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Abstract

We study the isomorphism problem of vertex-transitive cubic graphs which have a transitive simple group
of automorphisms.
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1. Introduction
Determining whether two given graphs are isomorphic is fundamental for
understanding graphs and for determining isomorphism classes of graphs. Vertex-
transitive graphs form an important class of graphs and have received considerable
attention in the literature, see [5, 14], for instance. A vertex-transitive graph Γ is
generically defined by a vertex-transitive group G of automorphisms, but it is very
difficult to determine the full automorphism group AutΓ.

Given two G-vertex-transitive graphs, one would expect to determine their
isomorphisms by the information of the group G. For example, for Cayley graphs, such
an approach was initiated by a conjecture of Ádám in 1967 [1] and has been extensively
studied over the past decades, see, for example, [2, 4, 7, 9, 13, 18, 20, 21, 23, 24] and
many more references listed in the survey [19]. Since lots of vertex-transitive graphs
are not Cayley graphs, it is a natural next step to extend the study of the isomorphism
problem for Cayley graphs to vertex-transitive graphs. For instance, Dobson [8]
studied the isomorphism problem for metacirculants which are not necessarily Cayley
graphs, and Tyshkevich and Tan [27] extended Babai’s lemma, see Theorem 2.2.
Babai’s lemma, also obtained by Alspach and Parsons [3] independently, is a group-
theoretic criterion for deciding whether two Cayley graphs are isomorphic which has
been frequently used in the study of the isomorphism problem of Cayley graphs.
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Let Γ = (V, E) be a G-vertex-transitive graph, and let α be a vertex and S be the
set of elements of G which maps α to a vertex that is adjacent to α. Then Γ is
uniquely determined by the triple (G,Gα, S ). Letting H = Gα and identifying the
vertex set V with [G : H], the action of G on V is equivalent to the action of G on
[G : H] by right multiplication. In particular, if α ∈ V is identified with H ∈ [G : H],
then the neighbourhood Γ(α) consists of Hg with g ∈ S , and, moreover, Hx ∼ Hy
if and only if yx−1 ∈ S . This defines a coset graph representation of Γ, which is
denoted by Cos(G,H,HS H). Obviously, for an automorphism τ ∈ Aut(G), we have
Cos(G,H,HS H) � Cos(G,Hτ,HτS τHτ).

Definition 1.1. A G-vertex-transitive graph Γ = Cos(G,H,HS H) is called a GI-graph
(‘GI’ stands for ‘Group automorphism inducing Isomorphism’) of G if for any graph
Σ = Cos(G,H,HS ′H) whenever Γ � Σ, there exists τ ∈ Aut(G) such that Hτ = H and
(HS H)τ = HS ′H. (Note that the automorphism τ acts on the vertex set [G : H] and
fixes the vertex H.)

In particular, if H = 1 then Γ is a Cayley graph of G and is called a CI-graph if it is
a GI-graph.

We consider the isomorphism problem of vertex-transitive cubic graphs and first
state a conjecture.

Conjecture 1.2. A connected G-vertex-transitive cubic graph is a GI-graph of G.

For Cayley graphs, this conjecture can be restated as: ‘every finite group is a
connected 3-CI-group’, that is, ‘every connected cubic Cayley graph is a CI-graph’,
which is true for most simple groups by [10] and is open in general, see [19,
Problem 6.3(2)]. For non-Cayley graphs, by Dobson’s result in [8], the conjecture
is true for metacirculants. The main result of this paper shows that Conjecture 1.2 is
true for many families of simple groups.

Theorem 1.3. Let G be a simple group of Lie type of odd characteristic. Then each
connected G-vertex-transitive cubic graph is a GI-graph of G.

We will actually prove the conclusion of Theorem 1.3 for more families of simple
groups, namely, for those families of simple groups satisfying Hypothesis 3.4.

2. Isomorphisms of vertex-transitive graphs

By the description before Definition 1.1, any vertex-transitive graph can be
represented as a coset graph. Conversely, for any group G and a subgroup H < G,
we can construct graphs which are G-vertex-transitive. Let G be a group, and let H be
a subgroup of G. For a subset S ⊂ G\H, define the coset graph Γ = Cos(G,H,HS H)
to be the graph with vertex set [G : H] = {Hg | g ∈ G} such that {Hx,Hy} is an edge if
and only if yx−1 ∈ HS H. Then each element g ∈ G induces an automorphism of Γ by
right multiplication:

g : Hx 7→ Hxg where x ∈ G.
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Moreover, the following statements for coset graphs are well known.

(a) Γ is an undirected graph if and only if HS H = HS −1H, where S −1 = {s−1 | s ∈ S }.
(b) G acts transitively on the set [G : H], with kernel being the core of H in G, and

G is a subgroup of AutΓ if and only if H is core-free in G.
(c) Γ is connected if and only if 〈H, S 〉 = G.
(d) Γ is G-arc-transitive if and only if HS H = HgH where g ∈ G such that g2 ∈ H.

Define a subgroup of the automorphism group Aut(G):

Aut(G,H) = {σ ∈ Aut(G) | Hσ = H}.

Then each element τ of Aut(G,H) induces an automorphism of Γ or an isomorphism
between Γ = Cos(G,H,HS H) and Cos(G,H,HS τH).

Now let Σ = Cos(G, H, HS ′H) be isomorphic to Γ = Cos(G, H, HS H), and let
V = [G : H]. Then V is the vertex set of Γ and Σ, AutΣ � AutΓ. Each isomorphism
τ from Σ to Γ is a permutation of V , and maps G to Gτ. Thus G,Gτ ≤ AutΓ ≤ Sym(V)
are permutationally isomorphic. Let

Ĝ/H = {ĝ | g ∈ G} where ĝ : Hx→ Hxg for all Hx ∈ V .

For any two vertices Hx, Hy ∈ V , the element ĝ = x̂−1ŷ maps Hx to Hy, and thus Ĝ/H
acts transitively on V . For convenience, Ĝ/H will be simply written as Ĝ.

Each element σ ∈ Aut(G,H) induces a permutation σ on [G : H] by the natural
action: σ : Hx→ Hxσ. We define

Aut(G,H) = {σ | σ ∈ Aut(G,H)},

which is a subgroup of Sym(V) fixing the vertex α = H.
For a subgroup H of a group G, denote by NG(H) and CG(H) the normalizer and

the centralizer of H in G, respectively, that is,

NG(H) = {g ∈ G | g−1Hg = H} and CG(H) = {g ∈ G | gh = hg for all h ∈ H}.

Then we have the following basic property, which is due to Godsil [12, Lemma 2.1].

Lemma 2.1. Let Γ = Cos(G, H, HS H) be a coset graph, and let Ĝ = Ĝ/H and V =

[G : H]. Then NSym(V)(Ĝ) = ĜAut(G,H).

An important criterion for determining CI-graphs and GI-graphs is given in the
next theorem, which was first obtained by Babai [4] and Alspach and Parsons [3]
independently for CI-graphs, and extended by Tyshkevich and Tan [27] for GI-graphs.

Theorem 2.2 [27]. A G-vertex-transitive graph Γ = (V, E) is a GI-graph of G if and
only if subgroups of AutΓ which are permutationally isomorphic to G (acting on V)
are all conjugate in AutΓ.

The CI-graph criterion is then stated as ‘a Cayley graph Γ of a group G is CI if and
only if all regular subgroups of AutΓ that are isomorphic to G are conjugate’. It has
played an important role in the study of the isomorphism problem of Cayley graphs,
see [19]. A special case for the criterion given in Theorem 2.2 is stated as follows.
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Corollary 2.3. Let Γ be a G-vertex-transitive graph such that G is normal in AutΓ.
Then Γ is a GI-graph of G if and only if G is the only subgroup of AutΓ that is
permutationally isomorphic to G.

In particular, if G is the only subgroup of AutΓ that is isomorphic to G, then Γ is a
GI-graph.

A result of Gross [16] shows that if a group X has a Hall π-subgroup of odd
order, then all Hall π-subgroups of X are conjugate. Thus, we have the following
consequence.

Corollary 2.4. Let Γ be a graph of odd order. If AutΓ has a Hall subgroup G which
is of odd order and is vertex-transitive on Γ, then Γ is a GI-graph of G.

By a result of Wielandt (see [25, page 166]), if a group X has a nilpotent
Hall π-subgroup, then all Hall π-subgroups are conjugate. This gives the following
consequence.

Corollary 2.5. Let Γ be a graph such that AutΓ has a nilpotent Hall subgroup G
which is vertex-transitive on Γ. Then Γ is a GI-graph of G.

In particular, a vertex-transitive graph of p-power order is a GI-graph of a Sylow
p-subgroup of its automorphism group.

3. Proof of Theorem 1.3

First we quote a well-known result of elementary number theory, which is also
a consequence of Legendre’s formula, see, for instance, http://en.wikipedia.org/wiki/
Factorial.

Lemma 3.1. For any positive integer d and any prime p, the power p[(d−1)/(p−1)]+1 does
not divide d!.

In order to prove Theorem 1.3, we first prove two group-theoretical lemmas. Recall
that the soluble radical of a group X is the largest soluble normal subgroup of X, which
is denoted by R(X). Let N : G be the semidirect product of G acting on N.

Lemma 3.2. Let G be a nonabelian simple group acting on a group N by conjugation.
Suppose that |N| divides |G|. Then either 〈G,N〉 � G × N, or there exist a prime p and
an integer d such that pd | |G| and G . GL(d, p).

Proof. Suppose that 〈G,N〉 � G × N. Let M be the soluble radical of N. Then M is a
characteristic subgroup of N, and so M is normalized by G.

Suppose that M , N. Let N = N/M, and X = X/M. Then X = N : G, and each
minimal normal subgroup of N is nonabelian. Suppose that G does not centralize N.
Then G does not centralize some minimal normal subgroup T d of X, where T is a
nonabelian simple group and d ≥ 1. Hence G permutes the d direct factors of T d, and
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so G ≤ Sd. Since |N| divides |G|, so does |T d |. It follows that 22d = 4d divides |G|, which
is not possible by Lemma 3.1. Thus G centralizes N, and so

X = M · X = M · (N : G) = M · (N ×G).

If G centralizes M, then G is normal in X and 〈G,N〉 � G × N, which contradicts our
assumption.

The group G thus does not centralize M. Let L be a characteristic subgroup of M
which is minimal subject to the condition that G does not centralize L. Let Y = L : G.
Let K C L be maximal subject to the condition that K is normalized by G. Then L/K is
a minimal normal subgroup of Y/K � (L/K) : G. Now L/K = Zd

p for some prime p and
some integer d, and G acts nontrivially on L/K = Zd

p. Since G is simple, G is faithful
on L/K, and hence G ≤ Aut(L/K) � GL(d, p). Moreover, as pd | |N| and |N| | |G|, then
pd | |G|, as desired. �

A permutation group G ≤ Sym(Ω) is said to be quasiprimitive if every nonidentity
normal subgroup of G is transitive on Ω. The well-known O’Nan–Scott theorem for
primitive permutation groups is extended in [22] for quasiprimitive groups. The socle
of a group G is the product of all minimal normal subgroups, denoted by soc(G).
The next lemma is about simple groups acting on groups, and involves quasiprimitive
permutation groups.

Lemma 3.3. Let G be a nonabelian simple group which acts on Ω transitively. If a group
X with G < X ≤ Sym(Ω) is quasiprimitive on Ω, then one of the following statements
holds:

(i) soc(X) � G2, and G is regular on Ω;
(ii) X is almost simple;
(iii) G = PSL(2,7), X = AGL(3,2) = Z3

2 : GL(3,2), and both G and X are 2-transitive
on Ω.

Proof. Let N be the socle of X. Then N = T1 × · · · × Td = T d, where Ti � T are simple
and d ≥ 1. Since N C X, N ∩G CG, and hence either G ≤ N or N ∩G = 1.

First, assume that G ≤ N. Then N is a transitive permutation group on Ω. If
d = 1, then X is almost simple, as in statement (ii). Suppose that d > 1. Then
N has d normal subgroups Mi where 1 ≤ i ≤ d such that N = Mi × Ti. Since G
is simple and G ∩ Mi is normal in G, either G ≤ Mi or G ∩ Mi = 1. Since the
intersection M1 ∩ M2 ∩ · · · ∩ Md = 1, there is some M j such that M j ∩G = 1. Then
G �G/(M j ∩G) � M jG/M j ≤ N/M j � T , namely, G is isomorphic to a subgroup of T .

For convenience, write M = M j, and let Y = MG. Then Y = M : G. Suppose that G
does not centralize M. Then G acts on M by conjugation faithfully, and so G ≤ Sd−1.
Since 4 divides |T |, then 22(d−1) = 4d−1 divides |G|, which divides (d − 1)!, which
is not possible by Lemma 3.1. Thus G centralizes M, and Y = M × G. Since G is
transitive, the centralizer M = CY (G) is semiregular, and so |M| divides |G|. Since
G . T , we conclude that M � G � T . Hence N = T1 × T2, and Ti is regular on Ω. As
G � T is transitive, G is regular, as in statement (i).
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Next, suppose that N ∩G = 1. Assume further that N = Zd
p is abelian. Then N is

regular on Ω. Hence |N| = pd divides |G|, and Gα is a subgroup of the simple group
G of index pd. Inspecting the classification of such simple groups of Guralnick [15],
either:

(a) G = Apd , or PSL(2, 11) with pd = 11, or M11 with pd = 11, or M23 with pd = 23,
or PSL(n, q) with pd = (qn − 1)/(q − 1); or

(b) (G,Gα) = (PSU(4, 2), 24 : A5), and pd = |G : Gα| = 33.

The candidate in (b) is not possible because N = Z3
3 and PSU(4, 2) 
 GL(3, 3). For

the candidates in (a), since G 
 GL(1, p), we only need to consider the last case
where G = PSL(n, q) and pd = (qn − 1)/(q − 1). Inspecting the smallest linear degree
of PSL(n, q) given in [17, page 188], we conclude that X = 23 : PSL(3, 2) = AGL(3, 2),
as in statement (iii).

Finally, assume that N = T1 × · · · × Td is nonabelian, with d ≥ 2. Since N is a
socle of X, we have CX(N) = 1, and hence G acts faithfully on {T1, T2, . . . , Td}, and
hence G ≤ Sd. Suppose that N has a normal subgroup M which is regular on Ω. Then
N = M : Nω, where Nω is the stabilizer of a point ω ∈ Ω. It follows that |Nω| ≤ |M|, see
[22], and hence |M| = |T |m divides |G| with m ≥ d/2. Since 4 divides |T |, we have that
4m = 22m divides |G|, and hence 22m | d!, which is not possible by Lemma 3.1. Thus N
has no normal subgroup which is regular on Ω, and X is in the product action. Hence
there exists n ≥ 5 such that nd divides |Ω|. Let p be a prime divisor of n. Since G ≤ Sd,
we conclude that pd divides d!, which is not possible by Lemma 3.1. Therefore, d = 1,
and X is an almost simple group, as in statement (ii). �

Let Γ = (V, E) be a connected G-vertex-transitive cubic graph. We will prove
Conjecture 1.2 for the following families of simple groups.

Hypothesis 3.4. Let G be a simple group satisfying one of the following items:

(a) G is a sporadic simple group and G , M11, M22, M23, J2, Suz;
(b) G = An, with n < {8, 11, 23, 47} ∪ {2m − 1|m ≥ 3};
(c) G is simple group of Lie type of odd characteristic;
(d) G = PSL(2, q), PSL(3, q), PSU(3, q), PSp(4, q), E8(q), F4(q), 2F4(q)

′

, G3(q),
Sz(q), where q = 2e.

We have been unable to prove Conjecture 1.2 for the simple groups which do not
satisfy the hypothesis. Verifying Conjecture 1.2 for those simple groups would be a
crucial step in solving the conjecture.

Before stating and proving the main theorem, we introduce a few definitions. For a
G-vertex-transitive graph Γ = (V, E) and a normal subgroup N of G, let VN be the set
of N-orbits on V , and let ΓN denote the normal quotient induced by N which is the
graph with vertex set VN and two orbits αN , βN ∈ VN with α, β ∈ V adjacent in ΓN if
and only if α′, β′ are adjacent in Γ for some α′ ∈ αN and β′ ∈ βN .

The following theorem shows that for each of these groups, all connected G-vertex-
transitive cubic graphs are GI-graphs.
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Theorem 3.5. Let G be one of the simple groups listed in (a)–(d) of Hypothesis 3.4. Let
Γ = (V, E) be a connected G-vertex-transitive cubic graph. Then Γ is a GI-graph of G,
and G is a normal subgroup of AutΓ. In particular, if G is a simple group of Lie type
of odd characteristic, then Γ is a GI-graph of G.

Proof. Let X = AutΓ. Suppose that G is not normal in X.
Let M C X be maximal subject to the condition that M is intransitive on V . Let

X = X/M and G = MG/M. Then G ≤ X ≤ AutΓM , and X is quasiprimitive on VM .
Since G ≤ AutΓM is nonabelian simple and ΓM is connected, the valency of ΓM is
larger than 2. Since the valency of ΓM is less than or equal to the valency of Γ which
is 3, ΓM is cubic. It follows from Lemma 3.3 that the quasiprimitive group X is almost
simple because a group in the cases (i) and (iii) of Lemma 3.3 has no orbital graph of
valency 1, 2 or 3.

Since both Γ and ΓM are cubic, it implies that M is semiregular on V , and so the
order |M| divides the number of vertices |V |. Since G is transitive on V , the order |G| is
divisible by |M|. Therefore, if G does not centralize M, then there exists a prime power
pd dividing |M| such that G ≤ GL(d, p) by Lemma 3.2.

Let Y = MG. Then M C Y , and M ∩ G C G. Since G is simple, it implies that
M ∩ G = 1. Since G is transitive on V , we have Y = GYα, where α ∈ V . Thus Y =

M : G, and then |M| |G| = |Y | = |GYα| = |G| |Yα|/|G ∩ Yα|. Therefore, |M| = |Yα|/|Gα|; in
particular, |M| divides the order |Xα|. We proceed with our analysis using two cases.

Case 1. Suppose that X is arc-transitive on Γ. Then the quotient graph ΓM is X-arc-
transitive. By Tutte’s theorem [26], the stabiliser Xα = Z3, S3, D12, S4 or S4 × S2. In
particular, the order |Xα| divides 243, and so does the order |M|, since |M| | |Xα|. Since
X = X/M is almost simple, the socle T := soc(X) is the only insoluble composition
factor of X.

Let Ω = [X : G]. Since G is transitive on V , then X = GXα, and thus Xα acts
transitively on Ω. Then |Ω| divides |Xα|, and so |Ω| | 243. Since G is simple and G is not
normal in X by our assumption, G is core-free in X, and X is a transitive permutation
group on Ω. Let B be an X-invariant partition of Ω such that X is primitive on B. Then
|B| divides 48, and G fixes a point in B. Inspecting the primitive permutation groups of
degree dividing 48 listed in [6, Appendix B], we conclude that either XB = AGL(3, 2)
and G = PSL(2, 7), or XB and G lie in the following table:

soc(XB) A6 A8 A12 A24 A48 PSU(3, 3) M11 M12 M24
G A5 A7 A11 A23 A47 PSL(2, 7) PSL(2, 11) M11 M23

We first consider the latter case. Since G satisfies Hypothesis 3.4, then G = A5,
PSL(2, 7) or PSL(2, 11). Since the only insoluble composition factor of X is T =

soc(X), we conclude that T = soc(XB), and X = XB. Thus

(G,T ) = (A5,A6), (PSL(2, 7),PSU(3, 3)) or (PSL(2, 11),M11).

Since T ≥ G and G is transitive, T = GTα. For the first candidate (G, T ) = (A5,A6),
noticing that A6 does not have a subgroup D12 and A6 , A5D6, then Tα = S4, which is
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not possible since |A6 : S4| = 15 is odd. If (G,T ) = (PSL(2, 7),PSU(3, 3)), then Tα has
order divisible by |T : G| = 36, which is not possible. Thus G = PSL(2, 11). However,
by [11], M11 does not have a factorization with one factor isomorphic to Xα (which is
Z3, S3, D12, S4 or S4 × S2).

The former case therefore occurs, with XB = AGL(3, 2) and G = PSL(2, 7). Since
X = X/M is almost simple, it follows that X = MG = M : G. Suppose that G does
not centralize M. By Lemma 3.2, there exists a prime power pd dividing |G| such
that G ≤ GL(d, p). The only possibility is pd = 23. However, in this case, the number
of vertices of the quotient graph ΓM divides an odd number |G|/23 = 21, which is a
contradiction since ΓM is cubic. Therefore, G is normal in X, and by Theorem 2.2, Γ is
a GI-graph.

Case 2. Assume that Γ is not arc-transitive. Then the stabilizer Xα is a 2-group, where
α ∈ V , and the index |X : G| is a power of 2.

Suppose that X is quasiprimitive on V . By Lemma 3.3, X is almost simple. Since
|X : G| is a power of 2, it follows from [15] that (soc(X),G) = (A2m ,A2m−1), where
m ≥ 3, which contradicts Hypothesis 3.4.

The group X is thus not quasiprimitive on V , and so M , 1. Suppose that G does
not centralize M. By Lemma 3.2, there exists an integer d such that 2d divides |G| and
G ≤ GL(d, 2). Let G2 be a Sylow 2-subgroup. Then 2d | |G2|, and d ≤ log2 |G|2. On
the other hand, d is equal to or larger than the linear degree of the simple group G. An
inspection of the list of simple groups and their linear degrees in [17, Sections 5.3–5.4]
shows that this is not possible. Then G centralizes M, and X = M : G � G × M, and
so G is normal in X. Since |M| = |X : G| is a 2-power, G is a unique nonabelian simple
subgroup of X, and by Theorem 2.2, Γ is a GI-graph. �
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