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Vanishing Theorems in Colombeau
Algebras of Generalized Functions

V. Valmorin

Abstract. Using a canonical linear embedding of the algebra G∞(Ω) of Colombeau generalized func-

tions in the space of C-valued C-linear maps on the space D(Ω) of smooth functions with compact

support, we give vanishing conditions for functions and linear integral operators of class G∞. These

results are then applied to the zeros of holomorphic generalized functions in dimension greater than

one.

1 Introduction

Differential algebras of generalized functions display a few differences from the fa-

miliar case of C∞ or holomorphic functions: the fact that a Colombeau general-

ized function may vanish at every classical point without being null is a well-known

structural property of Colombeau algebras, i.e., these generalized functions are not

a pointwise concept. Thereby, mathematicians working in this field have been nat-

urally led to seek characteristic conditions for nullity in such algebras. A characteri-

zation is given by Oberguggenberger and Kunzinger [11], giving at the same time a

positive answer to [10, Problem 27.4] by introducing the new concept of a compactly

supported point.

Thus, the recent result by Khelif and Scarpalezos [9] stating that a holomorphic

generalized function which vanishes at all classical points of an open set of C is the

zero function has been surprising enough. Other results involve the geometric na-

ture of the set of zeros to conclude the nullity of holomorphic generalized functions.

It has been shown [12] that holomorphic generalized functions have global holo-

morphic representatives, whereas in [3,5] only local existence of such representatives

was obtained. These results and their proofs show the difference between classical

holomorphic functions and generalized holomorphic functions (also a holomorphic

generalized function may vanish with all its derivatives at a point without being null).

We notice that holomorphic, as well as real analytic, generalized functions are

elements of class G∞ [10, p. 274]. With different techniques from those in this paper,

a canonical embedding of G∞(Ω) in the space of C-valued C-linear maps on the space

D(Ω) of smooth functions with compact support is given in [13]. This result may be

seen as a vanishing one concerning generalized functions in G∞.
The main purpose of this paper is to give vanishing theorems related to this canon-

ical embedding, and then vanishing theorems in the frame of G∞ classes, covering the
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above mentioned topics. The second section of this paper is devoted to results on in-

jectivity of linear maps leading to vanishing conditions. In the third section we deal

with G∞ kernels and vanishing theorems. Results of [9] on zeros of holomorphic

generalized functions are extended to higher dimensions in the last section.

2 Basic Definitions and Notations

Let Ω be an open set in R
d and E(Ω) the space of smooth functions on Ω with its

usual topology. We note K ⋐ Ω to mean that K is a compact set in Ω. Then the

set EM(Ω) (resp. N(Ω)) of moderate sequences (resp. null sequences) consists of

sequences ( fn)n ∈ E(Ω)N with the properties

∀K ⋐ Ω, ∀α ∈ N
d, ∃r ∈ R, ∃C > 0, ‖∂α fn‖L∞(K) ≤ Cnr , n ≥ 1

( ∀K ⋐ Ω, ∀α ∈ N
d, ∀q ∈ R, ∃C > 0, ‖∂α fn‖L∞(K) ≤ Cn−q, n ≥ 1)

respectively. These spaces are both algebras and moreover N(Ω) is an ideal of EM(Ω).

The simplified Colombeau algebra G(Ω) is defined as the quotient

G(Ω) = EM(Ω)/N(Ω)

(see [8, p. 10]). If sequences ( fn)n consist of constant functions on Ω, then one ob-

tains the corresponding algebras EM and N0. The Colombeau algebra of generalized

complex numbers is defined as C = EM/N0. We notice that C is a ring but not a field.

The subset of G(Ω) consisting of elements for which any representative ( fn)n satisfies

∀K ⋐ Ω, ∃r ∈ R, ∀α ∈ N
d, ∃C > 0, ‖∂α fn‖L∞(K) ≤ Cnr, n ≥ 1,

is a subalgebra of G(Ω) denoted by G∞(Ω) (see [10, p. 274]. It is seen that G(Ω) and

G∞(Ω) are sheaves over R
d. The embedding of the Schwartz distribution space E′(Ω)

is realized through the sheaf homomorphism E′(Ω) ∋ f 7→ cl( f ∗ φn|Ω) ∈ G(Ω),
(cl standing for the class modulo N(Ω)) where a fixed sequence (φn)n is defined on

R
d by φn(x) = ndφ(nx), n ≥ 1, where φ belongs to the Schwartz space S(R

d) and

satisfies ∫
φ(x) dx = 1,

∫
xαφ(x) dx = 0, α ∈ N

d, |α| 6= 0.

We use the notations xα = xα1

1 · · · xαd
n and |α| = α1 + · · ·+αd. This sheaf homomor-

phism is extended as an embedding of D ′(Ω) into G(Ω).

The integral of f ∈ G(Ω) over L ⋐ Ω is defined as the generalized complex num-

ber cl(
∫

L
fn(x) dx) and does not depend on the chosen representative ( fn)n. If f has

compact support, one defines the integral
∫

Ω
f as

∫
L

f where L is an arbitrary com-

pact set in Ω which contains supp f in its interior.

3 Embeddings and Vanishing Theorems

The following classical result (Poincaré lemma) will be used throughout the paper.
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Lemma 3.1 Let Ω be an open set in R
d and ϕ ∈ DL(Ω). Then

‖ϕ‖L∞(Ω) ≤
√
λ(L)‖Dϕ‖L2(Ω)

where D = (∂/∂x1) · · · (∂/∂xd), λ denoting the Lebesgue measure.

Let Gc(Ω) denote the algebra of generalized functions ∈ G(Ω) that have compact

support. Let Ω denote an open set of R
d. We consider the C-linear maps

Λ : G(Ω) → L(Gc(Ω); C) and Λ f : Gc(Ω) −→ C

f 7−→ Λ f u 7−→

∫

Ω

f u.

The following result is proved in [7] from a study of invertible elements in R̃c. Here

we give a direct proof.

Proposition 3.2 The linear map Λ is injective.

Proof Let f ∈ G(Ω) be such that Λ f = 0. Let ( fn)n denote a representative of f

and let L be a compact set in Ω. Choose a positive function φ ∈ D(Ω) such that

φ|U = 1 on a bounded open neighborhood U of L and set un = D(φD fn) where

D = (∂/∂x1) · · · (∂/∂xd). We have u = cl(un) ∈ Gc(Ω) and consequently Λ f (u) = 0.

Using integration by parts we find
∫

Ω
fn(x)un(x) dx = (−1)d

∫
Ω
φ(x)|D fn(x)|2 dx.

From Lemma 3.1, it then follows that

‖ fn‖L∞(L) ≤
√
λ(L)‖D fn‖L2(U ) ≤

√
λ(L)‖

√
φD fn‖L2(Ω).

Consequently, for all q > 0, ‖ fn‖L∞(K) = O(n−q) as n → ∞, and then, f = 0 (see

[8, Theorem 1.2.3]).

It is well known [4, p. 60] that Λ : G(Ω) → L
(
D(Ω); C

)
is not injective. Never-

theless, the following theorem was obtained with a different proof in [13].

Theorem 3.3 The restriction of Λ to G∞(Ω) is an injective linear map from G∞(Ω)

to L(D(Ω); C).

Sketch of the proof Let f ∈ G∞(Ω) be such that Λ f = 0, that is, Λ f (ϕ) = 0 for all

ϕ ∈ D(Ω) and take ( fn)n ∈ E∞
M (Ω) a representative of f . Let K0 denote a compact

subset of Ω, κ ∈ D(Ω) such that κ|K0 = 1. There exist a number s such that for all

m, pK,m+d(κ fn) ≤ ns for all n > n0 for some n0 ∈ N large enough. Next, fix a positive

number q and set D = (∂/∂x1) · · · (∂/∂xd).

Let Sn, n ∈ N defined on E(Ω) by Sn(ϕ) =
∫

Ω
D(κ fn)(x)ϕ(x) dx and let Bk =

{nkSn; n ∈ N}, k > 0. Using the Banach–Steinhauss theorem leads to the equicon-

tinuity of the Bk which is equivalent to their boundedness on a neighborhood of

zero in E(Ω). One may choose a neighborhood U of the form U = {ϕ ∈ E(Ω) :

pL;m(ϕ) ≤ ρ}, where L is a compact set containing K and such that

|T(ϕ)| ≤ 1, T ∈ Bk, ϕ ∈ U .
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At this stage one sets

ϕn =
ρD(κ fn)

n−1 + pK;m+d(κ fn)
.

It is shown that ϕn ∈ U . Then taking k = 2q + s and using pK;m+d(κ fn) ≤ ns for

n > n0, a constant C is found such that

|n2q+sSn(ϕn)| = ρn2q+s

∫

Ω

|D(κ fn)(x)|2

n−1 + pK;m+d(κ fn)
dx

which leads to

|n2q+sSn(ϕn)| ≥ C−1n2q

∫

Ω

|D(κ fn)(x)|2 dx, n > n0.

Now from Lemma 3.1, it follows that

‖ fn‖L∞(K0) ≤
√
λ(K)‖D(κ fn)‖L2(Ω) ≤

√
Cλ(K)n−q, n > n0.

This proves the theorem.

In the sequel, functions with compact support are assumed to be trivially extended

to Ω or R
d if needed.

Corollary 3.4 Let f ∈ G∞(R
d) and Ω denote an open set of R

d. Then we have

(i) If f ∗ ϕ̌ = 0 for all ϕ ∈ D(Ω), then f = 0 in Ω.

(ii) If Ω is a convex cone, then f = 0 in Ω implies that f ∗ ϕ̌ = 0 for all ϕ ∈ D(Ω).

(iii) If Ω is a symmetrical convex cone, then f = 0 in Ω if and only if f ∗ ϕ = 0 for all

ϕ ∈ D(Ω). In particular, f = 0 if and only if f ∗ ϕ = 0 for all ϕ ∈ D(R
d).

Proof (i) If f ∗ ϕ = 0 for all ϕ ∈ D(Ω), then a fortiori ( f ∗ ϕ)(0) = 0 for all

ϕ ∈ D(Ω). This means that
∫

Ω
fϕ = 0 for all ϕ ∈ D(Ω). By Theorem 3.3, we have

f = 0 in Ω.

(ii) Conversely, assume that Ω is convex and f = 0 in Ω. Let ϕ ∈ D(Ω) and

K ⋐ Ω. We have suppϕ = − suppϕ. If x ∈ K and y ∈ (− suppϕ), then x − y ∈
K + suppϕ. Since Ω is a convex cone, it follows that K + suppϕ ⊂ Ω. Let Ω1 denote

a bounded open neighborhood of K + suppϕ in Ω. Since f = 0 in Ω, we have f = 0

in Ω1 which is a neighborhood of K . Hence f ∗ ϕ = 0 in Ω.

(iii) Since Ω is symmetrical, it suffices to note that ϕ 7→ ϕ̌ is an isomorphism from

D(Ω) to D(Ω) and apply Theorem 3.3.

As in [7, Theorem 1.1], for Lt(Gc(Ω) ; C), it is easily seen that L(D(Ω) ; C) is a

sheaf over R
d, which allows us to give the following definition.

Definition 3.1 Let T ∈ L(D(Ω) ; C). Then the support of T, denoted supp T, is

defined by

Ω \ supp T := {x ∈ Ω ; ∃Vx open neighborhood of x : ∀ϕ ∈ D(Vx),T(ϕ) = 0},

where ϕ ∈ D(Vx) is trivially extended to Ω.
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Proposition 3.5 For all f ∈ G∞(Ω), supp f = supp Λ f .

Proof Let f ∈ G∞(Ω). Let x ∈ Ω \ supp Λ f . There exists an open neighborhood V

of x such that Λ f (ϕ) = 0 for all ϕ ∈ D(V ). This means that ∀ϕ ∈ D(V ),
∫

V
fϕ = 0.

It follows that f |V = 0. Hence x ∈ Ω \ supp f and then supp f ⊂ supp Λ f .

Conversely, if x ∈ Ω \ supp f , there exists an open neighborhood U of x such that

f |U = 0. Then we have
∫

U
fϕ = 0 for all ϕ ∈ D(U ), that is, Λ f (ϕ) = 0 for all

ϕ ∈ D(U ); hence x ∈ supp f and supp Λ f ⊂ supp f .

We now determine the image of the restriction of Λ to G∞(Ω). The following

proposition will be needed for this purpose.

Proposition 3.6 Let E, F, and G denote vector spaces over a field K and π : E → G

a surjective linear map. If T : F → G is a linear map, then there exists a linear map

p : F → E such that T = π ◦ p and ker p = ker T.

Proof Let E1 be a supplementary subspace of kerπ in E. Denote by q the projection

on E1 parallel to kerπ, r the canonical embedding of E1 in E, and π1 = π|E1. It is

easily seen that π1 is bijective and q◦ r = IdE1
and π = π1 ◦q. We set p = r ◦π−1

1 ◦T.

The maps r, π−1 and T being linear, the same is true for p. We have

π ◦ p = (π1 ◦ q) ◦ (r ◦ π−1
1 ◦ T) = [π1 ◦ (q ◦ r) ◦ π−1

1 π ◦ p] ◦ T = T.

Since r is injective, ker p = T−1(π1(ker r)) = T−1({0G}) = ker T.

Let ϕ ∈ G∞(Ω) and let (ϕn)n denote a representative of ϕ. We denote by Ψn the

linear map defined on D(Ω) by Ψn(ψ) =
∫

Ω
ϕnψ, ψ ∈ D(Ω). It is easily seen that

the Ψn’s satisfy the following property:

(3.1) ∀K ⋐ Ω, ∃r ∈ R, ∀α ∈ N
d, ∃C > 0 such that

|Ψn(∂αψ)| ≤ Cnr‖ψ‖L1(K), for all ψ ∈ DK(Ω), n ≥ 1.

Let T be a linear map from D(Ω) to C. From Proposition 3.6, there exists a linear

map Φ = (Φn)n associated with T, such that π ◦ Φ = T and ker Φ = ker T where π
denotes the canonical map from CM to C. The map Φ will be called a representative

of T.

Definition 3.2 A linear map Φ = (Φn)n ∈ L(D(Ω,C
N)) is said to be G∞ of type

L1, if it satisfies (3.1). A linear map in L(D(Ω,C)) is G∞ of type L1 if it admits a

representative which is G∞ of type L1.

The subspace of L(D(Ω,C)) of all linear maps G∞ of type L1 will be denoted by

L∞
0 (D(Ω,C)). It follows straightforwardly from the definitions that Λ(G∞(Ω)) ⊂

L∞
0 (D(Ω,C)). Actually we have the following.

Theorem 3.7 The restriction of Λ to G∞(Ω) is a bijective linear map from G∞(Ω) to

L∞
0

(
D(Ω) ; C

)
.
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Proof We already know from Theorem 3.3 that Λ is injective; it remains to show that

it is surjective. Let S ∈ L∞
0 (D(Ω,C)) and let Ψ = (Ψn)n denote a representative of S

which is G∞ of type L1. Using the inequality ‖ · ‖L1(K) ≤ mes(K)‖ · ‖L∞(K), it is seen

from (3.1) that the Ψn and all their derivatives are measures, that is, distributions of

order 0. Hence each Ψn, n ≥ 1 is represented by a smooth function ϕn on Ω. It

follows that Ψn(∂αψ) = (−1)|α|
∫

K
∂αϕnψ for every ψ ∈ DK (Ω). Set ∂αϕn = gn.

We note that for any compact set N in Ω we have

(3.2) sup
f∈L1(N)

‖ f‖L1(N)≤1

∣∣∣
∫

K

gn f
∣∣∣ = ‖gn‖L∞(N).

Let f ∈ L1(K) be such that ‖ f ‖L1(K) ≤ 1 and let ε > 0. Let Ω1 denote a relatively

compact open neighborhood of K in Ω and set Ω1 = K1. Choose ψ ∈ DK1
(Ω) such

that ‖ f −ψ‖L1(K) ≤ ε. Hence we have ‖ψ‖L1(K) ≤ ‖ f ‖L1(K) + ε ≤ 1 + ε. Let f̃ denote

the trivial extension of f to K1. Writing

∫

K

gn f =

∫

K1

gn f̃ = ε

∫

K1

gn

( f̃ − ψ

ε

)
+

∫

K1

gnψ

and using (3.2) and (3.1), we then find

∣∣∣
∫

K

gn f
∣∣∣ ≤ ε‖gn‖L∞(K1) + C(1 + ε)nr

for some constants r and C. Now if we let ε→ 0 and use again (3.2), we finally get

∀K compact set ⊂ Ω, ∃r ∈ R, ∀α ∈ N
d, ∃C > 0, ‖∂αϕn‖L∞(K) ≤ Cnr, n ≥ 1.

This means that (ϕn)n ∈ E∞
M (Ω). It follows that ϕ = cl(ϕn) ∈ G∞(Ω) satisfies

S = Λϕ, thus proving the theorem

4 G∞ Kernels and Vanishing Theorems

Let K ∈ G(Y × X) where Y and X denote two open sets of R
p and R

m. We define

linear integral operators

K̃ : Gc(Y ) −→ G(X) and tK̃ : Gc(X) −→ G(Y )

u 7−→ K̃ · u v 7−→t K̃ · v,

where (K̃ · u) = cl
(∫

Y
Kn(y, · )un(y) dy

)
and (t K̃ · v) = cl

(∫
Y

Kn( · , x)vn(x) dx
)
;

(Kn)n, (un)n, and (vn)n being representatives of K , u, and v respectively. If u ∈ Gc(Y )

and v ∈ Gc(X), we set

ΛeK·u : Gc(X) −→ C and Λt eK·v : Gc(Y ) −→ C

v 7−→

∫

X

(K̃ · u)v u 7−→

∫

Y

(tK̃ · v)u.
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It is easily seen that if K ∈ G∞(Y × X), then K̃ · Gc(Y ) ⊂ G∞(X) and tK̃ · Gc(X) ⊂
G∞(Y ).

We give a proof of [2, Theorem 21] without the compactness hypothesis on the

support of K .

Theorem 4.1 The linear maps K 7→ K̃ and K 7→ t K̃ are injective.

Proof It is clear that it suffices to prove the result for the first map. We set Dy =

(∂/∂y1) · · · (∂/∂yp) and Dx = (∂/∂x1) · · · (∂/∂xm). Note that if K̃ = 0, it follows

that D̃xK · u = Dx(K̃ · u) = 0 for every u ∈ Gc(Y ). Let (Kn)n be a representative

of K , M, and L compact subsets of Y and X respectively. We choose V ⊂ Y and

U ⊂ X relatively compact open neighborhoods of M and L respectively, ϕ ∈ D(Y )

and ψ ∈ D(X) positive functions such that ϕ|M = 1, suppϕ ⊂ V and ψ|L = 1,

suppψ ⊂ U . For each n there exists xn ∈ U such that

∫

Y

|DyDx((ϕ⊗ ψ)Kn)( · , xn)|2 = sup
x∈U

∫

Y

|DyDx((ϕ⊗ ψ)Kn)( · , x)|2.

Set

un = Dy[DyDx((ϕ⊗ ψ)Kn)]( · , xn) and vn = Dx[ ˜(ϕ⊗ ψ)Kn] · un.

Using partial integrations, we find

vn(x) = (−1)p

∫

Y

DyDx((ϕ⊗ ψ)Kn)( · , x)DyDx((ϕ⊗ ψ)Kn)( · , xn),

which gives

|vn(xn)| =

∫

Y

|DyDx((ϕ⊗ ψ)Kn)( · , xn)|2.

From the definition of xn, we then have for every x ∈ U ,

|vn(xn)| ≥

∫

Y

|DyDx((ϕ⊗ ψ)Kn)( · , x)|2.

Since suppϕ ⊂ V , integrating over U and using Fubini’s theorem yields

λ(U )|vn(xn)| ≥

∫

Y×U

|DyDx((ϕ⊗ ψ)Kn)|2.

Taking into account ϕ|M = 1, ψ|L = 1, and positiveness, Lemma 3.1 gives

λ(V )λ2(U )|vn(xn)| ≥ ‖(ϕ⊗ ψ)Kn‖
2
L∞(V×U ) ≥ ‖Kn‖

2
L∞(M×L).

Now it is easily seen that the above left-hand side is the general term of an element

of N0. Because (xn)n is compactly supported, ψK̃.(ϕu) = 0 and [ ˜(ϕ⊗ ψ)K] · u =

ψK̃ ·(ϕu). Since every compact set of Y×X has a finite covering consisting of compact

sets of the form M × L, it follows that K = 0.
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We now consider the following C−linear map:

TK : Gc(Y × X) −→ C

w 7−→

∫

Y×X

Kw.

We note that ∀u ∈ D(Y ), ∀v ∈ D(X), TK (u ⊗ v) = ΛeK·u(v) = Λt eK·v(u). Then we

have the following.

Theorem 4.2 Let K ∈ G∞(Y × X). The following conditions are equivalent:

(i) K = 0;

(ii) TK |D(Y ) ⊗ D(X) = 0;

(iii) K̃|D(Y ) = 0;

(iv) tK̃|D(X) = 0.

Proof Clearly (i) implies (ii) and (iii) is equivalent to (iv). Assume that (ii) is satis-

fied, that is, TK (ϕ⊗ψ) = 0 for allϕ⊗ψ ∈ D(Y )⊗D(X). Then we have ΛeK·ϕ(ψ) = 0

for allψ ∈ D(X). Since K̃ · ϕ ∈ G∞(X), by Theorem 3.3, K̃ · ϕ = 0 for allϕ ∈ D(Y ),

proving (iii). Assume that (iii) is satisfied. Hence, ΛeK·ϕ(v) = 0 for all v ∈ Gc(X) and

all ϕ ∈ D(Y ). By Fubini’s theorem, this means that Λt eK·v(ϕ) = 0 for all ϕ ∈ D(Y ).

Since tK̃ · v ∈ G∞(Y ), Theorem 3.3 implies that t K̃ · v = 0 for all v ∈ Gc(X), that is,
tK̃ = 0. Now from Theorem 4.1, it follows that t K̃ = 0 implies (i).

5 Zeros of Holomorphic Generalized Functions

We consider holomorphic generalized functions in an open set Ω of C
d. A generalized

function f ∈ G(Ω) is said to be holomorphic if it satisfies the Cauchy–Riemann

equation ∂ f = 0. The set of holomorphic generalized functions is a subalgebra of

G(Ω) denoted by GH(Ω). For a general account of this topic we refer to [1, 3, 5, 6, 12].

In [12], it was proved that any f ∈ GH(Ω) admits a representative ( fn)n such that the

fn’s are holomorphic in Ω.

From the Cauchy formula, it is immediately seen that GH(Ω) ⊂ G∞(Ω). Contrary

to the general situation for generalized functions, it is proved in [9] that if a holo-

morphic generalized function vanishes at every point of a connected open set of C,

then it must be the zero function in this open set. We extend this result to higher

dimension. For the sake of simplicity we work in dimension d = 2.

Theorem 5.1 Let Ω denote a connected open set in C
2, Y a nonvoid open set in C, and

Γ a nonvoid open interval in C such that Y ×Γ ⊂ Ω. If F ∈ GH(Ω) satisfies F(ξ, ζ) = 0

for all (ξ, ζ) ∈ Y × Γ, then F = 0 in Ω.

Proof Let X denote an open set in C such that Y ×X ⊂ Ω and X ∩Γ 6= ∅. Let (Fn)n

be a holomorphic representative of F (see [12]). For every fixed ζ ∈ X, Fn( · , ζ) ∈
H(Y ), and the corresponding sequence is moderate because this is true for (Fn)n.

We denote by gζ its class in GH(Y ). If ζ ∈ X ∩ Γ, it follows from the hypothesis

that gζ (ξ) = 0 for every ξ ∈ Y . Using the result of [9], we get gζ = 0 for every
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ζ ∈ X ∩ Γ. Consequently, for every ϕ ∈ D(Y ), (ΛeF(ϕ))(ζ) = 0 for ζ in a nonvoid

interval non reduced to a point. Since ΛeF(ϕ) ∈ GH(X), it follows, using a result of

[9], that ΛeF(ϕ) = 0. Hence ΛeF = 0, and from Theorem 4.2, F = 0 in Y × X. Since

Ω is connected, using the analytic continuation property of holomorphic generalized

functions [6, 12], we get F = 0 in Ω

A straightforward induction gives the following.

Corollary 5.2 Let Ω denote a connected open set in C
d, d ≥ 2, Y a nonvoid open set in

C and Γi , 1 ≤ i ≤ d−1 nonvoid open intervals in C such that Y ×Γ1×· · ·×Γd−1 ⊂ Ω.

If F ∈ GH(Ω) satisfies F(ξ, ζ1, . . . , ζd−1) = 0 for all (ξ, ζ1, . . . , ζd−1) ∈ Y ×Γ1×· · ·×
Γd−1, then F = 0 in Ω.
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