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1. Introduction and results

Let n � 2 and Sn−1 be the unit sphere in R
n equipped with the normalized Lebesgue

measure dσ. Let Ω be a homogeneous function of degree zero on R
n (which is then

naturally identified with a function on Sn−1) satisfying Ω ∈ L1(Sn−1) and∫
Sn−1

Ω(y) dσ(y) = 0. (1.1)

For a suitable mapping Φ : R
n → R

d we define the Marcinkiewicz integral operator µΦ,Ω

along a mapping Φ on R
d by

µΦ,Ω(f)(x) =
(∫ ∞

0
|FΦ,t(x)|2 dt

t3

)1/2

,

where

FΦ,t(x) =
∫

|y|�t

Ω(y)
|y|n−1 f(x − Φ(y)) dy.

If d = n and Φ(y) = (y1, y2, . . . , yn), we shall simply denote the operator µΦ,Ω by µΩ .
The study of the Marcinkiewicz integral operator µΩ began in Stein [13], where Ω was

assumed to be in a certain Lipschitz class (see also [2]). In two recent papers [5,6], the Lp

boundedness of the operators µΦ,Ω was established for Ω in the Hardy space H1(Sn−1)
and Φ in several classes of mappings.
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The purpose of this paper is to investigate the Lp boundedness of the operators µΦ,Ω

when Ω ∈ Fα(Sn−1), where for an α > 0, Fα(Sn−1) denotes the set of all Ω which are
integrable over Sn−1 and satisfy

sup
ξ∈Sn−1

∫
Sn−1

|Ω(y)|
(

log
1

|〈ξ, y〉|

)1+α

dσ(y) < ∞. (1.2)

Condition (1.2) was introduced by Grafakos and Stefanov in [9]. The examples in [9]
show that there is the following relationship between Fα(Sn−1) and H1(Sn−1):⋂

α>0

Fα(Sn−1) �⊂ H1(Sn−1) �⊂
⋃
α>0

Fα(Sn−1).

It was proved in [9] that, under condition (1.2), the usual singular integral operator with
the kernel Ω(y)|y|−n is bounded on Lp(Rn) for

p ∈
(

2 + α

1 + α
, 2 + α

)
.

The range of p was later enlarged to(
2 + 2α

1 + 2α
, 2 + 2α

)

in [8].
We shall state our main results as follows.

Theorem 1.1. Let d ∈ N and P(y) = (P1(y), . . . , Pd(y)), where Pj is a real-valued
polynomial on R

2 for 1 � j � d. If Ω ∈ Fα(S1) for some α > 0, then µP,Ω is bounded
on Lp(Rd) for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
.

Moreover, the bound on the operator norm is independent of the coefficients of the
polynomials {Pj}1�j�d.

There is a similar result for n � 3 when the condition Ω ∈ Fα is properly modified
(see Theorem 4.1).

Singular integrals along surfaces of revolution have been studied quite extensively (see,
for example, [4,10–12]). Theorems 1.2 and 1.3 deal with Lp bounds for corresponding
Marcinkiewicz integrals.

Theorem 1.2. Let d = n + 1 and Φ(y) = (y, φ(|y|)) be the surface of revolution
generated by a function φ : [0,∞) → R. Suppose that φ ∈ C1([0,∞)), φ′ is convex and
increasing, and Ω ∈ Fα(Sn−1) for some α > 0.

(i) If n = 2, then µΦ,Ω is bounded on Lp(R3) for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
.
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(ii) If n � 3 and φ′(0) = 0, then µΦ,Ω is bounded on Lp(Rn+1) for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
.

Theorem 1.3. Let d = n + 1 and Φ(y) = (y, φ(|y|)), where φ is a polynomial. In
addition, let Ω ∈ Fα(Sn−1) for some α > 0.

(i) If n = 2, then µΦ,Ω is bounded on Lp(R3) for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
.

(ii) If n � 3 and φ′(0) = 0, then µΦ,Ω is bounded on Lp(Rn+1) for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
.

Moreover, in both (i) and (ii), the bounds on the operator norm are independent of the
coefficients of φ.

Our method is based on a lemma presented in § 2. The proofs of our results can be
found in §§ 3 and 4.

2. Main lemma

We shall begin by establishing some notation. For a family of measures τ = {τk,t : k ∈
N, t ∈ R} on R

d, we define the operators ∆τ and τ∗
k by

∆τ (f)(x) =
∞∑

k=1

(∫
R

|(τk,t ∗ f)(x)|2 dt

)1/2

and τ∗
k (f)(x) = sup

t∈R

(|τk,t| ∗ |f |)(x).

Lemma 2.1. Let m ∈ N and L : R
d → R

m be a linear transformation. Suppose that
there are constants C0, Cp, α, γ > 0 such that the following hold for k ∈ N, t ∈ R and
ξ ∈ R

d:

‖τk,t‖ � C02−k; (2.1)

|τ̂k,t(ξ)| � C02−k|2γ(t−k)Lξ|; (2.2)

|τ̂k,t(ξ)| � C02−k(log |2γ(t−k)Lξ|)−(1+α), if |2γ(t−k)Lξ| > 2; (2.3)

‖τ∗
k (f)‖Lp(Rd) � Cp2−k‖f‖Lp(Rd), for 1 < p < ∞. (2.4)

Then, for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
,
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there exists a constant Ap > 0 such that

‖∆τ (f)‖Lp(Rd) � Ap‖f‖Lp(Rd) (2.5)

for all f ∈ Lp(Rd). The constant Ap may depend on C0, Cp, α, γ, d and m, but it is
independent of the linear transformation L.

Proof. By an argument in [7] we may assume that m � d and Lξ = (ξ1, . . . , ξm) = ξ′

for ξ = (ξ1, . . . , ξd) ∈ R
d. Choose a C∞ function ψ : R → [0, 1] such that supp(ψ) ⊂ [ 14 , 4]

and ∫ ∞

0

ψ(r)
r

dr = 2. (2.6)

Define the Schwartz functions Ψ, Ψt : R
m → C by

Ψ̂(ξ1, . . . , ξm) = ψ(ξ2
1 + · · · + ξ2

m)

and Ψt(u) = t−mΨ(u/t) for t > 0 and u ∈ R
m. If we let δd−m represent the Dirac delta

on R
d−m, then by (2.6), for any Schwartz function f ,

f(x) =
∫ ∞

0
(Ψt ⊗ δd−m) ∗ f(x)

dt

t
= (γ log 2)

∫
R

(Ψ2γs ⊗ δd−m) ∗ f(x) ds. (2.7)

Define the g-function g(f) by

g(f)(x) =
(∫

R

|(Ψ2γs ⊗ δd−m) ∗ f(x)|2 ds

)1/2

.

By
∫

Rm Ψt(z) dz = ψ(0) = 0 and Littlewood–Paley theory, we have

‖g(f)‖Lp(Rd) � C‖f‖Lp(Rd), for 1 < p < ∞. (2.8)

For s ∈ R, k ∈ N and Schwartz function f , let

Hs,k(f)(x) =
(∫

R

|(Ψ2γ(s+t) ⊗ δd−m) ∗ τk,t ∗ f(x)|2 dt

)1/2

(2.9)

and

Hs(f) =
∞∑

k=1

Hs,k(f).

It follows from (2.7) and Minkowski’s inequality that

∆τ (f)(x) � (γ log 2)
∫

R

Hs(f)(x) ds. (2.10)

Hence, if we can prove that, for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
,
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there exist θp > 0 and θ′
p > 1 such that

‖Hs‖p,p �

⎧⎪⎨
⎪⎩

Cp2−sθp , for s > 0,

Cp|s|−θ′
p , for s < −N,

Cp, for − N � s � 0,

(2.11)

where N > 0 depended only α and γ, then (2.5) follows from (2.10) and (2.11).
We shall first establish (2.11) for p = 2. When s > 0, by (2.2) we have∫

R

|ψ(|2γ(s+t)ξ′|2)τ̂k,t(ξ)|2 dt � C2−2k

∫
(2γs+1|ξ′|)−1�2γt�2(2γs|ξ′|)−1

(2γ(t−k)|ξ′|)2 dt

� C(2k(γ+1)+γs)−2. (2.12)

It then follows from Plancherel’s Theorem and (2.12) that

‖Hs‖2,2 � C2−γs. (2.13)

Now let us consider the case of s < 0. For given α > 0 and γ > 0, take

−s > max
{

1 +
8
γ

,
γ(1 + α)

log 2

}
.

Then for 1 � k < −s − (4/γ), by (2.3) we have∫
R

|ψ(|2γ(s+t)ξ′|2)τ̂k,t(ξ)|2 dt

� C2−2k

∫
(2γs+1|ξ′|)−1�2γt�2(2γs|ξ′|)−1

(log |2γ(t−k)ξ′|)−2(1+α) dt

� C2−2k(1 + γ|s + k|)−2(1+α). (2.14)

On the other hand, for s chosen above and k � −s − (4/γ), by (2.2) we have∫
R

|ψ(|2γ(s+t)ξ′|2)τ̂k,t(ξ)|2 dt � C2−2k2−2γ(s+k). (2.15)

Apply Plancherel’s Theorem again, by (2.14) and (2.15), for s chosen above we have

‖Hs,k(f)‖L2(Rd) �
{

C2−k(1 + γ|s + k|)−(1+α)‖f‖L2(Rd), for 1 � k < −s − (4/γ),

C2−k2−γ(s+k)‖f‖L2(Rd), for k � −s − (4/γ).
(2.16)

Thus, by (2.16) we get

‖Hs‖2,2 � C

{ ∑
1�k<−s−(4/γ)

2−k(1 + γ|s + k|)−(1+α) +
∑

k�−s−(4/γ)

2−k2−γ(s+k)
}

. (2.17)
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We have∑
1�k<−s−(4/γ)

2−k(1 + γ|s + k|)−(1+α)

= 2s
∑

(4/γ)<j�−(s+1)

2j(1 + γj)−(1+α)

� 2s

( ∑
(4/γ)<j�−(s+1)/2

2j(1 + γj)−(1+α) +
∑

−(s+1)/2<j�−(s+1)

2j(1 + γj)−(1+α)
)

� 2s

[
2−(s+1)/2

∑
4<j<∞

(1 + j)−(1+α) +
(

1 − γ(s + 1)
2

)−(1+α) ∑
−(s+1)/2<j�−(s+1)

2j

]

� C(2s/2 + |s|−(1+α)) (2.18)

and ∑
k�−s−(4/γ)

2−k2−γ(s+k) � 2s
∑

j�−[4/γ]−1

2−j(1+γ) � C2s. (2.19)

It is easy to see that, for given α > 0 and γ > 0, there exists an

N > max
{

1 +
8
γ

,
γ(1 + α)

log 2

}

such that, for all s < −N , 2s < 2s/2 < |s|−(1+α). Hence, by (2.17) and (2.18), (2.19), we
see that

‖Hs‖2,2 � C|s|−(1+α), for s < −N. (2.20)

Next we shall prove that, for every p ∈ (1,∞), there exists a Cp > 0 such that for any
s ∈ R

‖Hs‖p,p � Cp. (2.21)

Let Gu(x) = (Ψ2γu ⊗ δd−m) ∗ f(x). Then by (2.1),∥∥∥∥
∣∣∣∣
∫

R

τk,t ∗ Gs+t(·) dt

∣∣∣∣
∥∥∥∥

L1(Rd)
� C2−k

∥∥∥∥
∫

R

|Gt(·)| dt

∥∥∥∥
L1(Rd)

. (2.22)

On the other hand, by (2.4), for 1 < q < ∞ we get∥∥∥ sup
t∈R

|τk,t ∗ Gs+t|
∥∥∥

Lq(Rd)
�

∥∥∥τ∗
k

(
sup
t∈R

|Gt|
)∥∥∥

Lq(Rd)
� C2−k

∥∥∥ sup
t∈R

|Gt|
∥∥∥

Lq(Rd)
. (2.23)

Hence, (2.22) and (2.23) show that the linear mapping T : Gt → τk,t ∗ Gs+t is bounded
from L1(L1(R), Rd) to itself and from Lq(L∞(R), Rd) to itself, respectively. If q > 1
satisfies 1/q = 2/p − 1, then by using the operator interpolation theorem between (2.22)
and (2.23), it can be concluded that for 1 < p < 2 the mapping T is bounded from
Lp(L2(R), Rd) to itself. By using an appropriate duality argument, we know that T is
also bounded from Lp(L2(R), Rd) to itself for 2 < p < ∞. Thus, for 1 < p < ∞,∥∥∥∥

(∫
R

|τk,t ∗ Gs+t(·)|2 dt

)1/2∥∥∥∥
Lp(Rd)

� Cp2−k

∥∥∥∥
(∫

R

|Gt(·)|2 dt

)1/2∥∥∥∥
Lp(Rd)

.

https://doi.org/10.1017/S0013091501000682 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000682


Lp bounds for Marcinkiewicz integrals 675

From this and (2.8), we get that

‖Hs,k(f)‖Lp(Rd) � Cp2−k‖f‖Lp(Rd) for 1 < p < ∞, (2.24)

holds for s ∈ R and k ∈ N, which implies that (2.21) holds for s ∈ R and 1 < p < ∞.
Finally, by interpolating between (2.13) and (2.21), (2.20) and (2.21), respectively, we

obtain (2.11) for every p in (
2 + 2α

1 + 2α
, 2 + 2α

)
with θp > 0 and θ′

p > 1. Lemma 2.1 is proved. �

3. Theorems 1.2 and 1.3

Proof of Theorem 1.3. Let Ω ∈ Fα(Sn−1) for some α > 0 and let Ω satisfy (1.1).
Let Φ(y) = (y, φ(|y|)), where φ is a real-valued polynomial. In addition, we assume that
φ′(0) = 0 when n � 3.

Let Ds = {y ∈ R
n : 2s < |y| � 2s+1} and define the family of measures τ = {τk,t : t ∈

R, k ∈ N} on R
n+1 by∫

Rn+1
f(y, yn+1) dτk,t = 2−t

∫
Dt−k

f(y, φ(|y|)) Ω(y)
|y|n−1 dy. (3.1)

Then
µΦ,Ω(f) � ∆τ (f). (3.2)

It is easy to see that (2.1) follows from the integrability of Ω on Sn−1. In light of (3.2)
and Lemma 2.1, it suffices to show that (2.2) and (2.3) also hold when we choose γ = 1
and L(ξ, ξn+1) = ξ.

For λ ∈ R, let

Iλ(ξ, ξn+1, y) =
∫ 2

1
ei[λ(ξ·y)u+ξn+1φ(λu)] du. (3.3)

By using a van der Corput type estimate in [3, Corollary 7.3] and (1.2) we obtain∫
Sn−1

|Iλ(ξ, ξn+1, y)Ω(y)| dσ(y) � C(log+ |λξ|)−(1+α) (3.4)

for λ ∈ R and (ξ, ξn+1) ∈ R
n+1. The distinction between the cases n = 2 and n � 3 was

made clear in [4] (see also the example given at the end of § 3 in [4]). Thus

|τ̂k,t(ξ, ξn+1)| � 2−k

∫
Sn−1

|I2t−k(ξ, ξn+1, y)Ω(y)| dσ(y)

� C2−k(log+ |2t−kξ|)−(1+α). (3.5)

On the other hand, by (1.1),

|τ̂k,t(ξ, ξn+1)| � 2−t

∫
Dt−k

|ei[ξ·y+ξn+1φ(|y|)] − eiξn+1φ(|y|)| |Ω(y)|
|y|n−1 dy

� C2−k|2t−kξ|. (3.6)

Clearly, (3.5) and (3.6) imply (2.2).
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Finally, one may apply a theorem of Stein and Wainger on maximal operators along
curves in [14] to obtain (2.4). This completes the proof of Theorem 1.3. �

The proof of Theorem 1.2 is similar. Details are omitted.

4. Proof of Theorem 1.1 and additional results

For n, m ∈ N we let A(n, m) denote the set of polynomials on R
n which have real

coefficients and degrees not exceeding m. Let

U(n, m) =
{ ∑

|β|=m

aβyβ ∈ A(n, m)\A(n, m − 1) :
∑

|β|=m

|aβ |2 = 1
}

.

Based on the work in [1] regarding singular integrals, we have the following theorem.

Theorem 4.1. Let α > 0, n � 2, m, d ∈ N and P(y) = (P1(y), . . . , Pd(y)) ∈
(A(n, m))d. If Ω ∈ L1(Sn−1) and Ω satisfies

sup
P∈

⋃m
l=1 U(n,l)

∫
Sn−1

|Ω(y)|
(

log
1

|P (y)|

)1+α

dσ(y) < ∞, (4.1)

then µP,Ω is bounded on Lp(Rd) for

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
.

Moreover, the bound on the operator norm is independent of the coefficients of the
polynomials {Pj}1�j�d.

Proof. Define the family of measures σ = {σk,t | k ∈ N, t ∈ R} on R
d by

∫
Rd

f(x) dσk,t(x) = 2−t

∫
Dt−k

f(x − P(y))
Ω(y)
|y|n−1 dy.

Then
µP,Ω(f) � ∆σ(f). (4.2)

By the arguments in [7] and [1], there are families of measures

τ (1) = {τ
(1)
k,t : k ∈ N, t ∈ R}, . . . , τ (m) = {τ

(m)
k,t : k ∈ N, t ∈ R},

each of which satisfies (2.1)–(2.4) with appropriate choices of γ1, . . . , γm and linear trans-
formations L(1), . . . , L(m), such that

σk,t =
m∑

l=1

τ
(l)
k,t (4.3)

https://doi.org/10.1017/S0013091501000682 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000682


Lp bounds for Marcinkiewicz integrals 677

for k ∈ N, t ∈ R. It then follows from Lemma 2.1 and Minkowski’s inequality that

‖µP,Ω(f)‖Lp(Rd) �
m∑

l=1

‖∆τ(l)(f)‖Lp(Rd) � Cp‖f‖Lp(Rd)

for f ∈ Lp(Rd) and

p ∈
(

2 + 2α

1 + 2α
, 2 + 2α

)
.

Theorem 4.1 is proved. �

It was shown in [1] that, when n = 2 and Ω ∈ Fα(S1), (4.1) holds for all m ∈ N.
Therefore, one obtains Theorem 1.1 as a corollary of Theorem 4.1.
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