GENERATORS FOR SIMPLE GROUPS
ROBERT STEINBERG

1. Introduction. The list of known finite simple groups other than the
cyclic, alternating, and Mathieu groups consists of the classical groups which
are (projective) unimodular, orthogonal, symplectic, and unitary groups, the
exceptional groups which are the direct analogues of the exceptional Lie
groups, and certain twisted types which are constructed with the aid of Lie
theory (see §§ 3 and 4 below). In this article, it is proved that each of these
groups is generated by two of its elements. It is possible that one of the
generators can be chosen of order 2, as is the case for the projective unimodular
group (1), or even that one of the generators can be chosen as an arbitrary
element other than the identity, as is the case for the alternating groups.
Either of these results, if true, would quite likely require methods much more
detailed than those used here.

As a model on which the construction for all groups is based, the situation
is now described for the group G of (# + 1)th order unimodular matrices
taken modulo the scalar multiples of the identity. Let & be a generator of the
multiplicative group K* of the finite field K; % the diagonal matrix with entries
k, k71, 1, 1, ... ; x the matrix with 1 in all diagonal positions and the (1, 2)
position and 0 in all other positions; and w the matrix with 1 in the (7, 7 + 1)
position for 1 < ¢ < n, (— 1)” in the (» 4+ 1, 1) position, and 0 elsewhere.
Then if K has more than three elements, G is generated by the elements
represented by % and xw, while if K has two or three elements, x and w will do.

The two-element generation of all of the above groups is covered by 3.11,
3.13, 3.14 and 4.1 below.

With the exception of the complex field, all fields considered in this paper
are assumed to be finite.

2. Roots and reflections. Let > = {aias, ..., a,} be a simple (also
called fundamental) system of roots corresponding to a simple Lie algebra
over the complex field. Throughout the paper we assume that the elements
of ¥ for the various possible root systems are so labelled that (e, @) = 2
and (a, &) = 0 for each pair of roots in }, with the following exceptions:

Ap: (@ ay) = —1lforl <i<n—1

B,: (aya)) =1, (a;, aiy1) = 1 foril1<ig<n—1
(@i, a;) = 1and (a4 a411) = —1/2 for 1 L1 n—2,
(@n-1, @n1) = — (@n-1, @0) =
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D,: (aya3) = (aya,1) = —lfor2<i<n—1

Ep: (@yai41) = (@nosy @) = — lfor1 <i<n—2

Fy: (a1, a1) = (@, a9) =1, (ay,a2) = — 1/2, (a2, a5) = (a3, a0) = — 1

Ga: (a1, a1) = 2/3, (@, a2) = — 1.

Whenever it is convenient, the notation a, b, . .. is also used for a;, as, . . . .

The reflections w, reversing the various roots » generate a finite group W (the
Weyl group) which is at the same time generated by the reflections w; corres-
ponding to the simple roots a;. As is well known, any two roots of the same
length are congruent under W.

2.1 Let w = wws . . . w, (operations from right to left). (a) W is generated by
w and w; with the exceptions: type B, (n > 3) or D, (n even) when w, w, and w,
will do, C, (n > 3) when w, w,_1 and w, will do, Fy when w, ws and ws will do.

(b) W contains the central reflection — 1 (defined by (— 1)r = — r for each r in
) if Wis not of type Ay (n > 2), D, (nodd) or Ee. (¢) If — 1isin W, it isa
power of w.

Proof. Let V be the subgroup of W generated by the given elements. If W
is of type 4,, then V contains each w; = w*lw;w'~% hence all of W. If W is
of type By or G, then V contains w; and w, = wyw, hence all of W. If W is of
type B, ( > 3), V contains w; and each w; = w'ww?* for 2 < 7 < #n,
hence all of W. If W is of type C, (n > 3), the situation is similar. If W is of
type D,, V contains w; even if # is odd since then w, = w"~lw,w!™"; thus V
contains w; = wawwiw lw,, w; = wi3w.w3~? for 3 < 7 < n, hence all of W.
If W is of type E,, V contains w; = wlw,w'~* for 1 <7< n — 3, then
Wp—g = Wp_sW W1 WW,_3, Wy_1 = WWy_sw 'and w, = w,_1... w,w w, hence all
of W. Finally, if W is of type F4, V contains w,, w; = wlw,w, w; and wy =
wwsw™!, hence all of W. Thus (a) is true. Now if wy is the element of W such
that wo >, = — Y., then — wq is an orthogonal transformation which per-
mutes the roots of 3 . If 3 is not of type 4,, D, or Es, the only possibility is
that — w, is the identity, whence — 1 = w, is in W. If W is of type D, (n
even), one can verify that w"la; = — a; for each 7, whence — 1 = w" ! is
in W. Thus (b) is proved. For the proof of (c), see 4.1 and 4.5 of (6).

3. The normal types. Following Chevalley, let us consider a Cartan
decomposition of a simple Lie algebra over the complex field, choose a generat-
ing set {X,, H,|r = root} to fulfil the conditions of Theorem 1 of (2) (so that
the structural constants are all integers), transfer the base field to a finite
field K, and then define x,(k) = exp(ad kX,) for each root r and each % in
K, X, = {x,(B)|k in K}, and G as the group generated by all X,. Excluding the
cases in which the corresponding simple system of roots Y is of type 4i, Ba
or G» and K has two elements and the case in which Y is of type 4; and K
has three elements, we obtain a simple group G and call it a normal type.
Henceforth we also exclude explicit mention of the group G of type C, con-
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structed over a field of characteristic 2 since it is isomorphic to the corres-
ponding group of type B,.
The following properties are shared by the normal types.

3.1. G is generated by those X, for which = r is in >_.

3.2. If r and s are roots such that r + s is not a root, then X, and X; commute
elementwise.

3.3. Let v and s be roots such that v 4+ s is a root and (r + s, r + s) = e(r, 7)
= ¢(s, s) with e > 1. Then there holds the commutator relation (x.(k), x,(l)) =
Xrys(eekl) with e = £ 1 depending only on r and s.

3.4. For each root r and each k in K*, the multiplicative group of K, there
exists b = h, in G such that hx; (Db~ = x,(B2CD/D]) for each root s and
each | in K. The elements h, ; generate an Abelian subgroup D.

For each % in §, we also use % to denote the character on the roots defined
by hx;(1)h=! = x,(k(s)). Thus hx,()h=! = x,(k(s)l) for every root s and
every [ in K.

3.5. For each w in W, there is w(w) in G such that w(w)x,(k)w(w)™! = xu (k)
for each k in K and each root r with € = =+ 1 independent of k.

3.6. Dw (W) is a group T which contains O as a normal subgroup and » (W)
as a system of coset representatives relative to . Further, the map w — Hw(w)
is an isomorphism of W on B/ 9.

3.7. For each positive root r, we can (and do) choose w(w,) = x,(1)x_,(—1)x,(1).
For the proof of these results, see (2).

3.8. If G is a normal type, then G is generated by any system of coset repre-
sentations for LS over  together with X, except when G is of type B, over a field
of characteristic 2, or of type Fy over a field of characteristic 2, or of type G over
a field of characteristic 3, in which case ‘X, is to be replaced by ‘X, and X", or
“%, and X., or "%, and X", respectively.

Proof. Since W is transitive on roots of the same length, the result is clear
from 3.4, 3.5 and 3.6 if all roots have the same length. For the same reason
if G is of type B,, a system of representatives for I over  and %, and %,
generate G. But if the characteristic is not 2 in the latter case, then X, may
be omitted since the other elements generate ¥_,, ¥,., and then (¥_,, ¥,45)
= ¥, by 3.3 with ¢ = 2. The argument is similar in the other exceptional
cases.

3.9. Let v be a root, | in K*, and h in O such that h(r) is either a generator
or the square of a generator of K*. Then h and x,(I) generate X,.

Proof. By repeated conjugation by %, we get from x,(l) all elements of the
form x,(lk?), and then by multiplication, x,(I 3 k,%). The numbers inside the
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last brackets form an additive subgroup which contains more than half the
elements of K, hence must be K.

3.10. Let r be a root, w in W, and h in O such that h(r) and h(w='r) are genera-
tors or squares of gemerators of K* and different from 1. Then h and x,(1) w(w)
generate X, and o (w).

Proof. Set h(r) =k, h((w™'r) =1, x,(1) w(w) = x. Then y = xhx~! =
x,(1 — Dhy with ky in O by 3.4 and 3.5. Since (y, k) = x,(1 — 1) (1 — k))
= x,(m) with m % 0, the desired result follows from 3.9.

We can now prove our first principal result.

3.11. Let G be a normal type, but assume that G is not of type D, (n even), or
of type B, or F4if the underlying field K is of characteristic 2, or of type G if
K is of characteristic 3. Let k be a generator of K*, a = a1, h = h,, 1 except that
for type B, h = h, , with r =2a1 4+ a2+ ...+ a,, and w = wiw,...w,.
Then G 1s generated by h and x,(1) w(w) 1f K has more than three elements and
by x,(1) and w(w) if K has not.

Proof. Let F be the group generated by the given elements. By 3.10, F
contains ¥, and w(w). By 2.1, 3.5, 3.6 and 3.8, it suffices to prove that F also
contains an element congruent to w(w;) mod §, unless G is of type B,, C,,
or Fyin which respective cases elements must be produced which are congruent
to w(w;) and w(w:), to w(w,_1) and w(w,), or to w(w:) and w(w;). If G is of
type -1,, F contains X,, ¥, = w(w)¥,w(w)~, ..., and then by commutation,
¥, withr=a+b+...and ¥_, = w(w)¥,0(w)~!, hence also w(w,) = w(w;)
by 3.7. If G is of type B,, F contains ¥, ¥,1s = w(@)¥,0 (W)™, Xsuyr = X,
¥X.45) by 3.3, and ¥_, and ¥_»,_, by 2.1 and 3.5, thus also w(w,) and w(waess)
by 3.7, and w(w,)w(weqeis)w(w,)~! which is congruent to w(w,) mod 9. If G is
of type C,, set s=a;+as+ ...+ a,-1, t = ay_1, u = a,. Then I contains %,
for r = ay, @s, ..., ay—1 and then for » = s, the first by conjugation of X, by
w(w) and the second by commutation. Thus F also contains w(w)'¥w(w) =
¥, ¥.,= *¥,%_,.),%_,and ¥, by 2.1 and 3.5, and then w(w,) = w(w,_1)
and w(w,) = w(w,) by 3.7. If G is of type D, (n odd), F contains ¥X,, ¥,,. =
w(w)%aw(w)—l, X, = w(.w)n—lxaw(w)l—n’ X o= w(w)%_,,w(w)—l, X = (%b+c»
%), % .= (¥, ¥_,_.), hence also w(w,) by 3.7. If G is of type Eg, F contains
X, and ¥, = (0(w) %0 (w)™, w(w)¥¥,w(w)™ ), hence also w(w,) by 3.7. If G
is of type E; or Es, F contains ¥_, by 2.1 and 3.5, hence also w(w,) by 3.7.
If G is of type Fi, F contains X, = o(w)¥,0(w)™!, Xotore = o(w)Xp0(w)™1,
X ,and X, by 2.1 and 3.5, ¥_, 5 = (X_o, X_p), ¥. = (Xoypae, X—a_p) by 3.3
with e = 2, ¥_, by 2.1 and 3.5, and then w(w;,) and w(w,) by 3.7. Finally, if
G is of type G, F contains ¥, and ¥_, by 2.1 and 3.5, and then w(w,) by 3.7.

In order to treat the normal types excluded by 3.11, we require the following
statement.

3.12. Assume that r and s are roots such that X, and X, commute elementwise,
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and that win W and h in O are such that h(r) = 1 and, setting h(s) = k, h(w=r)
=1, h(w™s) = m, h(wr) = n, that each of k, I, m, n is either a generator or the
square of a generator of K* and different from 1. Then h and x = x,(1)x,(1)w(w)
generate X, X, and w(w).

Proof. If Fis the subgroup generated by % and x, then F contains y = xhx—!
= x,(1 — Dx,(1 — m)hy with &y in 9, then also (y, h) = x,((1 — m)(1 — &))
and all of ¥ by 3.9. Thus F contains t = x,(1)w(w), ks = t71ht = w(w) 1hw(w)
with As(r) = h(wr) = n by 3.4 and 3.5, u = tht! = x,(1.—.))h;, and
. ((1 — 1) (1.—.m)) = (u, hs), thus all of ¥, by 3.9 (with % replaced by k).

We can now give two-element generations for the remaining normal types.

3.13. Let G be of normal type D,, (n even), k a generator of K*, and seth = h,,
and w = w1w, ... W,. Then h and x_,(1)x,(1)w(w) generate G if K has more
than 2 elements, while x,(1)x.(1) and w(w) do if K has not.

Proof. Let F be the group generated by the given elements. If K has two
elements, then F contains x,4.(1) = (x,(1)x.(1))2 x,(1) = w(w) % (Dw(w),
Xp40(1) = (e (Do (1))7 25(1)), %2(1) = w(w) %54 (1)w(w), hence x_, (1) and
x_,(1) by 2.1 and 3.5, w(w,) and w(w,) by 3.7, and all of G by 2.1, 3.5 and 3.8.
If K has more than two elements, F contains ¥_,, ¥, and w(w) by 3.12 with
r= —a and s = ¢, hence also ¥, . = 0(W)X_ 0w, ¥, =&__, X.),
and then all of G just as before.

3.14. Let G be of normal type B,, Fs, G, and in these respective cases let K be
of characteristic 2, 2, 3, and definer =b+c+...,s= —a;r =c¢,s = — b;
r=2=4 s= —a. Let k be a generator of K*, t = v — 25, h = h,,  and w =
WiWs . .. Wy Then G is generated by h and x,(1)x;(1)w(w) of K has more than
two elements and by x,(1)x;(1) and »(w) if it has not.

Proof. Let F be the group generated by the given elements. If K has more
than two elements, F contains ¥,, ¥; and w(w) by 3.12. Thus if G is of type
Fyor Gs, F contains ¥_,, ¥_;, w(w,) and w(w;) by 2.1, 3.5 and 3.7, thus all of
G by 3.5 and 3.8; whereas if G is of type B,, F contains X_,, then w(w,) by 2.1,
3.5 and 3.7, then ¥_, = w(w,)w(w)¥,w(w)"'w(w,) !, thus all of G as before.
If K has two elements, and G is of type B,, then n > 3, and F contains x =
%, (D, (1), %,(1) = (v, (w(w)%w (@)™, (x, o(w)"*'xw(w)™"))), thus x,(1) =
wW)x, Dw(w)™Y, ..., by commutation x,(1), then x,(1) = x_,(1) and again
all of G by 2.1, 3.5 and 3.8; whereas if G is of type F4, F contains x = x_,(1)
(1), ¥y =241 = (x, (0@ xw(w)?,  o@io(w)™), x(l) =
(0(w) 2y (W)~ w(@w)Pyw(w)?), x_,(1) = xx,(1) and all of G once again.

4. The twisted types. Each of the groups yet to be considered occurs as
a subgroup of a normal type and will be treated as such. Let the simple root
system Y possess a permutation » — 7 such that (7, 5) = (r, s) for each pair
r, s in 3, and let the field K possess an automorphism k — £ of the same
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period. Then the normal type G constructed from Y and K has an automor-
phism a such that x,(k)* = x3(k) whenever = a isin Y and & is in K. We then
define: U (respectively L) is the subgroup of G generated by those ¥, for
which 7 is positive (respectively negative), ! (respectively 8?) is the subgroup
of U (respectively 8B) consisting of the elements invariant under «, and G! is
the group generated by U' and B If the period of a is 2, the groups G! obtained
in this way are 4,! (n > 2), D,'! (n > 4) and E¢' (in the notation of (7) and
(8); see also (3), (11), (12), while if it is 3, one obtains D2, a second subgroup
of Dy; these groups are all simple except for the type A.! over a field of four
elements. Next, the normal type C: over a field of 22! = 2¢? elements has
an automorphism « such that x,(k)* = x,(k?¢) and x,(k)* = x,(k°) with
similar equations for — @ and — & (5, Exposés 21 to 24), and one constructs
as before a subgroup G! (see also (10)). A similar construction is possible if the
normal type is F; over a field of 22/+! elements or G; over a field of 32/*! ele-
ments (see 4). If f > 1, we get simple groups C,!, Fs' and G»! in this way
and call them, as well as the other simple groups constructed in this paragraph,
twisted types.

For each twisted type, a simple set (of roots) is one which contains a simple
root, is closed under addition and the permutation ¢ — @ used in the con-
struction, and is minimal relative to these properties. We label the various
simple sets S; thus:

Azt St = {an Gny1y Gn F Curr}, Si = {Gpg1-4, e, 2 < 1< m
Aoy Si = {ay a0,—,S. = {a.},1 <1 <n—1

Dnli Sl {(11 }S—{1+1},2<’L<’ﬂ—1

Egl: S = {(11 } = {(Zz, 0/4},5 = {03},54 = {(ls}

D423 Sl = {(I Qoq, (14} SQ = { }

Czli Sl {,ba+b2a+b}

Fgi: Sy =1{b,c,b+ ¢, 20+ ¢}, S: = {a,d}

Gel: S = {aba+b2a—|—b3a—l—b3a+2b}

For each simple set S, let w,! be the unique element of W which maps
S;on — S;and is in the group generated by those w, for which 7 is in S; (cf. 7,
2.2), and then set w = w;'w,' . ... Further, define % thus: if & is a generator
of K* and 7 is a simple root in Sy, then & = h, k. ;” unless the type is D2
in which case & = h, 3k, k. ;% Finally, define x thus: for type Aa,_i!,
D,! or E¢l, x = x,(1)x,(1)* with a = a;; for type D42, x = x,(1)x,(1)%x, (1)
with a = a,; for type 4!, x = x,(1)x;()x,4s(k) with r = a,, s = a,41 and
B+ k=1 (thisis (1|k) in (9)); for type Cs!, x = x,(1)xy(1)x245(1) (this is
S(1, 0) in (10)); for type F4', x = x;(1)x.(1)x24.(1); for type Gsa!, x = x,(1)
%5 (1)%ay5(1)X2045(1) (this is «(1) in (4)). We can now state our results on
the generation of the twisted types.

4.1. Let G* be a twisted type and let w, h and x be defined as in the preceding
paragraphs. Then G* is generated by h and xw(w).
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The properties 2.1 and 3.1 to 3.7 for the normal types have analogues for
e twisted types (see 7 and 4). For this reason, a proof of 4.1 can be patterned

after that of 3.11. The details are omitted.

Added in proof. Since the preparation of this paper, I have learned that the symplectic
groups (groups of type C, in the above notation) have been considered by several other authors.

In
nu

1
2
3

4

15

(13) and (14) a two element generation is given in case the underlying field has a prime
mber of elements, and in (15) the general case is dealt with.
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