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Abstract. In this paper, the authors consider the behavior on BMO(R") and
Campanato spaces for the higher-dimensional Marcinkiewicz integral operator which

is defined by
Qx—y) 2dr\ 2
Half)ex) = (f ‘[r—}l« [x — y|"~ lf(y) dy‘ t_3> ’

where Q is homogeneous of degree zero, has mean value zero and is integrable on
the unit sphere. Under certain weak regularity condition on €2, the authors prove that
if / belongs to BMO(R") or to a certain Campanato space, then [uqo(f)]) is either
infinite everywhere or finite almost everywhere, and in the latter case, some kind of
boundedness is also obtained. The corresponding Lusin area integral is also considered.

2000 Mathematics Subject Classification. 42B25.

1. Introduction. As an analogue of the classical Littlewood-Paley g-function
on R, Marcinkiewicz [10] introduced the following integral which is now called the
Marcinkiewicz integral and is defined by

b4 1/2
M(f)(x)=</0 'F("+’)+F(x")‘2F(’“)'2dz) ,

3

where x € [0, 2], f is an integrable function of period 27 and F(x) = fdx f(r)dt.
Marcinkiewicz in [10] conjectured that u is bounded on L7(J0, 2r]) for any p € (1, o0),
which was proved by Zygmund in [18]. Stein [17] generalized the above Marcinkiewicz
integral to a higher dimensional case. Let © be homogeneous of degree zero in R” for
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n > 2, integrable and have mean value zero on the unit sphere S"~!, namely,

/ Q(x)do(x')=0.
SVI—I
The higher dimensional Marcinkiewicz integral ugq is defined by

wotne = ([T S Ermal §)" (L.

x—y|<t |)C Y|” ! r

for x € R". Stein [17] proved that if Q € Lipﬁ(S"*I) for some B € (0, 1], then ug is
bounded on I7(R") for p € (1, 2] and bounded from L!(R") to L *°(R"). Recently,
Al-Salman, Al-Qassem, Cheng and Pan in [1] proved that Q € L(log L)!/>(S" ') is a
sufficient condition such that uq is bounded on L7(R") for p € (1, co). Fan and Sato
[11] proved that € LlogL(S"~!)is a sufficient condition such that 1 is bounded from
L'(R") to L' *°(R"). On the other hand, there are many works concerning the behavior
on BMO(R") and on Campanato spaces for ug. Han [7] proved that if Q € Lipﬁ(S”‘l)
for some 8 € (0, 1], then for f € BMO(R"), uqf is either infinite almost everywhere or
finite almost everywhere, and in the latter case,

la(Mlsmowy < CIIf lBmo®?)

where C > 0Oisindependent of /. Qiu in [14] considered the boundedness in Campanato
spaces for wq, and proved that if Qe Lipﬂ(S”*l) for some B € (0, 1], then for
p e, o), a €[—n/p, min{l/2, B}) and f € EXP(R"), uqf is either infinite almost

everywhere or finite almost everywhere, and in the latter case,

liaf llger@ny < CIf |l germr),

where £%7(R") is the Campanato space and C > 0 is independent of f; see Definition
1.3 below. Ding, Lu and Xue in [6] improved the results of Han and Qiu, and proved
that the above results of Han and Qiu hold when 2 satisfies some Dini-type condition.

In [16], Torchinsky and Wang introduced the Marcinkiewicz integral pgq s
corresponding to the Lusin area function, which is defined by

dydt\'"?
o, s(() = (/fm g t) ,

~/} —z|<t |y—Z|" lf( 2)dz ‘ 3

where x € R” and I'(x) = {(y, 1) € R’}r“ . |y — x| < t}. Torchinsky and Wang [16]
proved that for p € [2, 00),

(1.2)

e, sy < Clif llp,

where C > 0 is independent of /. Here and in what follows, for any p € (1, co) and
f € LP(R"), we use ||f]l, to denote the L”(R") norm of f. Sakamoto and Yabuta
[15] considered the behavior on the Campanato spaces £*7(R"), and proved that if
Qe Lipﬂ(S”“) with g8 € (0, 1], and f € £*P(R") with p € (1, oo) and « € [—n/p, B),
then pug, o is either infinite almost everywhere or finite almost everywhere, and in the
latter case,

g, s(H)llg=r@ny < CIf Nl gormem)

with C > 0 independent of ..
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The purpose of this paper is to improve the results about the behavior on BMO(R")
space and on Campanato spaces £*?(R") for g and pg s when Q satisfies certain
Dini-type regularity condition. To be precise, motivated by [12], under the hypothesis
that Q satisfies certain weak Dini-type regularity condition, we will prove that if
f € BMO(R") or f € £*P(R") for suitable indexes a and p, [uo() (na.s(OP,
respectively) is either infinite everywhere or finite almost everywhere, and in the latter
case, some kind of boundedness for [uo ()] ([, s(f)]?, respectively) is also presented.
Our results are new even for the case Q2 € Lipﬂ(Snfl) for some g8 € (0, 1].

To state the main results of this paper, we first recall some necessary definitions
and notation.

DEFINITION 1.1. ([9]) A locally integrable function f is said to belong to BMO(R")
if there exists some constant C; > 0 such that for any ball B ¢ R”,

w/vm ms(f)|dx < Ci,

where mp(f) denotes the mean value of f over B, that is, mp(f) = ﬁ [pf(x)dx.
The minimal constant C; is defined to be the BMO(R") norm of f and denoted
by [If llBMmo@)-

DEFINITION 1.2. A locally integrable function f is said to belong to BLO(R") if
there exists a constant C, > 0 such that for any ball B C R”,

%Aym—gmﬂws@

The minimal constant C, is defined to be the BLO(R”) norm of f* and denoted by

I lBLO®R"-
The space BLO(R") was first introduced by Coifman and Rochberg in [3]. It

should be pointed out that BLO(R”") is not a linear space and || - ||gLo) is not a norm.
However, it is easy to see

L>®(R") ¢ BLO(R") c BMO(R").

DEFINITION 1.3. Let @ € (—oo, 1] and p € (0, 00). A locally integrable function f
is said to belong to the Campanato space £%7(R") if there exists some constant C3 > 0
such that for any ball B C R”,

/p
i <
|B|ot/n <|B| / lf(x) mQ(f)| dx) < C;.

The minimal constant Cj is defined to be the £%7(R") norm of f and denoted by

If Il g wmy.
The Campanato space £*7(R") was first introduced by Campanato in [2]. For
a € (0, 1], let Lip,(R") be the space of Lipschitz functions, that is,

Lip,(R") = {fi IfllLip,®n = sup Ve /ol < oo}.

x, yeR", x#y |X - y|°‘
It is known that if @ € (0, 1]and p € [1, oc0), then

E¥P(R") = Lip,(R")
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with equivalent norms; if & = 0, then £*7(R") coincides with BMO(R"); and if « €
(=n/p, 0), then £%7(R") coincides with the Morrey space L7 "+7%(R"); see also [2].

Motivated by the definition of BLO(R"), we introduce the following space &5 7' (R"),
which is a subspace of £ 7(R").

DEFINITION 1.4. Let @ € (—o0, 1] and p € (0, 00). A locally integrable function f
is said to belong to & ”(R") if there exists some constant C4 > 0 such that for any ball
BC R,

1 (1 1/p
|BJe/n <ﬁ /B /) — inff m] dX) < Cy.

The minimal constant C; is defined to be the & ”(R") norm of f and denoted by
I Nl g2r ey

We point out that £ ”(R") is not a linear space and || - || gergr 18 NOt @ norm.

In what follows, C always denotes a positive constant that is independent of the
main parameters involved but whose value may differ from line to line. Constants with
subscripts, such as Cy, do not change in different occurrences. For f* ~ g, we mean that
the ratio f/g is both bounded and bounded away from zero by constants independent
of the relevant variables in f/ and g. The notation /< g is defined in a similar way. For
any index p € [1, oo], we denote by p’ its conjugate index, that is, 1/p 4+ 1/p’ = 1. For
each bounded measurable set E, denote by xg the characteristic function of E.

2. Estimates for 1. In this section, we will consider the behavior on BMO(R")
space and on Campanato spaces for ug defined by (1.1). Let 2 be homogeneous of
degree zero and belong to the space L/(S"~!) for some ¢ € [1, co). Denote by w, the
L4(S"~"-modulus of continuity of , that is, for any § > 0,

o= sup [ [ 1003) - 2w o))" @1
yLJ it

{p: |p—11<5

where p is a rotation on S"~!, I is the identity on "' and |p — I| = SUpyegnt |(p —
I)xX'|. For the case ¢ = 1, we denote w,(8) simply by w(8). We will prove that if €2 satisfies
certain Dini-type regularity, then for f € BMO(R") or f € £*?(R") for some suitable
indexes o and p, [uq(f)] is either infinite everywhere or finite almost everywhere.
Precisely, we have the following results.

THEOREM 2.1. Let Q be homogeneous of degree zero, integrable on S"~' and
have mean value zero. Suppose that Q € L(log L)’ (S"~!) for some y € (2, 0o) and the
L'(S"Y-modulus of continuity of Q satisfies

/01 o(8)log (2 n é) ? < 0. 2.2)

Then for any f € BMO(R"), u(f) is either infinite everywhere or finite almost
everywhere, and in the latter case,

2
H [/.LQ(]()] HBLO(R") =< C|lf||]23MO(R”)’

where C > 0 is independent of f.
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THEOREM 2.2. Let Q be homogeneous of degree zero and have mean value zero
on S"~'. Suppose that for some p € (1, 00), Q belongs to the space L7 (S"') and the
L7 (S"YY-modulus of continuity satisfies

1
f 9 ®) s < oo (2.3)
, 3

If « € (=00, 0) and p € (n, ), or a € (—1, 0) and p € (1, o), then for any f €
EXP(RM), uq is either infinite everywhere or finite almost everywhere, and in the latter
case,

| [a(n]’
where C > 0 is independent of f.

2
£20 (R =< C“f”g%ﬁ(R”)’

THEOREM 2.3. Let Q be homogeneous of degree zero, integrable on S"™' and have
mean value zero. Suppose that the L'(S"~')-modulus of continuity of Q2 satisfies

1
/ ©0) 45 < 0o (2.4)
0

§l+e

for some € € (0, 1], then for any a € (0, €/2) and f € E%P(R"), ua(f) is either infinite
everywhere or finite almost everywhere, and in the latter case,

2
H [“9(/[)] HLisz(R") = C“f”iipa(ﬂi?”)’
where C > 0 is independent of f.

Even for the case that € Lip,(S"~') with 8 € (0, 1], Theorem 2.1, Theorem 2.2
and Theorem 2.3 are new.
Observe that for any fixed ball Band x € B, if ing ua(f)(y) < oo, then
ye

. 2. 21172
ua(NE) —inf no () = | [ne(H@] — inf a0}

yeB yeB
From Theorem 2.1 and Theorem 2.2 we can easily deduce the following results.

COROLLARY 2.1. Under the assumption of Theorem 2.1, we have that for any
f € BMO(R"), ua(f) is either infinite everywhere or finite almost everywhere, and in
the latter case,

lne(HlliBLowy < CIf llBmMo®?),

where C > 0 is independent of f.

COROLLARY 2.2. Under the assumption of Theorem 2.2, we have that if « € (—o0, 0)
andp € (n, 00), ora € (—1, 0)andp € (1, 00), thenforany f € E*P(R"), ua(f) is either
infinite everywhere or finite almost everywhere, and in the latter case,

lue(Nlleer@ny < Cllf llewr@n)s
where C > 0 is independent of f.

We remark that it will be interesting to find some other applications of Theorem 2.1
through Theorem 2.3.
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To prove our theorems, we need some preliminary lemmas.
LEMMA 2.1. ([8]) Let o € (0, 1) and p € (1, oo]. Then
1 1/p
i~ sop 180 L2 [ 1) = maor v
BCRe |Bl| Jp
where for p = oo, the formula should be interpreted appropriately.

LEMMA 2.2. ([1]) Let Q2 be homogeneous of degree zero, integrable on S"=' and have
mean value zero. Suppose that Q € L(logL)'/>(S"~"). Then jiq is bounded on LP(R") for
any p € (1, o0).

LEMMA 2.3. Let Q be homogeneous of degree zero and belong to the space LI(S"~")
for certain q € [1, 00). If there exists a constant 0 < ay < 1/2 such that |x| < agR, then

[ / Qy-x) _ Q) p dy}”q < CRY4-0D {m + /'”R ©,(5) ds}
Repi<2r |y —x|"1 |yt - R | '

x/2R O
where w, is as in (2.1).

Lemma 2.3 can be found in [5] for the case ¢ = 1. For the case ¢ > 1, by an
argument similar to that used in [5], one can easily obtain the corresponding result.

Proof of Theorem 2.1. To prove Theorem 2.1, it suffices to verify that for any
f € BMO(R"), if there exists yy € R” such that uq(f)(y9) < oo, then for any ball B ¢ R”
with B 3 yy,

1
i /B ([uat)]” = inf [1a)]’) dx < W Fvoree:

Without loss of generality, we may assume that ||f||pmo@+ = 1, and for each fixed
ball B as above, let r be its radius. Set

8r d
e = [T [ S Hredd 0.5

and

el = [T e G .6

By the vanishing moment of €2, we see that for any y € B,

[N = {us (I = msDxios) 0} < {a(lf — ms(Nlxos) )},

which via Lemma 2.2 gives us that
. 2
[ @ dx s [ 109 = ma(r) dx < 151
B 10B
Observe that for any y € R”, uF (1) (») < ne(f)(») and that for any x € B,

(15 OT = inf F O] < sup [kF W] = [1EOOT
ye
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Thus, to finish the proof of this theorem, it suffices to prove that for any x, y € B,

(15N - [k N0 | S 1. 2.7
Foreach y e R" and ¢ > 0, set

E/(y, 1) = / Mf(z) dz. (2.8)

|ly—z|<t |y - erH1

It is easy to see that

e dt *© dt
[k O@]) - (k5O = | fg [/, 0] 55 - /8 B 0"

e dt
< [0 o]+ B oI 0~ B 0] %
(2.9
A known inequality says that fors, t > 0and y > 1,
st” <slog’(2+s)+ € (2.10)

(see Lemma 2.2 in [13]), which together with the vanishing moment of Q further tells
us that for y € R" and ¢ > 0,

0
0. 01=| 3 [ S=D 1@~ mag 2]

-
. 2KN\B(y, 2619 [V — 2|”

0
10y — 2)|
= Z / ﬁlf(z) — Mpy, 2kr)(f)| dz
W JBg By 21 1y — 2

0
sy e 120y - 2)llog@ + 120y — 2)]) dz
k=—o00 B

(v, 240\ B0, 210
exp (lf(Z) — mpy,, 2kz)(f)|> s
0, 21) Cs
<t @.11)

0
+ > (2’%)1—"/

k=—00 B

where in the last inequality, we have invoked the John-Nirenberg inequality, which
states that there are positive constants Cs and Cg such that for all » € BMO(R"),

|b(z) — mp(b)|

sup— [ exp| ———= ) dz < Gs.
B |BlJg <C5||b”BMO([R<")>

For each fixed x € Band ¢ > 8r, set

Hy(x, y, 1) = |Ef(x, 1) — Ef(x, 8r) — [Ef(y, 1) — Ef(y, 81)]].

https://doi.org/10.1017/50017089507003655 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089507003655

174 GUOEN HU, YAN MENG AND DACHUN YANG

It follows from (2.9) and (2.11) that for any x, y € B,

15O - (k5O
*© dt
< [ IBG - B0l G
*© dt
5/& |E/(x, 8r)\t—2+f |E/(y, 8:)] / Hy(x, y, né >
St [t

8r

Therefore, the proof of inequality (2.7) can be reduced to proving that for any x, y € B,
0 dt
/ Hi(x, y, [)t_z <1 (2.12)
8r

We now prove (2.12). Write

Q=2 Q=D o) () d

=z =z

He(x, y, 1) < /
! 8r<|x— \<r

8r<ly—z|=

|Q2(x — 2)|
+_/g,<|l 2l<t, ly—z|>t |x — |n Ty — Sn—1 ———|f(2) —mp(f)ldz

1
Sr<ly—z|<t, [x—z|>1 |V — ZI”

+f I€20x — )V()—mB(fwz
8r<|x—z|<t, |y—z|<8r

|.X—Z|n 1
+ 190 =2 )~ ()1 dz
8

r<|y—z|<t, |x—z|<8r |.V_Z|n 1y =zt
= Hp(x, y, )+ Hpax, y, )+ Hps(x, y, 1)

+Hf,4(x7 ya t) +Hf, S(X, y, t).

Again by (2.10) and the John-Nirenberg inequality, we obtain that for any x, y € B,

% dt Q(x == gt
[T Gs [ By - m(f)|(/ )dz
8 t R\ B(x, 4r) |X — Z| ez 1

< r/;{ U= ) g =

" B(x, 4r) X — |x =zt
. 1Q(x — 2)|
sy [ U= D1 12) — e s (1) d=
= B 20\B(x, 26 X — 2]

|S2(x — 2)|

Bx, 241 )\ B(x, 26y |X — 2|

+r Z [, 206101 = ma()|
k=2

<1

s
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and similarly,

*© dt
[0 <
8r

A trivial computation tells us that for x, y € B,

Hy 4(x, p, 1) 5/ a2 [f(z) —mp(f)ldz S,

8r<|x—z|<10r |x_Z|n Jx—z T

which leads to

o0 dt
f Hya(x, p, 1) = <1
8r 13

and similarly,

o0 dt
/ Hy s(x, y, l)t—251
8r

To estimate Hy, 1(x, y, t), weemploy the inequality thatforz > 0, 4 > Oandn > 1,

A<t+1714",
and write

o]

dt
Hpq(x, y, t)l_2
Ax—2 Q-

=Ty w1

8r

<
R\ B(x, 8r)

() — ms(7)] (flool ft) *

< C / Qx—z) Q-2 [f (2) — mp(y, 2115 J
~ =5 B 2B, 26 | X — A L (o |x — 2|
+§:k/ Q(x—z)_ Qy—2) dz
= B 2B 26 X — zZ=t =z x — 2]
o0
1Q(x —2)|
SJ k f ( ) MPp(y 2k+1 (f) dZ
; Blx, 2 \B(x, 21 X — Z]" o (220 |
o0
1Ry —2)
+ / ( ) Mp(y 2k+1 (f) dZ
kz B(x, %+ \Bx, 261 |V — ZI” = (o270 |
> K Qx —2) Qy—2) 1
= BB 2t 1Y — z=t oy =zt x — 2
=G; + Gy + Gs.

An argument similar to (2.11) via (2.10) tells us that

G S Y K@ {/ 1Q(x — 2)||log” (2 + |Q(x — 2)|) d=
=3 B(x, 2k+1r)
N / exp <lf(Z) — Mg, 2k+lr)(f)|) dz}
B(x, 26+ 7) Cs
S L
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where we used the facts that y > 2 and Q € L(log L)”(S""). Similarly, we have
G, <1

On the other hand, Lemma 2.3 together with (2.2) now tells us that

<Ookk—1k r > ds ! i ds _
G3NZ @2~ 2% %—i-/z.%]w(B)? S+ a)(8) og 2_|_ ?Nl-

k=3

Combining the estimates for G|, G, and Gj; leads to

*© dt
[ e 0% <

and hence the estimate (2.7) holds. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Similarly to the proof of Theorem 2.1, to prove Theorem 2.2,
it suffices to verify that for any / € £*7(R") with ||f||g«.r@) = 1, if there exists yo € R”
such that uq(f)(y9) < oo, then for any ball B C R” with B 3 yy,

2/p
(3 [ o s} ) s 1

Let r be the radius of B, ug,(f) and u3’(f) be the same as in (2.5) and (2.6), respectively.
Since

(o] = inf (a0}
<[] + [ @] = inf [0}
= (0 + 5O P ~ nt [z o] )
by the vanishing moment of €2, we can write

(57 [ s =gl | )

N <% /B {M’sﬁ([f - ms(f)])(log) (x)}p dx)z/p
" (% fB {3 - inf sl dx>

It follows from Lemma 2.2 that

(|119|/{“9([f mB(f)]XlOB)(x)} )2/1’ <|B|/ [f (x) — mB(f)lde>

S |B|2a/n.

2/p

2/p
2/p

Thus, the proof of Theorem 2.2 is now reduced to proving that for any x, y € B,

(15 OO] - [k OO | < 7 (2.13)
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Let E/(y, ) be the same as in (2.8). If « € (—1, 0), a standard computation gives
us that for any y € Band ¢ > 0,

0 Q(y )
|E(y, D] = / . -
(v, 1) ‘k;w B(y, 200\ By, 217y |y — z|" ] [f B(y, zk,)(f] ‘
0
1R —2)|
- 1) — gy 2o d2
ZOO/()/ WNB(y, 217y |V — 2" Ty — zn—1 l B(y'Zf)(f)i
0 1/
S 2k pl-n (/ |2y — Z)|17/ dz)
k;oo( ) B(y, 2%1)
/p
* </ (@) = mi, 2"r)(f)|p dz)
B(y, 2¢1)
: i (2.14)

On the other hand, if p € (1, 00), it follows from the Holder inequality that

IEr(r. 0)| = / 120G |,f)1' 1) — mag, o) dz

ly—zl<t |¥ —

) 1/p U
1y — 2)I ( )
= ——dz z)—m P dz
B (/B(y, y Ly —z|0=Dp B0 IF(z) 6.0

< e (2.15)
Therefore, for any x, y € B,
[LFOE] = 15O

*© dt

< Ei(x, 1) — Er(y, 1)] —

< [Tl 0 - £ 0] 5
i dt

< [l s 1 / 5080+ [ 0

o0

S+ Hy(x, y, t)

8r

t27vt ’

where Hy(x, y, t) is the same as in the proof of Theorem 2.1. Again decompose
Hy(x, y, t)into

Hy(x, y, 1) < Hpa(x, p, )+ Hya(x, y, 0 + Hys(x, y, 1)
+ Hy4(x, y, 1)+ Hy5(x, y, 1).

Applying the Holder inequality and Lemma 2.3 together with (2.3), we obtain that for
any x, y € B,

o]

dt
Hy(x, y, 1) pomr
8r

Q-2 Q-2 0 a’z> .
</ o ) — ma(h)| ( /| d

-1 n—1
|X - Z|n | | x—z|
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o0 , 1/p
Q(x — Qy—z)w
S.; E :(zkr)a—l (/ (X Z) (V Z) dZ)
k=3 B(x, 2K+1p)\ B(x, 2r)

1/p
XU' vm—mmwﬁ
B(x, 2k+1r)

=z Ty — !
> , 2 w0, (8)
g 2(2](?’)“71(2](?')"/1) —(n—1) 27k+ 14 ds (Zkr)n/p(zkr)a
k=3 2 g

—k—1

—k

oo 2 ! 5)
< 2 Hk(2a=1) | H2ak / wp ( ds
Nrij + 5

2—k—1
<

As for the term Hy »(x, y, t), another application of the Holder inequality yields

o0

dt
Hyo(x, y, 1) 5—
8r t

I2(x — 2)]| b=zl gy )
< d
/[R”\B(x 4r) |X - Z|n Jx — 2|1 lf( ) " (f)| <\/|;c—z| tz_a :

[Q2(x — 2)]
§V/ Wlf() mp(f)l dz
R\ B(x, 4r) |X — Z]|
o0
[Q2(x — 2)]
Sl" / _— (Z)—mB—zkﬂ‘(f) dZ
Z B(x, 26 i\ B, 2t | X — z|F1=e 4 cx200n )

+rY (2" / M dz
k=2

B(x, 2+ )\ B(x, 2kr) |X — z|"H1—

f/ r = (zkr)otfnfl <
zer(],

, 1/p
|1Q2(x — 2)|P dz)

(x, 2K 1)\ B(x, 2kr)

I/p
X (/ lf(Z) — mB(x, 2k+],,)(f) |p dZ)
B(x, 2K+11)\ B(x, 2%r)

+r . (2kr)a7n71(2kr)a(2kr)n/p <
> J

2o
<.

, 1/p
|Q(x — z)F dz)

(x, Dk+1 r)

Similarly to the estimate Hy »>(x, y, t), we have that

o° dt
[0 2
8 t

On the other hand, it is easy to verify that for x, y € B,

@meﬂs/ Q0 — 2)|

8r<|x—z|<10r |x_Z|n Jx—z-T

P2 — ()] dz <
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which gives us that

0 dt
fg Hpalx, v, 00 55 S e
.

and in the same way,

o0

dt
His(x, p, 1) pe < .

8r
Combining the estimates for Hy ;(x, y, ) (1 <j < 5)leads to the estimate (2.13), which
completes the proof of Theorem 2.2.

Proof of Theorem 2.3. By Lemma 2.1, similarly to the proof of Theorem 2.1, it
suffices to prove that for any f* € Lip, (R") with ||f|Lip,r) = 1 and a € (0, €/2), if there
exists yp € R” such that ue(f)(1o) < oo, then for any ball B C R" with B 5 yy,

/ {[Mg(f)(X)]Z — jnlfg [Mﬂ(f)(y)]z} dx < |B|'*2/,
B ye

Let r be the radius of B and ug(f) be as in (2.6). As in the proof of Theorem 2.2, we
need only prove that for any x, y € B,

lE O] - (3Ol | < 7. .16

With the notation Ef(y, t), He(x, y, t) and Hy ;(x, y, f)forj e {1, 2, 3, 4, 5} asin the
proof of Theorem 2.1, a standard computation gives us that for any y € B and ¢ > 8r,

|S2(y_ )l < la_H.

_Z|n l—«a

B0 =< [ m”wlvo ﬂmd<f

ly—zi<t ¥ y—zl<t |V

Therefore, for any x, y € B, we can write
o4 2 ) 2 o dt
5T = 5O 1+ [ Bt 0575

From Lemma 2.3 and (2.4) we deduce that for any x, y € B,

o0

dt
Hya(x, p, 1) P

Qx—z2 Q-2

=z =z

8r

<
R™\B(x, 8r)

< Y
yer

B(x, 251 )\ B(x, 2kr)

[e¢} 2k
<S4 {2—k + /2 @) da} (2rye

k-1

> d
V@)IWUN(/ﬂ§%>dz

Qx —2) Qy—2)
=2 =2

[ (2) — mp(f)| dz

k=3
(o) -k
Sl’zaz 2k(2a71)+22ak‘/ o(3) s
= k-1 &

5 r20¢.
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On the other hand, a trivial computation yields

/ Hyo(x, p, / Hps(x, y,
|Q(X 2)| b=zl gy )

N — dz
fR"\B(x 4 |x —z|"" =zt V@ = ms(l (/;ﬂ 2o

0 -2, ( e di ) d
+/[R<“\BU an |y —zI"” llf() ) /y o P )

2o
<.

Again by some simple calculations, we have that

/OOH( - +/OOH( <1+a/°o at
X, V, - X, V, =~ F S ST
8r PP D 8 30 g 127

Combining the estimates for Hy ;(x, y, ) (1 < i < 5)leads to the estimate (2.16), which
completes the proof of Theorem 2.3.

3. Estimates for area integrals. This section is devoted to the behavior on
BMO(R") space and Campanato spaces £“7(R") for ug, s defined by (1.2). We will
prove that the operator pq, s enjoys the properties which are similar to those of the
operator g in Section 2. Our results can be stated as follows.

THEOREM 3.1. Let Q be homogeneous of degree zero, integrable on S"™' and have
mean value zero. Suppose that the L' (S"=")-modulus of continuity of Q satisfies

f()l@log" <2+§)d8<oo 3.1)

Jfor some o € (2, 00). Then for any f € BMO(R"), g, s(f) is either infinite everywhere
or finite almost everywhere, and in the latter case,
2 2
| [1a.s()] ”BLO(R") = Clif llsmon:

where C > 0 is independent of f.

As for the behavior of [uq. s(f)]> on Campanato spaces, we have the following
conclusions.

THEOREM 3.2. Let Q be homogeneous of degree zero, integrable on S™=' and have
mean value zero. Suppose that the L'(S"~')-modulus of continuity of Q2 satisfies

[T

If a € (—1,0) and p € [2, ), or a € (—o0, 0) and p € (n, 00), then for any f €
EXP(RY), ua s(f) is either infinite everywhere or finite almost everywhere, and in the
latter case,

[[ue. )|
where C > 0 is independent of f.

2
g2/ ) < Cllf”gmp(Ru)y
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THEOREM 3.3. Let Q be homogeneous of degree zero, integrable on S"™' and have
mean value zero. Suppose that the L' (S"=")-modulus of continuity of Q satisfies

1
/ @d6<oo,
0

Sl+e

for some € € (0, 1]. Then for any a € (0, €/2) and f € Lip,(S"™"), nq.s(f) is either
infinite everywhere or finite almost everywhere, and in the latter case,

2
|[1e.s(N] ”Lipzd([R”) = C”f”iipa(R")’

where C > 0 is independent of f.

Similarly to Corollary 2.1 and Corollary 2.2, from Theorem 3.1 and Theorem 3.2,
we can deduce the following results.

COROLLARY 3.1. Under the hypothesis of Theorem 3.1, for any f € BMO(R"), ua(f)
is either infinite everywhere or finite almost everywhere, and in the latter case,

e, s(NlsLomy < Cllf llsmow).

where C > 0 is independent of f.

COROLLARY 3.2. Under the hypothesis of Theorem 3.2, we have that if « € (—1, 0)
and p € [2, 00), or a € (—o0, 0) and p € (n, 00), then for any f € EP(R"), ug. s(f) is
either infinite everywhere or finite almost everywhere, and in the latter case,

||MQ,S(f)||g$~”(Rn) < Cllf llgxr@ry,
where C > 0 is independent of f.

To prove Theorem 3.1, we need recall the boundedness of area integral ug s in
Lebesgue spaces; see [4].

LEMMA 3.1. Let Q be homogeneous of degree and have mean value zero. If Q €
LlogL(S"™"Y), then for any p € [2, 00), there exists a constant C, > 0 such that for all
/e X(RY),

e, s(Olp = Gl llp-

Proof of Theorem 3.1. Similarly to the proof of Theorem 2.1, it suffices to verify
that for any ball B and ' € BMO(R") with ||f||smow+ = 1, if there exists yo € R” such
that ng. s(f)(yo) < oo, then for any ball B C R” with B 3 yy,

1
1B /B ([ s0IC0] — inf [na,s(HOI]”) dx < 1.

Let r be the radius of B and set

(1o, S(f)(x)]z - /08" [ul<1
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[MQ s(f)(x) /g, /|u|<1

and

X —z+ !

Qx—z+tu 2 du dl
/ Sz z 1) g g &
|x—z+tu|<t |

Write
/ [ (NG dx = / [y SN dx + / (12 s dx
B B B

Note that (3.1) implies that Q € LlogL(S"~!). It then follows from Lemma 3.1 and the
vanishing moment of €2 that

| T 50 = s Ton) 0P s 5 [ 179 = a1 v < 15
B B
As in the proof of Theorem 2.1, if suffices to prove that for any x, y € B,
00 2 00 2
(15 ST = [13 SOOI S 1. (3.2)

By the inequality (2.11) and the vanishing moment condition of  on S"~!, we can
write

[ 5T = [ SO

=L
<1 L.

/ / |E/1

8r Jlul<1
/81 »/|.u|<1

NN
8r lul<1

Er(x + tu, t)] [Ef(y + tu, t)]

‘ dudt

dudt

Ep(x+ tu, 1) — @@+m0‘

/ / |E/1
8r lul<1

dudt

En(x+tu, t) — Ep(y + tu, )

// |Eq(y + 1 z)|d”‘”
8r lul<1

|Q(x — z+tu)| dudt
o =2 I e
s St Sy I — 2+l
o0
|2y — z + tu) dudt
[ By =2 0L oz
8r Jul<1 |Uv im: |y_Z+t |

Q(x — z+ tu) 3 Qy—z+t) 1z )|dzdudt

|x —z+ "t |y —z+ !

/81 /|u|<1'/; =t

|x—z+ru|<t
5
= Z Uj(x’ y)t
j=1

https://doi.org/10.1017/50017089507003655 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089507003655

ESTIMATES FOR MARCINKIEWICZ INTEGRALS 183

where fi = [f — mp(f)]x105 and f> = [f — mp(f)] xrn108- A change of variable now tells

us that
> Q zZ d d
U1(X,y)§f / ) / . ||Z(_ |,,)1lf()|d :Ht
1z — u)|
/;r /OB ([u z|<t |Z—Z |n 1 M) lfl(Z)l dzﬁ
dt
< /Sr /103 /(2) = ma(f)l dz L
<1
and

UZ(X’ y) 5 1

The estimates for Us(x, y)and Uy(x, y) are similar, and we only consider Us(x, y).

Write
Q(z—u dudt
U3<x,y)5/ /| | [, e
u—x|<t

|ly—z+u— \|>t

|2(z — u)| dudt

~/8r /Iu x|<t./ “‘<'2"‘ ‘>‘ = |z —ul" llf( ) dz 2
|2z — u)| dudt

+/8r /|/ et PN

o |2(z — u)| dudt
+v/§;r /u—x|<tf:"||<,-8/;z“ |<‘ = |Z |I1 llf( )|d n+2

= Usi(x, ¥) + Usa(x, ») + Uss(x, p).

Forx, ye B,z e R"\ 10B and 2|u — z| > |z — x|, we have |u — z| > 2|x — y| and so

Q |y—z4u—x| dt
Usi(x, y)S/ / ot . llfz( 2)| (/ n+2) dud:z
MN10B J2lu—z|>|z—x| 12 — Ul lz—ul t

1Q(z — w)|
/"\IOB/ZIu—">A x| |Z— |n 1o _ =1 lfz( )|
1

|u_Z|n+l - ly— z 4 u— x|t
[Q2(z — )]
————\f2(2)|dud:z
/"\IOB /2|u sz 12 — |z — ufr+t

4
§r/ [/2(2) - dz
rR\108 12 — x|"t

<1

‘dudz

On the other hand, if z € R" \ 10B, u € R" with |z —u| > 87, [u — x| < t, 2|z —u| <
|z—x|and |y —z4+u — x| > t, then for x, y € B,

t<|ly—z4u—x|<lz—ul+Ix—y| <l|z—ul+2r <2|z—u,
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which in turn gives
1 1
x—z|<|x—ul+lu—z|<t+ §|x—z| < 2|z—u|—|—5|x—z|.

Therefore,

|Q(Z ) /I} Hu=x| gy
<
Us(x, ») S f"\lOB /;u_zq_il;”u_“ =t 12(2)] ( o s dudz

/n\lOB ﬁu sz ||S;(Zu|n )1 [2(2)]

1
| Z|n+l |y_Z+u x|n+l

[2(z — u)|
————f2(2)| dudz
/”\103/214 |<|z—x|<dlu—z| |12 — |z — 1?2

z
Sr/ 12(2)] dz
rR108 12 — X|"T

<1

dudz

Similarly, we can obtain that for any x € B,

|Q(z — dudt
v [ e dz
8r lu—x|<t J2lu—z|<|z—x|, |z—u|<8r |Z_ |n Jz—upt tn+2

IQ(Z u)| ©
<
~ /11\103/ —u|<8r |n l If( )| </|;u n+2 d[) deZ

|x—z|<2[x—ul

|§2(z u)| 1
<
~ /71\103/ <t |l’l ]If‘z( )| u|n+1 dudz

|x—z|<2|x—u|

z
< rf [f2( )|+1 d-
rR\108 1X — Z|"

<1.

It remains to estimate Us(x, y). Note that if |u — z| < 8r, then for any x, y € B,
|y — z+ u — x| < 10r. It then follows that

Us(x, y)sf /| / |puma _ sp-zxey

ly—z —r+u\<r

lu—z"=t |y —z—x4u"!
/%;r /l; x|<t /8r<“‘ aI=t

Qu—12) Qy—z—x+uw
|y—z—x4u|<t

lu—z"1 |y —z—x+ul!
|2u — z)| dudt
I2(2)l dz
/Sr /lu ‘c<tv/|u z|<8r |u |n Ju—z[=1 n+2
1y —z—x+u) dudt
L] e e
8r |lu—x|<t J |y—z—x+u|<10r |y—Z—X+u| 4

/ / / Qu—2z2) Qy—z—x4u
8 Ju—x|<t J Bl

|y—z—xu|=t

lu—z|"!  |y—z—x+um"!
= Usi(x, y) + Usa(x, y) + Usz(x, p).

dudt
) d= o

dudt
AN

dudt
A dz i
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For z € R"\ 10B and u € R” with |u — z| < 8r, we have that |u — x| ~ |z — x|. Thus,

Usi(x, ) + Usa(x, »)

|Q(u — 2)| *®dt
< [ 1o 2 dud
/R" ? fu—zj<sy [ — 2"~ \J oy 2

Qy—z+u—x © dt
+f [f2(2)] 120 _)1| </ —+2> dudz
R~ y—z4u—x|<10r |y —z+u-— x|n |z—x| "

< r/ If (2) — mp(f)| i
R"\10B

~ |x _ Z|n+1

<1

To deal with Uss(x, y), note that

/oo dt 1
max{|u—z|, [x—z|} ln+2 max(|u - Zl, |X - Z|)n+1

< 1 log® (2 + |u —z|/7)
~x —z|"log® 2 + |x — z|/7) lu — z| '

On the other hand, Lemma 2.3 via a trivial computation gives that

[uz>8r

S i (k"z" + K /2’ ?d@)

k=3 274
<1,

Qu — z) Qy—z—x+uw

log”(2 + |u — z|/r)
du
lu —z|

lu—z"~! |y —z— x4 ul"!

This in turn implies that

Qu—z) Qy—z—x+u

U <
sens [ e[ RS I

X (/ j—sz) dudz
max{|u—z|, |x—z|} 7

<f 1)
~ Jo =2 log @+ v —21/7)

- —o 1 - —o+1
S LK g /e) = maeisf d= 4 3k

<1

2k+1B\2kB

Combining the estimates for U;(x, y) (1 <j < 5) then gives the desired inequality (3.2),
which completes the proof of Theorem 3.1.

Proof of Theorem 3.2. As in the proof of Theorem 2.2, it suffices to prove that
forf € £4P7(R") with ||f||¢=r@n = 1, if there exists yy € R” such that ug s(f)(0) < o0,
then for any ball B ¢ R” with B > y¢, and any x, y € B,

(15 sO@T = [13 SN | S 7
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By the estimates (2.14) and (2.15), we have that for any x, y € B,

(15 5N = [ s

Luﬂd@@%mzn ﬁ,ﬁ”h

|Q2(x — z + )] dudt
+ d
f& /u<l sl i o L ozt PO
o0
1Q(y — z + tu)| dudt
+f / ———— g ()dz
s Jug<t Sz |y — 24 tul
Qx —z+tu) Qy —z+ tw) dudt
/ / f n—1 n—1 lf2(2)] dz P a
g Jug<t Szt X — z 4 tul Sy —z+ t
= ij(x, y).
Jj=1

As in the proof of Theorem 3.1, we can deduce that

*dt
Wix, y)+ Wal(x, J/)§</ e a)/ If (z) — mB(f)|dZ<r”+Ol/ prra <
8r
and that
z z
Wi(x, )+ Walx, ») S r/ —_IfZ(nl'l_a dz + r/ —_lfz(nl_a dz < r¥e.
rR10B |X — 2| R\10B 1V — ZI

On the other hand, invoking the fact that

/u—z>8r

we have

Qu—2) Qy—z—x4u)

=z Ty —z—x !

I

k=3

2k
. @da)sl,
hket 8

[2(2)] 12(2)]
W < d — d
s(x, ) < r/ z+[l; z

nx_Z’H_l_a n | X — z|"%
R | |

o0 o0
5 rZ(zkr)—n—l+oz(zkr)n(zkr)a + Z(2kr)—n+a(2kr)n(2kr)a
k=3 k=3
5 r2a’
which completes the proof of Theorem 3.2.
Theorem 3.3 can be proved by the argument used in the proof of Theorem 2.3,
together with some estimates used in the proof of Theorem 3.2. We omit the details for
brevity.
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