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PARABOLIC EQUATIONS WITH DISCONTINUOUS
NONLINEARITIES

GlUSEPPINA BARLETTA

In this paper we deal with the homogeneous Cauchy-Dirichlet problem for a class
of parabolic equations with either Caratheodory or discontinuous nonlinear terms.
We then present an application and explicitly point out an existence result for a
differential inclusion, which can be applied to the classical Stefan problem.

1. INTRODUCTION

Let fi be an open, bounded, and connected subset of Rn having the cone property,
let T > 0, and let QT = fi x (0, T). Denote by £ a linear, second order, uniformly
parabolic operator and by / a real valued function defined on QT x R.

The aim of this paper is to study the following Cauchy-Dirichlet problem:

{ Cu = f{x,t,u) in QT,

u(x,0) = 0 onfi,

u(x,t) = 0 o n 3 ( l x (0,T).

Adapting the approach previously used in [14, 15] to get existence results for elliptic
equations with possibly discontinuous nonlinear terms, we establish here two existence
theorems for the above problem and an existence theorem for a differential inclusion.
These results are presented in Section 3, whereas Section 2 is devoted to basic definitions
and preliminary results.
The first theorem deals with the case when the right-hand side / is a Caratheodory
function satisfying a suitable growth condition and is obtained through a fixed point
result of Arino, Gautier, and Penot [2, Theorem 1]. The other treats a different case,
where / has a set of discontinuity points (with respect to u) which is allowed to be more
than countable, but of Lebesgue measure zero.
As far as we know, previous existence theorems for parabolic equations and for parabolic
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inclusions with discontinuous nonlinearities were obtained by using results on pseudo-

monotone operators and under the common assumption of the existence of an upper

solution and a lower solution to the problem; see [4, 5, 16] and the recent monograph

[11]. Furthermore, the discontinuous term either is of the form f + h, where / 6 Lf£c(R)

and satisfies a L'(Qr) boundedness condition with respect to a specified interval, while

h € L2(QT), (see [16]), or it is a function defined on QT x R x R x R " that satisfies

some boundedness, continuity, and nondecreasing conditions (see [5]). In [9] an existence

result is obtained by using variational methods. We adopt here a different approach,

which basically follows the one previously employed in [14] to treat the elliptic case.

Namely, we first pass to a multivalued problem and we look for a solution of it. The

assumptions made then guarantee that such a function is also a weak solution of the

original problem.

2. PRELIMINARIES

Let Q be an open, bounded, and connected subset of Rn, n ^ 3, with the cone

property, let T > 0, and let QT = Q x (0,T). Given p e (1, +00) and m 6 No we denote

by W/"n'p(<3r) the space of functions u £ V{QT) having derivatives (in the distributional

sense) of the form d[dfxu with r € No , s = {su . . . , sn), and \r + s\ := r + si + - • - + sn ^ m,

while W£<1(QT) stands for the space of functions u € LP{QT) having derivatives (in the

distributional sense) of the form dr
td

s
xu where 2r + s ^ 2. On Wm'p(QT) we consider the

norm

N k p = £ \\dr
td

s
xu\\p ,

while W%'1(QT) is equipped with the norm

IMkij, = £ \\<%U\\P + \\dM\p.

where a — {ct\... , a?n) and

9| Q |U „ 9u

Finally, W(QT) denotes the Banach space of functions u € W^1(QT) such that u(x,Q) —
0 for every 1 6 fl and u(x,t) = 0 for every (x, t) 6 dQ x (0,T). One clearly has
IMII,P ^ IMki,P whenever u e W^{QT). The Rellich-Kondrachov theorem [l, p. 144]
guarantees that the embedding
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with 1 ^ p" < ( n + l )p / (n + 1 - p ) if p < n+ 1 and 1 ̂  p* < oo if p ^ n + 1, is compact.
Write C\ for the smallest constant such that

(2.1) IMIp- ^ c,||ti||2iliP V U G W ^ Q T ) .

Let £ be the linear, second order, uniformly parabolic differential operator defined by

du \ ^ d2u v-r . du

where a^ (i, j = 1,. . . , n) are real-valued continuous bounded functions defined on QT,

* € V{QT), with

max{p, n + 2}

n + 2 + e ifp = n + 2 (e > 0),

a 6 L5(<?r), with

s =

2 ' " " * - " 2

n n

and J2 QijixttfZiZj ^ -̂  S £? f°r some A > 0, for every (x,t) £ QT and every

£i> £2, • • • 1 £n € R. [13, Theorem 9.1, p. 341] guarantees that the operator

£ : W(QT) —> ZP(QT)

is bijective and that its inverse

is continuous. Therefore,

(2.2) I I ^ M l k i , ^ H "̂1!! Nip V V e WQT).

We recall the following proposition, which is easily obtained by using [7, Lemma 1] and
[10, Lemma 7.7].

PROPOSITION 2 . 1 . Let u e W{QT) and let E be a measurable subset of R
such that \E\ - 0. Then C(u)(x,t) - a(x,t)u(x,t) = 0 for almost every (x,t) e u'x{E).

Let X and Y be two nonempty sets. A multifunction F from X into Y (in symbols, F :
X —> 2Y) is a function from X into the family of all subsets of Y. The graph of F is the
set {{x,y) €X x Y : y € F{x)}. HW CY we put F~(W) = {x £ X : F{x)C\W ^ 0}.
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When X and Y are two topological spaces we say that F is upper semicontinuous if, for
every closed subset W of Y, the set F~(W) is closed in X. If (X, T) is a measurable
space and Y is a topological space, the multifunction F is called measurable provided
F~(W) € T for every open subset W of Y.

In the sequel, we shall apply the following propositions, which are particular cases of
classical results on multifunctions (see, for instance, [8, 12]).

PROPOSITION 2 . 2 . Let X be a topological space, let ip : X —> R be lower

semicontinuous, and let ip : X —> R be upper semicontinuous. Suppose <p ^ ip in X.

Then the multifunction F : I H [(p(x),ip(x)], x € X, is upper semicontinuous and the

function x i-» d(0,F(x)), x € X, is lower semicontinuous.

PROPOSITION 2 . 3 . Let X and Y be two topological spaces, let Y be regular,

and let F : X —>• 2Y be an upper semicontinuous multifunction with nonempty and

closed values. Then F has a closed graph.

We shall also employ the result below, which is a very special case of [3, Theorem 3.1].

As usual M(QT) denotes the family of all (equivalence classes) of measurable functions

W.QT —> R

LEMMA 2 . 4 . Let U be a nonempty set, let

$ : U —* M{QT) and * : U —• V(QT)

be two operators. Finally, let F : QT —>• 2R be a multifunction with nonempty, convex,

closed values. Assume that:

(2.4.1) ^ is bijective and, whenever v^ —*• v in L"(QT), there exists a subsequence

of j$(^~1(u/,)) | which converges to$(t5~1(v)) at almost all points of QT•

(2.4.2) The set {z € R | F(-, •, z) is measurable) is dense in R.

(2.4.3) F(x, t, •) has a closed graph for almost every (x, t) € QT-

(2.4.4) There exists a function m 6 V{QT) such that

F(x,t,z)C [-m{x,t),m{x,t)]

for almost all (x, t) € QT and each z € R.

Then the problem u € U, ^(u)(x, t) € F[x,t, $(u)(x,t)) almost everywhere in QT

possesses at ieast one solution.

3. RESULTS

3.1. T H E CASE OF CARATHEODORY NONLINEARITIES. In the next theorem we deal
with the case when / is a Caratheodory function. Although such a situation has by now
been very widely investigated, to the best of our knowledge the result below is new. In
particular, we emphasise that, due to the approach adopted, no special growth condition
for f(x,t,-) is required.
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THEOREM 3 . 1 . Let f be a real valued function defined on QT x R. Assume that:

(3.1.1) For almost every (x, t) € QT the function z >-> f(x, t, z) is continuous.

(3.1.2) For every z G R the function (x, t) H* f(x, t, z) is measurable.

(3.1.3) There exist a € V{QT), P £ £<W)/(P--7P)(QT)) where

ifp<n+l, p* G (p,+oo) ifp^n+l,

such that

\f{x,t,z)\ ^ a(x,t) + 0(x,t)\zp

for almost all (x, t) G QT and every z € R.

Moreover, i/1|/?||(pp«)/(p*-7P) > 0 a n d 7 = 1 then ||/?||(pp*)/(P--Tp)-ci||Z:~1[l < 1.
while if 7 > 1 t ien

\\0t\\

Then problem (P) has a solution u €

PROOF: Define, for every v € V{QT),

1 (V)(X,l) — J {X,l, L, (V)(X,l)), (X,l) fc VT-

Assumptions (3.1.1) and (3.1.2) guarantee that the function T is measurable.

Now write, for any r > 0, Kr = {v € W(QT) \ IMIp ^ r}. Clearly Kr is a nonempty,
weakly compact, convex subset of IP{QT)- We show that there exists r > 0 such that
T(KT) CKT. To this end set

a = IMIPI b = ||/?||(pp«)/(p*-7P)> and c = cxM^C"11|.

If v 6 KT then

and using Holder's inequality yields

P II lip II llp'/7
^ j u\\ r-ii..\\V S _i_ 1 . ^ 1 1 / » - i / . ^ l l 1

^. Q -i~ OHẐ  l t / ) l ^ G " t ~ OCi WJL* \ V ] I
II v ' Up* i II ^ ' I l 2 , l , p

^ fl ~l~ wCi | | jC I l l l ^ l l n ^ fl~f* be v .

Thus, when 7 < 1 the conclusion follows from

lim (a + bc1r1 — r) = —00,
r-»+oo
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whereas when 7 = 1 we put r = a/(l — be) and we obtain

If 7 > 1, choose r = {l/jbcyYn'r-ll So

' A T - 1 ' / 1 \ 1/(1-1)

76c7

Hence, in either case, T(Kr) C KT.

Next we prove that T\Kr is a weakly sequentially continuous operator. To this end,
pick a sequence {v/JhgN in Kr weakly converging to v € KT. Due to the weak continuity
of C~l we get lim £~1(iyh) = C~l(v) weakly in W(QT) and, by the Rellich-Kondrachov

theorem, the set (J {JC~1(^/1)} is relatively compact in D'IQT)- Thus, there exists a

subsequence converging to C~l(v) almost everywhere. Using (3.1.1) and taking a subse-
quence if necessary, it follows that

lim T(vh)(x,t)=T(v)(x,t)
n—*+oo

almost everywhere in QT- NOW, by the Arino-Gautier-Penot theorem [2, Theorem 1]
there exists v € KT such that T(v) = v. The function u — C~l{v) lies in W(QT) and

C(u)(x,t) = v(x,t) = T(v)(x,t) = f(x,t,u(x,t)) almost everywhere in QT- fj

3.2. THE CASE OF DISCONTINUOUS (WITH RESPECT TO U) NONLINEARITIES. Given
a real function / defined on QT X R, we put, for every (x, t, z) € QT X R-

f{x,t, z) = liminf f(x,t, w), f(x,t,z) = lim sup/(x, t,w)

and explicitly observe that the function 2 4 f(x, t, z) is lower semicontinuous, while the
function z 1—» f(x, t, z) is upper semicontinuous. Moreover, for every (x, t, z) s QT X R-,
we define

F(x,t,z) = [i(x,t,z)J{x,t,z)}.

LEMMA 3 . 2 . Let f be a real valued function defined on QT x R- Assume that:

(3.2.1) There exists a subset A CR, with \A\ = 0, such that the function (x, t) i->
f(x, t, z) is measurable for every z € R \ A.
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(3.2.2) There is a e V{QT) such that

\f{x,t,z)\£a(x,t)

for almost every (x, t) 6 QT, for every z 6 R.

Then there exists u € W(QT) satisfying

£{u){x,t) e F(x,t,u(x,t))

almost everywhere in QT-

PROOF: We prove that all the assumptions of Lemma 2.4 are satisfied. To this
end choose U = W(QT), $(u) = u, V u € U, <£ = £. Let v e IP{QT) and let
W}/ieN be a sequence in V(QT) weakly converging to v. Then C'1^) —>• C~l(v) in
Wp'l(Qr)- Bearing in mind the Rellich-Kondrachov theorem, there exists a subsequence
of {£~1(UA)}/I 6 N which converges almost everywhere in QT to C~~l(v). Thus (2.4.1) holds.
By hypothesis (3.2.1) we obtain

{z € R | F(-, •, z) is measurable} 3 R \ A,

so (2.4.2) holds true too. Thanks to Propositions 2.2 and 2.3, (2.4.3) is obviously satisfied.
Finally, condition (2.4.4) comes.immediately from the inequality \f{x,t,z)\ ^ a[x,t),
(x,t) €QT, Z€ R. Therefore, Lemma 2.4 yields u € W(QT) such that

C(u)(x,t) € F(x,t,u(x,t)) for almost every (x,t) € QT-

Q

REMARK 3.1. It is worthwhile to note that the classical Stefan problem can be reduced
to a problem of the type studied in Lemma 3.2; see [6, p. 4]. Moreover, [6, Theorem 4.3]
gives a solution to such a problem only when p > n while Lemma 3.2 can be applied for
any p > 1.

REMARK 3.2. The discontinuous nonlinearity treated in [4, 16] is of the form f(u) +
h(x,t), where / € L~C(R), while the boundedness condition required is

|/(2)| ^0{x,t), ze [u(x,t)-a,u(z,t) + a],

u and u being a lower solution and an upper solution, respectively, to the problem consid-
ered there. Although this inequality is formally more general than b) of Lemma 3.2, the
results of [4, 16] exhibit several further restrictions that prevent us treating the general
case.

We now come to problem (P) with / possibly highly discontinuous in u.

THEOREM 3 . 3 . Let f be a real-valued function defined on Qr x R having the
following properties:
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(3.3.1) There exists a set Qo C QT with \Q0\ — 0 such that the set

Df = |^J {z G R | f(x, t, •) is discontinuous at z}
{x,t)eQr\Qo

has measure zero.

(3.3.2) The function (x,t) >-> f(x, t,z) is measurable for every z G R \ Df.

(3.3.3) There exists a function a G V{QT) such that

\f{x,t,z)\^a{x,t)

for almost every (x, t) G QT, for every z € R.

(3.3.4) There exists a set Qi C QT of measure zero such that for every (x, t) G

QT\QI and every z € Df, the condition 0 G F(x, t, z) implies f(x, t, z) = 0.

Then problem (P), with C replaced by C — £ — a(x, t)u, has a solution u 6 W(QT).

PROOF: Thanks to Lemma 3.2, applied with A = Df, there exists a function u €
W(QT) such that £(u){x,t) G F(x,t,u{x,t)) for almost every (x,t) G QT- Let Q2 C QT

be such that |<52| = 0 and C(u){x, t) G F(x,t,u(x,t)) for every (x, t) G QT \ Qi and let

Qs = {{x,t) €QT\Qo \u{x,t)£Df}.

Due to Proposition 2.1 there exists a set Q3 C Qs such that |Q3| = 0 and C(u)(x,t) = 0
3

for every (x,t) G Qf \ Q3. Now, define Q" = \J Q^ obviously, one has |<2*| = 0. We
«=o

prove that

C{u){x,t) = f(x,t,u(x,t)) for every {x,t) G QT \ Q'-

Pick (x,t) G QT\Q*- It (x,t) & Qf then u(x,t) g Df and, consequently, F(x,t,u(x, t)) =

if(x,t,u(x,t))\. If (x,t) G Qf then (x,i) $ Qz, C(u){x,t) = 0 and, by virtue of (3.3.4),

f(x,t,u{x,t)) - 0. So, once again, C(u)(x,t) = f(x,t,u{x,t)). g

REMARK 3.3. We observe that assumptions (3.3.1), (3.3.2), and (3.3.3) immediately
lead to an existence result for the following problem:

du _ JAu + f(x,t,u) almost everywhere in {(x,t) G QT • u{x,t) & Df},

dt I 0 almost everywhere in {{x,t) G QT '• u(x,t) G Df},

0 G [f(x,t,u),f(x, t,u)] almost everywhere in {{x,t) G QT • u(x,t) e D ; } .

A similar problem is treated in [9, Theorem 2.13], but to a more general growth condi-
tion on the nonlinear term, which depends only on (x, z), there corresponds a stronger
restriction on p. Namely, in [9] one has:

\f{x,z)\ < a{x) + b\z\', with a Gl2(fi), p€
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REMARK 3.4. We explicitly point out that the conditions imposed on / in [5] prevent
us considering functions like at(x, t)g(z), with g nonmonotone. Hence, the set of discon-
tinuities of g is at most countable. On the contrary, Theorem 3.3 can be applied also
when the nonlinearities involved have an uncountable set of discontinuity points, as the
next example shows.

E X A M P L E 3 .1 . Let C be the Cantor 'middle thirds' set. It is known that C is closed,
uncountable, and of measure zero. So R \ C is nonempty, open, and has at most countably
many connected components Ah, h = 1,2, . . . . Pick y* > 0 and a bounded sequence

such that

ftinif yh > 0, y* g [jnf yh, sup y^j ,

and define

i

yh if z € 4/,,

Now, set f(x,t,z) = a{x,t)g(z), where a € U'iQr), and a ^ 0. The function / satisfies
all the assumptions of Theorem 3.3, because Dj = C,

\f(x,t,z)\

and 0 € [/(x, t, 2), J(x, t, z)} if and only if a(x, t) = 0, that is f(x, t, z) - 0.

REMARK 3.5. An easy computation ensures that if there exists an open subset A of R
such that Dj C A and

esssup s u p / ( x , t , z) < 0 or essinf inf f(x,t, z) > 0,

then hypothesis (3.3.4) is satisfied.
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