MATRICES WITH ELEMENTS IN A BOOLEAN RING
A, T. BUTSON

1. Introduction. Let B be a Boolean ring of at least two elements con-
taining a unit 1. Form the set I of matrices 4, B, ... of order » having
entries a;;, b4, ... (4,7 =1,2,...,n), which are members of 8. A matrix
U of M is called unimodular if there exists a matrix V of IN such that VU =1,
the identity matrix. Two matrices 4 and B are said to be left-associates if
there exists a unimodular matrix U satisfying UA = B. The main results
in this paper are the constructions of two canonical forms for left-associated
matrices of . The first form may be described very simply; however, it
lacks the desirable property of containing the maximum possible number of
rows which consist entirely of 0’s. Although the second has this property,
its description is quite complicated. They are somewhat similar to the well-
known Hermite form for matrices with elements in a principal ideal ring
(4); and, accordingly, use is made of them to establish analogues of several
other familiar results concerning matrices with elements in a principal ideal
ring. Although row equivalence (left-associativity) and a diagonal canonical
form for equivalent matrices of I are mentioned in (2, pp. 164-165), the
author has been unable to locate his results anvwhere in the literature.

2. Properties of 8. A Boolean ring may be defined as a ring whose ele-
ments are all idempotent. It is easily shown, see (2, pp. 154-155), that it is a
commutative ring of characteristic two, in the usual sense. Then for any «
in B, the element x’ = 1 + x, called the complement of x, satisfiesx + x’ = 1,
xx" = 0, and (x’)" = x. Bell (1) observed that x vy = x + x’y is the g.c.d.
of x and y. Following is a summary of the less obvious but easily established
properties of B which we shall use in the sequel:

(2.1) xx = x;

(2.2) xy = yx;

23) x4+x=0;

(24) x+x =1,% =0, (x') = «;

n

(25) Vx;=x1VXV...VX, =21 + 2122 + x1000x3 + ... + 2% . .. 20y,
=1

is the g.c.d. of x1, x3, . . . , %y;

! n 11
(26) (Zx,)(VM) = Z.’X:j, t = 1,2,...,71;
j=1 i=1 J=1
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2.7 (V x,~> =xixh...xp (Xix2...%,) = V xi;
i=1 i=1

(28) Vx;,=0ifandonlyifx, =x,=...=x, = 0;
i=1

(2.9) xy = 0if and only if xy" = x.

3. Canonical forms. In constructing the canonical forms only one type
of elementary operation is needed, the addition to the elements of a row of x
times the corresponding elements of another row, x being in 8. Furthermore,
this elementary operation can be accomplished by multiplying the given
matrix on the left by an elementary matrix, namely the matrix obtained by
performing the desired elementary operation upon the identity matrix I.
If E is any elementary matrix, it follows from (2.3) that EE = I. Quite
obviously then, any elementary matrix is unimodular, and a product of uni-
modular matrices is unimodular. To facilitate describing the constructions,
we first establish a lemma.

LEMMA 3.1. For 0 <j < n, let A(j) = [B(j) Hn — 7)] be the following

matrix of M:
b11 bm ...b]j 0 0 ... 0
boy b ...bsy O 0 .0
by by ...b, O 0 .0
bira bz o by By O ... 0
bjron bjwan - by By hypa gpa 0
T T W S N

where A = A(n) = [B(n) H(0)], H = A(0) = [B(0) H(n)], and hy, b, = 0,
Bpg Bpp = lpg for p=q+1, ¢+ 2,...,m, ¢g=7+1,j+2,...,n Then
there exists a unimodular matrix U, (which is a product of elementary matrices)
such that multiplying A(j) on the left by U; leaves the last m — j columns of
A (j) invariant, and replaces the elements by ; of the jth column of A (j) by elements
By where by =0 for k=1,2,...,7 — 1; and hyh;; = 0, hishye = hyejy for
E=37+ 1,74+ 2,...,n (Interms of matrices we have
AG—-1) =UA@G) = UJBG Hn — )] =BG —1)H(n —j+ 1)],

where it is to be understood that although H(n — j) is a submatrix of H(n — j + 1),
B(j — 1) is not necessarily a submatrix of B(j)).

Let E,; denote the elementary matrix obtained from I by adding x,; times
the elements of the kth row to the corresponding elements of the jth row,
where x1; = b’

xp; = bYb1b%; . . b1, k=23,...,7—1;

h;ckb;jbéj s b”C—l.j’ k = j + 11 j + 21 BRI (2

Xk j
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[t is quite obvious that adding x;; times the elements of the kth row to the
corresponding elements of the jth row, for # =1,2,...,7 — 1, does not
affect the last # —j columns of A(j). For ¢=74+1, 7+2,...,k;
k=7j+1,74+2...,n;
xkjhk,, = ]’L;’Ckb;jbéj N b)’c_l_jhk/] = hk,lh;ckb;]b;7 . .. b}’;_]_j
= hk/]hkkhltkbi]bgj o .. bl’c—l,j = O
Hence adding x;; times the elements of the kth row to the corresponding

elements of the jth row, for 2 = j + 1,7 + 2, ..., n, does not affect the last
n — j columns of A (j) either. Then multiplying 4 (j) on the left by the uni-

modular matrix
Ej = EnjEn—l,j P Ej+l,j Ej,l,j P Englj

leaves the last # — j columns unaltered, and replaces b,; by

hyj = b1V . VbV (byn, ki 1)V -V (Bshn).

Let Fyj,fork=1,2,...,7— 1,7+ 1,...,n, denote the elementary matrix
obtained from I by adding b, times the elements of the jth row to the corre-
sponding elements of the kth row. Multiplication of E,;4(j) on the left by
Fy; obviously leaves the last #» — j columns invariant, and replaces b,; by
hi; = bry + bishyy; By (2.6) and (2.3) by = by + by, =0 for kb =1,2, ...,
j—1LFork=37+1,j4+2,...,n;

hiihi; = (bry + bishy)hy; = bk 4 brshi; = 0.
Using (2.7) we can write
P (bes + brshys) = bush;
by (brslia) V15025 -« 855y, hn 41) -
(b1, Pr—1,5-1)" (D1, Pt 1,41) - (Bushinn)’;

Il

and since
by (beshin)” = bis (L + beshia) = e + bi il
by (1 + hix) = beshi,
By = by shigdiboy . 055(bpn, hs 51) oo
(br—1, Pi1,1-1)" (Brrr, sirr.e41) "+ - o (Bushnn)’,
and it is now obvious that &k = hy;. Letting
Fi=FyFu1 ... Fi1,;Fi1; ... FoyFqy,

it is apparent that F;E, is the desired unimodular matrix U ;.
We remark that if #;; = 0, then by (2.8)

biy=1by,=...=b;;=0, (bxshrr) = 0, k=j+1,7+2,...,n,

whence by (2.9) b ,h = by;. So in this particular case we may choose [7; = T.

I
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We also note that if #,, = 0, then the requirement that h,h,, = h,, implies
that b,y = Oforg=37+1,74+2,...,p.

TaEOREM 3.1. For any matrix A of M there exists a unimodular matrix U
of M which is a product of clementary matrices and such that UA = II has the
following properties: hy,, = 0 for q > p, hyhy, = 0, and hyhy,, = h,,. (Note
that if a diagonal element is 0, then the entire row consists of 0's). This form
I is unique.

Successive applications of Lemma 3.1to4 = A(n)forj=n,n —1,...,1
vields 4 (0) = [B(0) H(n)] = Hand U U, ... U, = U as the desired matrices.

To prove the uniqueness of H, let U and I/ be unimodular matrices such that
UA = 1II and VA = G each have the form described above. (The result
that a unimodular matrix has an inverse is implied by the succeeding corollary,
which is established without assuming the uniqueness of H. To simplify
matters, we use this now.) Then U=l = A = ""'G, and PH = G, QG = II,
where P = VU and Q = UV~'. Thus, for fixed i, the following svstems of
equations must be satisfied:

n n
Z Dby = Liny Z Guer = by, t=1,2,...,n,
k=1 k=1

where g;, = h;, = 0 for t > ¢. Consider the first system. The last equation
P inhnn = 0 and the condition &, k., = h,, imply py,h,, = Ofort =1,2,... n.
Thus the first system is equivalent to

n—-1
mehm=gu, t=1,2,...,n—1.

k=1
The last equation p;,—1hz—1,—1 = 0 of this system and the condition h,_, ,

hocime1 = bp—r,e IMPly piuihyr,, =0 for t =1,2,...,n — 1. Thus this
system may be reduced to

n—2
Z,’Dikhklzguy t=1,2,...,n — 2.
k=1
Continuing this reduction for t = n — 2, n — 3,...,7 4+ 1 yields pyhy, = 0
for k>4, t=1,2,...,n and replaces the first system by the equivalent
system
Zf)tkhm:gm ' t=1,2,...,1.
le==t
Similarly, the second system is equivalent to
)
Zgikgu:hm t=1,2,...,1.
=1

Now piihii = g and g = by imply

gii = /)iihii = puQuii = PuqiiP il
Guipsihii = quigie = i
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Thus pihe = by, and pihy, = by, for t =1,2,...,1, since h;h; = hy,.
Similarly, ¢s:g:: = g and ¢4:g:, = g4, Now consider

pi,i—lhll—l‘i—l + Piihi,i—1 = gi i1,

§ii—18i-1,i—1 T Giif1,i-1 = Ri i

Multiplying bv %, ;-1 and g; 1, respectively, gives

hi,i_l = hi,1~1gi,i—1, gi,i-1 = h"i,i—lgi‘i—ly
since by i 1hi_1i-1=gii-18i—1,i—1 = 0, and piih; oy = hi oy, Qg i = g4
Hence g; .1 = hi,i—1, and also py s_1hi-1,i-1 = ¢4,i—18i-1,i1~1 = 0 which implies

Piicibicn = qiimagin, = 0, t=1,2,...,1—1

Next we consider

pi,i~2hi—2,i—2 + Pi,i—lhi—l,'i»‘.’ + Pwhi,z;? = gi,i-2
Gi,i—28i-2, i—2 + qi,i-18i—1,i-2 + Giifi im0 = hi,i-‘_’

which are simply Dii—ohi—g,ima + hii—2 = gii—2 and q; —agi2 ;-2 + ii—2 =
ki s Multiplying by %, ;_» and g; ,—, respectively, gives

9

hi,i~2 = gi,i~2hi,i—2» gii-2 = hi,i~2gi,i-—2~

Then g, 0= h; e, and piiohisi—a = qii28i—2,1—» = 0 which implies
pi,i—?hi~2,t = q;i28i-2.=0, t=1,2,...,71— 2.

Continuing this procedure yields g;, = h;, for t = 1,2, ..., 4. Now letting ;
range from 1 to #n establishes the identity of G and H. Hence H is unique.

COROLLARY 3.1. Every unimodular matrix of MM is a product of a finite number
of elementary matrices.

If the matrix A in the above theorem is unimodular, then UA = H, being
a product of unimodular matrices, is also unimodular. Then there exists a
matrix K such that KH = I. The properties of the elements of T are restrictive
enough to require that H = K = I. Since U is a product of elementary
matrices, say E,E, ;... E;, we have E\E, ... EA =1 Hence A = E,
E, ... E, the desired result. We remark that it is now obvious that AU = T
so that U = A~

The canonical form H does not have, in general, the maximum possible
number of rows whose elements are all 0’s that could be obtained by elemen-
tary row operations on 4. The succeeding lemma makes this apparent. Our
procedure now will be to obtain a second canonical form for 4 by performing
elementary operations on H that will replace a row wherever possible by a
row of ('s and alter the form of H as little as possible.

LEMMA 3.2. Let H be the matrix described in the preceding theorem and
Bop g ooy by, 1 <Jde < ... <j, be the diagonal elements in the last
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n — j 4+ 1 columns of H that are different from 0. Then a necessary and sufficient
condition that there exists a umimodular matrix V,, such that multiplication of
H on the left by V; replaces h;; by 0, and leaves invariant the last n — j columns
of H and any row which consists entirely of O's, is that hyhy by, .. Ry = 0.

The most general sequence of elementary operations that could be performed
on the rows of H and leave the necessary things invariant is: the addition of
an arbitrary multiple, say x;,, of the elements of the jth row to the correspond-
ing elements of j,th row, for » = 1,2, ..., ¢; then the addition of say y;.4 ;.
where y;, is arbitrary, times the elements of the j,th row to the correspond-
ing elements of the jth row, for r = 1,2, ..., This replaces 4,; by

14
hy + ;1 Yirlsess Ry + %5055,
which is simply
t
s B 20 9565 K
since

’
j,j,hj,j = 0.

In order to be able to replace %;; bv 0, under the required conditions it is then
necessarv that there exist

x;, and y,,, r=1,2,...,1

such that
14
hj;+ hn; ¥i,%5,h55, = 0.
By adding %;; to both sides we obtain the equivalent condition
3
hu; YiX i hsese = Ry

Since
t

’ ’ _ ’
V35,55, : Bise = 35,55,

§=

by (2.6), we have
12

t t
hyj V1 Wy = <hnZ] ynxhh'm) V1 1,5
$= 7= s=

12 14
= h.ﬁz] (yjrxjrhl)rjr Y] h{f«fs)

12
’
= kjfz] yjrxfrh.'fr ir
r—
= hys.
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But this last relation implies, by (2.9), (2.7), and (2.4), that
hjjhilflh'njz cee h]‘u‘z = 0.
Hence the condition is necessary.
Conversely, suppose
hffhjljl e llvj”'L = ()
Then
t
kjf Vl h’.’fsjs = h’.fﬁ
o=

and the aforementioned sequence of operations with

x; =1, r=1,2,..

Jr

Yin = 1 Vi = hfljlhf2]2 v /l.ir—u'r-l (r=23,...

replaces &, by

12 t
hi; + hjf; V53X h5 g, = Ryt hy; Zl Ry = by + hyy =0

53

b
),

and leaves the necessary things invariant. Thus the condition is sufficient and

the lemma is proved.

Let us now determine precisely what happens to the elements in the first j
columns of H when 4, is replaced by 0 in the manner described in Lemma 3.2.

Since
;r.frhjrﬂ = Oy
hjforqg=1,2,...,7 — 1, is replaced by
12
h'jr/ + hai(/ \_/1 h,frjr'

It is necessary that
h.i.ihilh v hu.n =0,
so that
12
hjj \% h}m = hy;.
r=1
Using this and the tact that &;, = hj;h;; we have
t t
hio + h:’q \_/1 h;rfr = h]‘q + hthjj \_/1 h.'irjr
= hiq + h!th/ = h!a + ko
= 0.

Thus replacing &;; by 0 replaces hy,, for g = 1,2,...,7 — 1, by 0 also
r=1,2,...,tandg =1,2,...,7, hy,, is replaced by

dj, = hio + hfra-
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We observe that
dj,hee = (hyy + hj ) = iy + by =0,

so that the property of H that the product of an element with the diagonal
clement above it be 0 is preserved. Although

Ayl i, # dyyy
in general, we note that
Ajrg(hss ¥ Ry ) = (g + Ryy) (his v I, 50)
= hjo(hj; ¥V hy ) + (R v by, )
= hjohii(hss ¥ by ge) + Ry (hysv by, )
= hyhj; + hiohi i = b+ b,
= dj
We also see that, for g = 1,2, ..., 7,
Roljigy oo Ry, = highihgg, .. hy, = 0.
Hence h;,, 1s replaced by an element
djg = hjy + hiy
such that
Qjralgg = 0, hyhi; = hjy Rl -y =0,
dja(hjy Vv by 5) = dj

Now let [, denote the matrix resulting from replacing /;; by 0 according
to the procedure just described. We want to consider the problem of replacing
a diagonal element, say &y, of H, by 0 using elementary operations that leave
imvariant the last # — { columns and any row whose elements are all 0’s.
[et

Riviry Miginy o ooy Biyiyy 1< tn <2 < ...<1, <]
denote the diagonal elements of I, between
hiiand hy, g,

which are not 0. When we attempt to parallel the discussion of Lemma 3.2 we
find that, although we can add

¥, k5,4, where v, is arbitrary,
times the elements of the 7,th row to the corresponding elements of the zth
row, we can't add

vk, ., where y; is arbitrary,
times the elements of the j,th row to the corresponding elements of the ith

row. In order to leave invariant the last # — ¢ columns of H, we must add
instead
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v;,hih;, ., where y;, is arbitrary,
times the elements of the j,th row to the corresponding elements of the ith
row. With only this change, however, we obtain the following result. A
necessary and sufficient condition that %;; can be replaced by 0, by means of
elementary operations that leave invariant the last # — 7 columns and any
row consisting of Q’s, is that

Baihigiy oo oy, By o ¥ Ryg) (Baygy ¥ hys) oo (Rygg Vo Bys) = 0.
If this condition is satisfied, to replace %;; by 0 we choose
X = X5 =1, r=1,2,...,0,s=1,2,...,L

That is, we first add the ith row to each succeeding row which does not consist
entirely of 0’s. Then a multiple of the elements of each of these rows is added
to the corresponding elements of the ith row. Choosing the y’s appropriately,
this replaces h;,,(¢ = 1,2,...,1), by

|

v t
hi + hiq{ \=/1 Wivi, v Xl (H5, 5,1%9) (= hig + hig = 0.

We note that

hipar g=12,...,5,r=1,2,...,09,
is replaced by

Rivg + Rig;

and

djyq, g=1,2,...,15,s=1,2,...,1
is replaced by

Qjpq + hic = hjo + hjg + hug.

Denote this matrix by Ho. :

We are now able to describe the procedure for obtaining from the first
canonical form H the second canonical form, which we shall call C. Consider
successively the products

h/tjlhjl—ljt—lV .. ’hjtjl P hjjy hjtjt ... hjlhiuiv! e .

of the diagonal elements of H which are different from 0. If none of these are 0,
then C = II. Otherwise, there is a first one, say

h]'.’ihh:il e hhiu

which is 0. In this case replace k;; by 0 according to the procedure described
in Lemma 3.2. Let

Zij= (hj vV hs)hyysa ¥V h5) oo (Byse ¥ hyy),
and consider successively the products

Zjhi”i,,y ey Zjhiviv PP /’l”, ceey
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If all of these arc 0, then C = II;. Otherwise, there is a first one, say
Rihijig -« hiyi, 2,
which is 0. In this case, replace k;; by 0 as before. Let
Zii= (hyyoVhi) ... (b
and let

iy iy

Vhii)(h]'ljl thjvh”) N (hjljt V/ljjvll';','),

iy iy

Bivess - s iy by < ko < oo < ke,

denote the diagonal elements in the first 1+ — 1 columns of H, which are not 0.
Consider successively the products

Zi,jhkwkwy e e ey Zi,jh’kwkw “ e hklkl'
If all of these are 0, then C = H,. Otherwise, there is a first one, say
Zs, il - - - kkﬂc/v

which is different from 0. Replace #;,:, by 0 in, what should be by now, the
obvious manner. Continuing this procedure yields the desired matrix C.
Obviously each one of these steps can be accomplished by multiplying the
particular H , on the left by a unimodular matrix 7,. Hence there is a unimodu-
lar matrix V such that VH = C.

Note that replacing #,, by 0 affects the element in the (p, g)-position of
II,only if ¢ <t < p. Then, for ¢,, # 0, if we let

Cararr Caraas =+« Caryay,
denote the diagonal elements of C between ¢, .1 and ¢,, which are 0, we
see that
Cra = Npo + hyiq + baye + .- + hqz,,t!'
(Although the ¢,,,,’s include any diagonal element that was originally 0 in 11,
say
hages = Cosapn

this does not alfect the representation of ¢,, since the corresponding #,,, = 0.)
We summarize all this in the following theorem.

THEOREM 3.2. Let A be any matrix of M and UA = H 1its first canonical
Jorm. Then there exists a unimodular matrix V such that WA = VUA = VH=C,
where W = VU, has the following form: c,, = 0 for ¢ > p; if ¢,, = 0, then
Cpa=0for g =1,2,...,0; cplyy = 0; tf ¢,y # 0 and

Carary Casanr - -+ Caryan,

denote the diagonal elements of C between ¢,y ,—1 and c,, which are 0, then
Cog = Mpg + Rgyg + Hpy + - -+ h’(u,,(w

Furthermore, it is impossible to replace a diagonal element of C by 0 using clement-
ary operations that leave invariant the succeeding columns and any row which
consists entirely of O's. This form C is unique.
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The proof that C is unique proceeds along the same lines as the proof of
the uniqueness of H, and will be omitted. We wish to emphasize, however,
that to ensure uniqueness it is absolutely necessary to add the elements of
the kth row to the corresponding elements of each succeeding row whose

elements are not all 0’s, as the first step in replacing any diagonal element
i by 0.

THEOREM 3.3. A necessary and sufficient condition that two matrices A and B
of M be left-associates is that they have the same canonical form H (or C).

If PB = A, where P is unimodular, let U be a unimodular matrix such that
UA = H is the first canonical form of A. Then H = UPB = VB, where
V = UP is unimodular, so that H is the first canonical form of B also.
Conversely, suppose that E and F are unimodular matrices such that E4 =
FB = H is the first canonical form of A and of B. Then QB = A, where
Q = E'F is unimodular, and 4 and B are left-associates.

4. Mutual left-divisibility, g.c.r.d., and l.c.l.m. Two matrices 4 and B
of M are said to be mutually left-divisible if and only if there exist matrices
R and T of M such that R4 = B and TB = A. It is well known that the
concepts of mutual left-divisibility and left-associativity are equivalent for
matrices with elements in a principal ideal ring. Steinitz (5) has shown their
equivalence for matrices with elements in an algebraic domain. Kaplansky
(3) considered this problem and obtained some results based on the radical
of a ring. We now show that the two concepts are equivalent for matrices of .
If A and B are left-associates so that PA = B, where P is unimodular, then
P7'B =4 and A and B are mutually left-divisible. Conversely, suppose
RA = Band TB = A. Let UA = H and VB = G be the first canonical forms
of A and B, respectively. Then 4 = U='Hand B = V-'Gimply RUT'H=V"'G
and TV-G = U'H. Whence, PH = G and QG = H, where P = VRU™!
and Q = UTV™!; that is, H and G are mutually left-divisible. In proving the
uniqueness of the first canonical form H, we showed that PH = G and
QG = H, where P and Q are unimodular, imply H = G. However, the uni-
modularity of P and Q was not used anywhere in this proof. Hence, we estab-
lished at that point also that if H and G are mutually left-divisible, then
H = G. This enables us to state the following result.

THEOREM 4.1. A necessary and sufficient condition that two matrices 4 and B
of M be mutually left-divisible is that they be left-associates.

5 o]

of order 2n. Then there exists a unimodular matrix X of order 2xn, which we
write in the form of n X n blocks, such that

Let us now consider the matrix
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4\’| 1 1\712 A 0 _ [) 0
Xy Xoo|lB 0] [0 0
1s the first canonical form of the above matrix. Thus

X11A +X12B = D

so that every c.r.d. of 4 and B is a right divisor of D. Since X is unimodular
there exists a matrix ¥ = X! such that

[A U] _ [Yu Yw][D ()] .

B 0] [|Vu VYoo 0]

whence 4 = YD, B = VD, so that D is a c.r.d. of 4 and B. Hence D is a
g.c.r.d. of 4 and B.

The matrix M = XA = XyB is a c.l.m. of 4 and B. Using an argument
due to Stewart (6), we are able to show that M is the l.clm. of 4 and B
when D = [. To do this, let My = UA = VB be any other c.l.m. of 4 and
B. We can then write the following equations: ‘

Xu Xeelld 0 _ D 0
U 1% B 0| [0 0]
.\'” /\'[3 Y|| Ylg D 0 _ D 0
U 17 Voo Vool 0O 0] 710 0}
Consider the most general solution of the equation
Zu Zu|[D 0] _[D 0}
Zyn ZyullO 0 0 0]
Here Z1s and Zyy are arb}itrzu‘y, but Z,; and Z,; must be chosen so that

ZUD = D, Z-_)1D = 0

Subject to these conditions the following equations must hold:
Xu Xof Vi T _ Zy Zis
L; Y, YZl YZL’ Z'zl ng_g ’
X1 X _ Zy Zu || X X
U v Z'_'l Z22 Xu Xzz '
In particular, it appears that U has the form

U= Z‘JIXH + Z‘szzh

But if D = [ the only solution of ZyD = 0 is Zs; = (. Hence it follows in
this case that U = Z X, then from M, = UA = Z4XnA = ZysM it
follows that 4/ = X514 = X 4B is indeed a l.c.l.m. of 4 and B. These results
are stated in the following theorem.

TuroreEM 4.2, In the matric equation

Xu X AO]_DO]
X XwflB 0] [0 0]
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written in the form of n X n blocks, where X is unimodular, the matrix D is in
all cases a g.c.r.d. of A and B; if D = I, then the matrix M = XnA = X B
is a L.el.m. of A and B.

TueoreMm 4.3. The g.cr.d. D and the l.c.l.m. M of two matrices A and B
are uniquely determined up to unimodular left factors.

If D and D, are two g.c.r.d.’s of 4 and B, then each is a c.l.m. of the other,
say D = UD, and D, = VD. Then by theorem 4.1, D and D, are lelt-
associates.

If M and M, are two l.c.lm.’s of A and B, then each is a common right
divisor of the other, say My, = UM and M = VM, Then by Theorem 4.1,
M and M, are left-associates.

5. Conclusion. The analogy of our results to the corresponding ones for
the classical case seems remarkable when one considers that a principal ideal
ring contains no proper divisors of 0, whereas every element of a Boolean
ring except 1 and 0 is a proper divisor of 0. Finally we mention that the restric-
tion to square matrices was inessential.
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