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THE FUNDAMENTAL PRIME IDEALS OF A NOETHERIAN
PRIME PI RING
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Let R be a noetherian prime PI ring and let P be a prime ideal of R. There is a set of prime ideals, the
fundamental prime ideals, associated with the injective hull of R/P and denoted by Fund(P). The set Fund(P) is
finite, by a result of Miiller. In this paper we give a natural description of Fund(P) in terms of the trace ring
of R which strengthens Miiller's result by establishing a uniform bound for the size of Fund(P) for all primes
P in the ring,
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0. Introduction

Let R be a prime noetherian PI ring, let P be a prime ideal of R, and let E denote the
R-injective hull of {R/P)R. Miiller has shown that the set of fundamental prime ideals of
£, Fund(P), is finite. (If P is maximal then the set of fundamental prime ideals is
precisely the set of annihilators of irreducible subfactors of E.) In this note we show that
Fund(P) has a natural formulation in terms of the trace ring of R, and we present a
"finite" procedure for determining Fund(P). Miiller's result follows from this description.
In fact, we are able to prove the following: If R is a prime noetherian PI ring then there
exists a positive integer n such that |Fund(0|^n for all prime ideals Q of R.

1. The second layer condition

Although our main interest here concerns prime ideals and injective modules for
noetherian polynomial identity algebras, many of the basic ideas are valid in a wider
context and we start by describing this context. (For unexplained terminology in what
follows, consult [5, 8], or the specific references provided later—or at first reading
assume that all rings have a polynomial identity and so are fully bounded.)

To begin, let R be a noetherian ring, and let P be a prime ideal of R. If Q is also a
prime ideal, and if there exists an /?-/?-bimodule factor of QnP/QP which forms an
R/Q — i?/P-bimodule that is torsion free on each side, then there is said to be a right link
(or direct link) from Q to P, denoted by Q~~»P. A subset X of speci? is said to be closed
under right links if for each QeX and each Q'-~>Q it follows that Q'eX. The right clique
of P is the smallest subset of spec R which contains P and is closed under right links.

Next we consider injective modules over R. First, if M is a right R-module, denote by
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114 T. H. LENAGAN AND E. S. LETZER

E(M)R the i?-injective envelope of M. Now let U be a uniform right ideal of R/P.
Observe that E(R/P)R^ <§f!=1E(U)R, where n is the Goldie rank of R/P. Hence in order
to study E(R/P)R it is enough to study E(U)R, an indecomposable injective module.
Conversely, if R is an FBN-ring then each indecomposable injective right module is
isomorphic to E(V)R for some uniform right ideal V of a prime factor of R, see [6].

Definition 1.1. Let R be a noetherian ring. Then R is said to satisfy the right second
layer condition if for each prime ideal P of R the following property holds: If
MR c+ E(R/P)R is a finitely generated R-module then there exists a series 0 = M 0 < = - c
Mn = M of right R-modules such that each Mj/M,-_, is isomorphic to a right ideal of
R/Pi for some P, in the right clique of P. (In particular, MPn...Pi=0.) Further, R is
said to satisfy the second layer condition if it satisfies the right and left second layer
conditions. Fully bounded noetherian rings, and in particular noetherian PI rings satisfy
the second layer condition; see [5].

2. Fundamental primes and ideal links

Throughout this section let R be a noetherian ring satisfying the second layer
condition and let P be a prime ideal of R. Choose a uniform module U that is
isomorphic to a right ideal of R/P and set E = E(U)R, the /^-injective hull of U. We start
by defining the fundamental series and fundamental prime ideals of E and summarize
the results that we need. Most of what we say is extracted from [4] and [5, Chapter 9].

Let Y be a set of prime ideals of R. A semiprime ideal S of R is called Y-semiprime if
each prime ideal minimal over S is in Y. Define Ar

1(P) = P, and, for n^ 1,

Xn + 1(P) = {Qespec(R)\Q^Qn for some QneXn(P)}.

Thus X = X(P) = \J?=1Xn{P) is the right clique of P. The set X satisfies the incompar-
ability condition: that is, if QI,Q2EX and Qi^Q2 then Qi — Q2- The fundamental series
{Fn} of E is defined as follows: Fl = ann£(P), and for n^. 1, Fa+l is the full inverse image
in E of the sum of annihilators in E/Fn of all Xa+l-semiprime ideals of R. It is not
difficult to see that E=[J?=1Fn [4, Lemma 5.4; 5, 9.1.2]. We denote by Fundn+i(P)
the set of assassinator prime ideals of E/F'„ and set Fund(P) = U™=1 Fundn(P), the
fundamental prime ideals of P. Thus Fund(P) ̂  right clique(P). However, in general
Fund(P)bright clique(P): this is demonstrated in a spectacular manner by a result of
Miiller [10, Theorem 7] which states that if A is a noetherian PI ring then Fund(P) is
finite, while even for a prime noetherian PI ring right clique(P) may be infinite [9, p. 242].

Our original intention was to gain a better understanding of Miiller's result in the
prime case by finding some known finite set of prime ideals that would contain
Fund(P). In order to do this we develop a description of the fundamental prime ideals
that is internal to the ring R. If A ̂  B are ideals of R, and if Q, P are prime ideals of R
such that B/A is naturally an R/Q — R/P-bimodule that is torsion free on both sides,
then we say that there is an ideal link from Q to P via B/A and write QKP. More
generally, if R, S are prime noetherian rings and RBS is a bimodule that is torsion free
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and finitely generated on both sides then we say that there is a bond from R to S. The
following lemma gives some of the well-known properties concerning torsion and bonds.

Lemma 2.1. Let R and S be noetherian rings satisfying the second layer condition. Let
B be an R-S-bimodule that is finitely generated on each side.

(i) Suppose that S is prime. If Bs is a torsion S-module then ann(B)s#0.

(ii) / / B is faithful on each side then the classical Krull dimensions of R and S are
equal.

(iii) Suppose that R and S are prime rings and have the same classical Krull dimension.
If Bs is not a torsion module then some factor bimodule of B forms a bond from R
to S.

Proof, (i) This follows from [5, 5.1.2].

(ii) This is [5, 8.2.8].

(iii) Suppose that Bs is not torsion, let RTS be the right torsion bimodule, and let
B = B/T. Let RAS be the left torsion bimodule of B. Since Bs is torsion free As must be
faithful, but since RA is torsion RA cannot be faithful. In view of (ii) and the assumption
that the classical Krull dimensions of R and S coincide, we see that A = 0. Hence B is a
bond from R to S.

The next result is essentially in [5, 9.1.2] or [4, Lemma 5.4] although in neither place
is it precisely stated in this form.

Lemma 2.2. Let R be a noetherian ring with the second layer condition and let P be a
prime ideal of R. Let V be a uniform right ideal of R/P and set E = E(U)R. Then:

(i) / / M is a finitely generated submodule of E with M^Fn then there exist
Fund{P)-semiprime ideals Sn,...,S2 of R such that MS n . . .S 2 P=0 .

(ii) / / M is a finitely generated right submodule of E then there exist prime ideals
P, , . . . ,P 1 eFund(P) such that M P , . . . P 1 = 0 .

Proof, (i) The proof is by induction on n. If M= 1 then JVfP = O. If n> 1 and M is
generated by mu...,ms then there are Fund(P)-semiprime ideals TU...,TS such that
miTicFn_1 and it follows that MT^Fn_x where T=Tln--n,Ts is a Fund(P)-
semiprime ideal of R. The result now follows by induction, since MT is finitely
generated.

(ii) This follows from (i) since each Fund(P)-semiprime ideal contains a product of
prime ideals belonging to Fund(P).

Theorem 2.3. Let R be a noetherian ring satisfying the second layer condition and let
P be a prime ideal of R. Then QeFund(P) if and only ifQxP.

Proof. Let Qeass(Fn + 1/Fn) and choose e e F n + 1 \ ^ n s u c h that eQc.Fn. There exist
Fund(P)-semiprime ideals Sn,...,S2 such that eQSn...S2P = 0 by Lemma 2.2(i). Set
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B = QSn...S2nSn...S2P and A = QSn...S2P and note that B/A is an R/Q-R/P-
bimodule. If B/A is torsion as an /?/P-module then there exists an ideal Y of R with
P^Y such that BY^A, by Lemma 2.1(i). In this case we see that eBY=0, and it
follows that eB = 0, since annE(Y) = 0. Now C = (QnSn)(SnnSn-l)...(S2nP) is a pro-
duct of n Fund(P)-semiprime ideals and CsB, so eC = 0. However this implies that
eeFn, by [4, Lemma 5.4]. Thus B/A is not a torsion R/P-module and so, by Lemma
2.1(iii), QxP.

Conversely, suppose that QxP via an ideal link B/A. Choose a right ideal K of R
maximal such that BnK = A. Then there is an embedding of B/A as an essential
submodule of the right /^-module R/K.

Since B/A is finitely generated and torsion free as an K/P-module it embeds into a
finite direct sum of copies of E [5, 2.2.15], and hence R/K also embeds in this way.
Hence, by Lemma 2.2(ii), there are prime ideals Pu...,/>„eFund(P) such that
(R/K)Pn...P,=0, and so Pn...P^K. Thus P,,...PlBcBnK = A, so that Pn...P^Q.
Therefore, P .sQ for some l^i 'gn. However cl./Cdim(K/e) = cl./Cdim(K/P) =
cl. K dim(J?/P,), by Lemma 2.1(ii), so Q = P{ and QeFund(P).

Although the following result may be well known, we give a proof since we have not
been able to locate a specific reference.

Proposition 2.4. Let R be a noetherian ring and let x be a central element of R. If P
and Q are prime ideals of R such that QxP and xeP then xeQ and QxP in R = R/xR.

Proof. Let B/A be an ideal link from Q to P. Since xB = flx£BP£/l it follows that
xeQ. Now B n xmR £ BxR £ A, for some m^l , by the AR property for xR, so
BnxmR = AnxmR. Choose n^O such that Bnx"R#Anx"R, while Bnxn+1i? =
/)nx"+1iJ. Note that the non-zero bimodule (Bnx"R) + A/A gives an ideal link from Q
to P. Set B' = {r|x"reB} and A' = {r\xnreA}. Then multiplication by the central element
x" induces an R-/?-bimodule isomorphism between B'/A' and (B n x"R) + A/A. Thus
B'/A' gives an ideal link from Q to P. If b' = xreB'nxR then x"fc' = x" + 1 r eBnx n + 1 ^ =
/ tnx n + 1 i?c i 4 j so b'eA' and B'nxi?£/4'. Hence B'+ xR/A'+ xR^B'/A' gives an ideal
link from Q to P and the result follows.

An ideal / of a noetherian ring R is said to be polycentral if it can be generated by a
sequence of elements xu...,xn such that for each i=\,...,n the element x, is central
modulo the ideal £j-I \ XjR. Obviously, a centrally generated ideal is polycentral.

Corollary 2.5. Let R be a noetherian ring and let I be a polycentral ideal of R. If P
and Q are prime ideals of R such that QxP and I^P then IQQ and QxP in R = R/I.

3. Lying over and contraction for ideal links

Let R c* S be an embedding of rings. Let Q be a prime ideal of R, and let Q be a
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prime ideal of S. Following a standard convention, we say that Q lies over Q provided Q
is a minimal prime ideal over QriR.

Theorem 3.1. Let R c* S be an embedding of noetherian rings such that S is a finitely
generated right R-module. Suppose further that R and S satisfy the second layer condition.
Let P and Q be prime ideals of R such that QxP. Then there exist prime ideals Q lying
over Q and P lying over P such that QKP.

Proof. The proof may be obtained by retracing the steps of the proofs of [7, 5.1(i)]
and [7, 5.3] after first replacing the direct link {Qar\Qp)/A considered there by an
arbitrary ideal link C/A. We provide an adaptation of this approach.

To begin, choose an ideal K of S maximal such that KnR^PnQ and such that
Q/KnRxP/KnR. To prove the proposition it suffices to show that the conclusion
remains true for the embedding R/KnRc* S/K. Hence we may assume without loss of
generality that K = 0.

We next demonstrate a fundamental property of S. Let C/A be an ideal link in R
from Q to P, and let / be a nonzero ideal of S. Suppose that InC^A. Then (lnR)C
and C(InR) are both contained in A, which in turn implies that InR^PnQ, and it is
easy to see that Q/InR is ideal linked to P/Ir\R via (C + / n R)/{A +1 n R). This
statement contradicts our choice of K above. We may therefore conclude that InC $. A.

We now show that S is uniform as an S-S-bimodule. Let C/A again be an ideal link
from Q to P, and let /, J be ideals of S such that 7#0 but InJ = 0. By the previous
paragraph, InC£ A. So let C' = InC, and let A'~lr\A. Then C/A' is an ideal link
from Q to P. However, JnC' = Jr\InC = Q^A'. Hence the preceding paragraph shows
that J = 0. We conclude that S is a uniform S-S-bimodule.

To describe the assassinators of S, first let HeassSs. Then there exists a nonzero
ideal / of S such that IH = 0. Let C/A be the ideal link in R from Q to P. As
shown above, I n C £ A, and / n C/I nA is an ideal link from Q to P. Since
(InC/InA)-(Hr\R)=0, we see that HnR^P. A left-sided argument shows that if
GeasssS, then GnRsQ. Further, since S is a uniform S-S-bimodule, and since S
satisfies the second layer condition, it follows from [5, 8.3.7] that ass Ss consists of a
single prime ideal H and ass SS consists of a single prime ideal G.

Now we describe the minimal prime ideals of R and S. From the previous paragraph
we let {G}=asssS. Now form a left affiliated series of S-R-bimodules for SSR> say
0 = S0<=--- cS n = S, and for each i let Gi = anns(Si/Si_1). Observe that Gx must be G.
Next, form a right affiliated series of S-K-bimodules for SSR, say 0 = S'o <= • • • c S'm = S,
and for each j let T}=ann(SySj_j)R. Since assSS = {G}, the S-R-sub-bimodule M =
{seS:Gs = 0} is essential as a left S-submodule of sS. Hence ^MnS\)R forms a bond
from S/G to R/Tt. Further, by [5, 8.3.1], each G, is in the left clique of G, and each 7} is
in the right clique of Tj. Therefore, by repeated applications of Lemma 2.1(ii), we see
that the factors S/Gl,...,S/Gn, R/TU...,R/Tm all have the same classical Krull
dimension. Noting that GlG2...Gn=TmTm.1... ^ = 0 , we see therefore that {Gu...,Gn}
is precisely the set of minimal prime ideals of S and that {Tu..., Tm} is precisely the set
of minimal prime ideals of R. Further, again by Lemma 2.1(ii), it must be the case that
the minimal prime ideals of R and S are closed with respect to ideal links.
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Next we prove that P and Q are minimal prime ideals of R: Let BR be an
K-submodule of SR maximal such that BnC = A, where C/A is again an ideal link from
Q to P. So C/A may be considered as an essential right R-submodule of (S/B)R.
Therefore, by [5, 7.1.2], SPi...P,^B for some prime ideals PU...,P, in the right clique
of P. The choice of B now guarantees that SPx...P,r\C^A, and the original choice of
K above thus implies that there exists no nonzero ideal L of S such that L^SPl...Pl.
In other words, S/SPi...P, is faithful as a left S-module. Since S/SP^-.P, is a right
(R/Pi...P()-module, it follows from Lemma 2.1(ii) that d.Kdim(R/P1...P,)^
cl.Kdim(S) = cl. Kdim(R). Hence the classical Krull dimension of K/Pj.-.P, is equal to
the classical Krull dimension of R, and it follows that some P, is a minimal prime ideal.
We saw earlier that the set of minimal prime ideals of R was closed under ideal links.
Hence the set {PU...,P,,Q,P} consists entirely of minimal prime ideals. In particular, P
and Q are minimal.

To finish, let {G} = asssS and {H} = assSs as above. We have seen that GnR^Q and
HnR^P. Since P and Q are minimal we see then that G lies over P and that H lies
over Q. Since SSS is a uniform bimodule, {seS|Gs = 0}n{seS|sf/ = 0}#0, and this ideal
provides an ideal link in S from G to H. This fact completes the proof.

Recall that a ring embedding R c* S is called a finite centralizing extension provided
S = Rct + ••• +Rcn for some elements cu...,cneS such that rc{ = c{r for all reR and each
1 ^ i ̂  n. Also recall that if R c> S is a finite centralizing extension, and if P e spec S, then
Pn Re spec R. See [8, 10.2] for details.

Theorem 3.2. Let R c+ S be a finite centralizing extension of noetherian rings. If P and
Q are prime ideals of S such that QxP, then QnRxPnR.

Proof. Let S = Rc1 + -- +Rcn, where each c, centralizes R. For each lfSign, let
Si = Rci + \-Rch and let So = 0. Observe that each S, is an K-K-sub-bimodule of RSR.
We may define, for each i, an /?-R-bimodule homomorphism fljiR-^Si/S,.! via
r-trCi + Sj-!- It is straightforward to check that Qt is an /?-R-bimodule homomorphism,
given that c, centralizes R. Moreover, if X, = ker0,, then Xt is a two-sided ideal of R and
R/Xi is isomorphic to Sf/S,.! as an /?-R-bimodule.

Now let P and Q be prime ideals of S such that C/A is an ideal link in S from Q to
P. Consider the two K-K-bimodule series Q = SocSlc--aSn = S and O c / l c C c S . By
the Schreier Refinement Theorem, there exist an K-R-sub-bimodule B of S with
A^BcC, and an R — #-bimodule subfactor W of Si/Si^1, for some i, such that W is
isomorphic to B/A as an i?-R-bimodule.

We claim that B/A, and hence W, is a bond from R/Qr\R to R/PnR. If B//1 is not a
bond then, without loss of generality, suppose that B/A has a nonzero sub-bimodule
B'/<4 that is torsion as a right R/Pn R-module. Then there exists an ideal X of R strictly
bigger than PnR such that B'XsA. But then SXS^ann(B'/A)s, since S is a
centralizing extension of R; and so SXSzP, thus contradicting X£PnR. Now the
map 0, above shows that W is isomorphic to an i?-R-bimodule subfactor V of R/Xt.
Since K will equal K/L for some pair of ideals K, L of R, it follows that gn/?«Pn.R.
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Remark. In [3, Proposition 5] it is shown that if P, QespecS and Q-~>P then either
QnR-~>PnR or QnR = PnR, for Rc+ S a finite centralizing extension.

4. Rings satisfying a polynomial identity

In this section we apply the results of the previous two sections to the study of
Fund(P) for a prime ideal P of a noetherian prime PI ring R. The main facts that we
need concerning PI rings can be found in [8, Chapter 13, especially §9]. Recall that a
prime PI ring R is contained in a possibly larger subring of its quotient ring, the trace
ring of R, written T= T(R). If R is noetherian then T is a finite centralizing extension of
R. Noetherian PI rings satisfy the second layer condition so our earlier results are all
available for use in this setting. Our first aim is to transfer to T the problem of finding
ideal links in R. The advantage of working in the trace ring is that T is an integral
extension of its centre Z, and, as we shall see in Proposition 4.1, there are only finitely
many prime ideals of T with a given contraction to Z.

We start by introducing two more concepts of linkage between prime ideals of R. Let
P and Q be prime ideals of R. Following [3] we say that P and Q are trace-linked if
there are prime ideals P and Q of T such that PnR = P, QnR = Q, and Pr\Z = QnZ.
The reader should be warned that this is not an equivalence relation on spec(R). Denote
by Tr(P) the set of prime ideals that are trace-linked to P.

Proposition 4.1. Let R be a noetherian prime PI ring with Pi-degree n and suppose
that the trace ring T of R can be generated as an R-module by m elements that centralize
R. Then for any prime ideal P or R,

Proof. Let Pu...,Pr be the distinct prime ideals of T such that PtnR = P. By [11,
Theorem 3.4], r^m. For any fixed i, the maximal number of prime ideals Q of T such
that P(nZ = QnZ is n. This follows from [1, Proposition 5] once one has reduced to
the case that P{r\Z is a maximal ideal of Z, by using [2, Lemma 2]. The prime ideals of
R given by QnR for such primes Q form Tr(/>), so |Tr(P)|gmn.

Let P and Q be prime ideals of the noetherian prime PI ring R. We say that there is a
trace-ideal-link from Q to P, written QxTP, if there exist prime ideals P and Q of T
such that PnR = P, QnR = Q, and QxP.

Lemma 4.2. (i) QxP if and only if QszTP.
(ii) IfQxTPthenQe7r(P).

Proof, (i) This is immediate from Theorems 3.1 and 3.2.
(ii) Let P and Q be prime ideals of T such that Pr\R = P, Qr\R = Q, and QxP. Then

Qr\Z = PnZ, since multiplication by central elements passes across the ideal link, and
so Q and P are trace-linked.

Remark. K. A. Brown has suggested the following alternative proof that QxTP
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implies QxP: Let Q, PespecR and let Q, P be prime ideals of T such that Q Q
and Pn,R = P. Suppose that B/A is an ideal link in T from Q to P. There exists a
nonzero ideal I of T such that /£ /? , and / must contain a regular central element c.
(See [8, 13.9.6] and [8, 13.6.4].) Hence Be/Ac is an ideal link in R from Q to P.

Theorem 4.3. / / R is a noetherian prime PI ring and P is a prime ideal of R then
Fund(P)sTr(P).

Proof. Let QeFund(P). There is an ideal link QxP, by Theorem 2.3. Thus the
result follows, by Lemma 4.2.

Corollary 4.4. Let R be a noetherian prime PI ring with trace ring T. Suppose that T
can be generated as an R-module by m elements that centralize R, and suppose that the
PI-degree of R is n. If P is any prime ideal of R then |Fund(P)|^»m.

Proof. This follows immediately from Theorem 4.3 and Proposition 4.1.

Of course, Theorem 4.3 suggests the obvious question as to whether Fund(P) = Tr(P).
We have not yet been able to answer the following related question: Let R be a
noetherian prime ring that is finitely generated as a module over its centre A. Suppose
that A is a local ring with maximal ideal M. If P and Q are maximal ideals of R we
know that Pr\A = M = QnA. Is there an ideal link from Q to P?

Leaving aside this problem, we finish the section by outlining a "finite" procedure for
finding Fund(P) when P is a prime ideal of the noetherian prime PI ring R. By Lemma
4.2 and Theorem 2.3 we need only find the prime ideals of R that are trace-ideal-linked
to P. Thus if Pu...,Pr are the prime ideals of T such that Pir\R = P, then what is left
to determine is which prime ideals of T are ideal linked to some P,. This transfers the
problem of determining Fund(P) to the problem of finding those prime ideals of T
which are ideal linked to at least one P in {Pu..., Pr}.

Now fix such a Pe{Pu..., Pr}. Recall for a prime ideal Q of T that if QxP then
QnZ = PnZ. Let M = PnZ. Hence to find those prime ideals of T which are ideal
linked to P, we need only consider the (finite) set of prime ideals of T which contract to
M. Further, if %? = A\M, then it is straightforward to check that QxP in T if and only if

in the localisation T<€~1. Next, by Corollary 2.5, if we let A =
/ \ if we let 9 be the natural map from T to A, then QKP in T if and only

if 8(Q)K6(P) in A. Observe that A is artinian, and observe that we have reduced the
problem of finding prime ideals Q linked to P to the problem of locating ideal links in
A. Finally, note that the ideal links in A will be completely determined by an A-A-
bimodule composition series for A; see [5, pp. 142-144].
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