of

(8.44)

J[[ H,K ]] = 1 + J1 H + 1
3

J2 K + · · ·

= 1 +
uxy y + uuy y y + 2 uyuy y

u
3/2
y y

H +
uy y y

3 u
3/2
y y

K + · · ·

form a complete system of normalized differential invariants. The first two terms

recover our earlier formulae (3.24).

The infinitesimal generators of this pseudo-group have the form

(8.45)

v = ξ
∂

∂x
+ η

∂

∂y
+ ϕ

∂

∂u

= a(x)
∂

∂x
+

[
a′(x) y + b(x)

] ∂

∂y
+

[
a′ ′(x) y + b ′(x)

] ∂

∂u
,

where a(x) and b(x) are arbitrary scalar functions. The corresponding Taylor series

are
ξ[[ h, k ]] = a[[ h ]],

η[[ h, k ]] = ah[[ h ]] (y + k) + b[[ h ]],

ϕ[[ h, k ]] = ahh[[ h ]] (y + k) + bh[[ h ]],

and thus the prolonged infinitesimal generator coefficient series (8.21) is
(8.46)

ϕ̂ [[ h, k ]] = ahh[[ h ]] (y + k) + bh[[ h ]] − uh[[ h, k ]] (a[[ h ]] − a[[ 0 ]])

− uk[[ h, k ]]
(

ah[[ h ]] (y + k) − ah[[ 0 ]] y + b[[ h ]] − b[[ 0 ]]
)
.

Invariantization results in

ψ̂ [[ H,K ]] = αHH [[ H ]] K + βH[[ H ]] − IH[[ H,K ]]
(
α[[ H ]] − α[[ 0 ]]

)

− IK [[ H,K ]]
(
αH[[ H ]] K + β[[ H ]] − β[[ 0 ]]

)
,

where the coefficients of

α[[ H ]] = α + α1H + 1
2
α2H2 + · · · , β[[ H ]] = β + β1H + 1

2
β2H2 + · · · ,

are the moving frame pull-backs of the independent Maurer–Cartan forms, so
αk = ι(ak) and βk = ι(bk). According to (8.26)

(8.47) dI[[ H,K ]] = IH[[ H,K ]]̟1 + IK [[ H,K ]]̟2 + ϑ[[ H,K ]] + ψ̂ [[ H,K ]].
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The phantom components of this series identity are the terms in H j ,H jK , and K2.
Substituting K = 0 yields βH[[ H ]] = −ϑ[[ H, 0 ]].Differentiating with respect to K

and then setting K = 0 yields

αHH [[ H ]] = − IKK [[ H, 0 ]]
(
̟2 − β[[ H ]] + β[[ 0 ]]

)
− ϑK [[ H, 0 ]].

Finally, the coefficient of K2 yields

α1 =
1
2

(
J1 ̟

1 + 3 J2 ̟
2 + ϑ0,2

)
.

Substituting these back into (8.47) yields a complete system of recurrence formulae

for the differential invariants. In particular, the horizontal component is

dH I[[ H,K ]] =
(

IH[[ H,K ]] − 1
2

J1

{
H IH[[ H,K ]] + K IK [[ H,K ]]

} )
̟1

+
(

IK [[ H,K ]] − 3
2

J2

{
H IH[[ H,K ]] + K IK [[ H,K ]]

}

−K IKK [[ H, 0 ]] + K IK [[ H,K ]]

∫ H

0

IKK [[ Ĥ, 0 ]] dĤ

+IH[[ H,K ]]

∫ H

0

∫ bH

0

IKK [[ H̃, 0 ]] dH̃ dĤ
)
̟2.

Expanding the series term by term will produce the complete system of recurrence

relations among the differentiated and normalized invariants. In particular, we are

able to conclude that J1, J2 generate all higher-order differential invariants by invari-
ant differentiation. Similar manipulations will produce the recurrence formulae for

the invariant differential forms.

Clearly, the computations can become quite intricate. Nevertheless, we hope that

the reader is convinced that they are completely systematic and can, with sufficient
computing resources, be straightforwardly implemented on a suitably powerful com-

puter algebra system.

9 Further directions

In this paper, we have succeeded in establishing a general, completely algorithmic

moving frame calculus for Lie pseudo-group actions. A broad range of applications

of these methods in geometry, physics, and applied sciences is apparent.
(a) One immediate area of application is to the analysis of symmetry groups of

differential equations [47]. We now have a comprehensive and efficient algo-

rithm that can be applied to the symmetry analysis of the differential equations
of physical and mathematical significance, including gauge theory [5, 27], fluid

mechanics and meteorology [47, 59], and many other systems of partial differ-
ential equations with infinite-dimensional symmetry groups. The first applica-

tions of these methods, to the Korteweg–deVries and KP equations, appear in

[12, 13, 14].
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(b) As we showed in [53], the moving frame method can produce the structure
equations for the symmetry group directly from the determining system, pro-

viding an attractive alternative to the series expansion procedure advocated by
Lisle and Reid [37, 38, 57]. Other methods, and some comparisons between

them, can be found in the papers of Morozov [44, 45]. An advantage of our al-

gorithm is that it also enables one to compute recurrence relations and syzygies
and thereby expose the structure of the algebra of differential invariants with-

out having to solve the determining equations or explicitly compute the moving

frame.
(c) Owing to the overall complexity of the computations, any serious implementa-

tion of the methods discussed here will, ultimately, rely on computer algebra.
Thus, the development of appropriate software packages is a significant prior-

ity. Efficient implementation of the structure equations through some form of

differential Gröbner basis methods would be crucial. Evelyne Hubert [25], has
implemented the finite-dimensional moving frame algorithms using the Maple

package Vessiot16 [2] which can be adapted to the infinite-dimensional situa-

tion. A good source of interesting examples can be found in the classifications of
Lie [35] and Cartan [9].

(d) As noted in [16], the symmetry groups of integrable soliton equations in more
than one space dimension, including the KP, DKP, and Davey–Stewartson equa-

tions, exhibit a Kac–Moody Lie algebraic structure. This motivates developing

in detail the connections between the structure theory of Lie pseudo-groups and
Kac–Moody Lie algebras based on the underlying moving frame calculus.

(e) Symmetry classification methods developed by Lisle, Reid, and Wittkopf [39,

58], rely on the invariant differential operators, and so can be effectively handled
by our moving frame approach. Mansfield [41] has already demonstrated their

efficacy when the symmetry group is finite-dimensional.
(f) The group foliation method of Vessiot [62, 28] provides a powerful, but under-

developed approach to the construction of explicit, non-invariant solutions to

partial differential equations. Modern developments by Ovsiannikov [55] and
Martina, Nuktu, Sheftel, and Winternitz [42, 46] have underscored its potential

for applications. Since the method relies on the classification of the differential

invariants and their syzygies, our moving frame algorithms should play a key
role in its further development. See also Anderson and Fels [3], for a related

method based on exterior differential systems.
(g) Adapting Kogan’s recursive construction [29] in the pseudo-group context

would enable one to directly relate the differential invariants and invariant dif-

ferential forms of smaller sub-pseudo-groups to those of a larger pseudo-groups.
Such an algorithm would help resolve complicated pseudo-group actions by

splitting them into simpler sub-pseudo-group actions.

(h) Applications to variational problems admitting infinite pseudo-groups of sym-
metries, cf. [4], are also immediate via a straightforward adaptation of the con-

structions in [30, 31]. In particular, we can now construct the explicit formu-
las relating variational problems that admit an infinite-dimensional symmetry

16Vessiot is now superseded by the package DifferentialGeometry included in Maple 11.
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group with the differential invariant form of their Euler–Lagrange equations.
Connections with Noether’s Second Theorem, [47], should also be pursued.

(i) Computation of the characteristic cohomology of the invariant variational bi-
complex was investigated by Anderson and Pohjanpelto in the projectable case

[4] and generalized to non-projectable actions by Itskov [27]. Again, the moving

frame calculus provides an ideal tool for further developments in cohomology
theory and computations for general pseudo-group actions.

(j) Additional applications worth investigating include classification of characteris-

tic classes [6], Gel’fand–Fuks cohomology [22], and Chern–Moser invariants of
real hypersurfaces [15].

(k) The analysis of joint invariants and joint differential invariants for pseudo-
groups can be based on an adaptation of the moving frame methods introduced

in [50], and would be a worthwhile project, particularly in light of the applica-

tions in computer vision, geometric numerical integration [43] and the design
of symmetry-preserving numerical algorithms [51].

(l) A longer range hope is that these constructions will help elucidate the incom-

pletely developed foundations of the theory of Lie pseudo-groups. For instance,
how are Cartan’s notions of holohedric and merihedric equivalence [10, 11] re-

flected in our version of the structure equations?
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Paris, 1953, pp. 1335–1384.

[12] J. Cheh, Symmetry pseudogroups of differential equations, Ph.D. thesis, University of Minnesota,
2005.

https://doi.org/10.4153/CJM-2008-057-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-057-0


Moving Frames for Lie Pseudo–Groups 1385

[13] J. Cheh, P. J. Olver, and J. Pohjanpelto, Maurer–Cartan equations for Lie symmetry pseudogroups of
differential equations. J. Math. Phys. 46(2005), no. 2, 023504.

[14] , Algorithms for differential invariants of symmetry groups of differential equations. Found.
Comput. Math. 8(2008), no. 4, 501–532.

[15] S. S. Chern, and J.K. Moser, Real hypersurfaces in complex manifolds. Acta Math. 133(1974),
219–227.

[16] D. David, N. Kamran, D. Levi, and P. Winternitz, Subalgebras of loop algebras and symmetries of the
Kadomtsev–Petviashivili equation. Phys. Rev. Lett. 55(1985), no. 20, 2111–2113.
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