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Abstract
We use models incorporating the normalized difference vegetation index (NDVI) derived from remote
sensing satellites to improve soybean yield predictions in 10 major producing states in the United
States. Unlike traditional methods that assume an ordinary least squares model applies to all observations,
we allow for global flexibility in the relationship between NDVI and soybean yield by using the flexible
Fourier transform (FFT) model. FFT results confirm that there is a nonlinear response of soybean yield to
NDVI over the growing season. Out-of-sample predictions indicate that allowing for global flexibility with
the FFT improves the predictions in time-series prediction and forecasting.
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1. Introduction
Many agencies, both public and private, exert significant efforts to make crop yield forecasts
(Irwin, Sanders, and Good, 2014). Accurate and timely crop yield forecasts are valuable in many
ways for market participants. At the aggregate level, crop yield forecasts help the price discovery
process and improve market efficiency; they also aid decision makers in formulating rapid deci-
sions to accommodate humanitarian actions and provide disaster assistance. At the individual
level, crop yield forecasts are used to set crop insurance premiums by insurance companies,
and they provide critical information for producers to make adjustments to improve their farm
profitability.

In recent years, there has been an increasing interest in using remote sensing data to help
improve crop yield forecasting. Remote sensing collects, archives, processes, and distributes sat-
ellite-derived data (Senay, 2016). For example, the normalized difference vegetation index (NDVI)
contains helpful information generated by remote sensing procedures that can be used to predict
crop yields. NDVI is a measure of biomass density on the surface of the earth, usually produced by
a space platform. NDVI is defined as follows:

NDVI � NIR � RED� �= NIR� RED� �;
where NIR stands for the reflectance of the near-infrared bands and RED stands for the reflectance
of the visible bands of the electromagnetic spectrum. According to electromagnetic theory, live
vegetation absorbs the blue and red bands of sunlight and reflects most of the green band of sun-
light. Dying vegetation, to the contrary, absorbs mostly the green band of sunlight and reflects
mostly the blue and red bands of sunlight. Barren soil reflects moderately both the visible and
near-infrared bands of the electromagnetic spectrum. Generally, the higher the NDVI, the more

© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Journal of Agricultural and Applied Economics (2019), 51, 402–416
doi:10.1017/aae.2019.5

https://doi.org/10.1017/aae.2019.5 Published online by Cambridge University Press

https://orcid.org/0000-0002-7307-4073
mailto:katchova.1@osu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/aae.2019.5
https://doi.org/10.1017/aae.2019.5


NIR light is reflected and the less RED light is reflected, and therefore, the target area includes
more vegetation.

Because remote sensing provides information with a similar level of accuracy and accessibility
regardless of the location and economic development of the country, using remote sensing data to
predict crop yield has the potential to be applied in less developed countries in a cost-effective
manner. In comparison, traditional, survey-based forecasts are relatively expensive and labor
intensive.

Previous NDVI-based forecasting studies (Lv, 2014) utilized ordinary least squares (OLS)
regression, which assumes that a global coefficient applies to each location invariantly.
However, a global coefficient may hide location variation. Because of differences in local climate,
soil conditions, and farm practices, the correlation between NDVI and crop yields may be highly
localized. Using a global coefficient to forecast site-specific crop yield may be biased and thus may
cause less informed decisions by market participants.

We use a flexible Fourier transform (FFT) model to allow for global flexibility in crop yield
forecasts based on NDVI. This is the first study to our knowledge to examine how the correlation
between NDVI and soybean yield varies by location and to use this global flexibility of the FFT
model to improve the forecast performance of soybean yields. We then compare FFT with OLS in
terms of out-of-sample forecast performance. Two hypotheses are tested: (1) the relationship
between NDVI and crop yield is nonlinear using the FFT model; and (2) the proposed FFT model
outperforms OLS in terms of ex ante forecasting accuracy, because FFT introduces flexibility
in modeling the soybean yield–NDVI relationship and allows the soybean yield–NDVI elasticity
estimates to vary across observations.

This article is organized as follows: Section 2 presents some background information on
current practices used for crop yield forecasting and remote sensing for crop yield forecasting;
Section 3 introduces the data sources and the FFT model we use; Section 4 presents a descriptive
analysis and regression and forecasting results, comparing the FFT method and the traditional
OLS method; and Section 5 concludes the article.

2. Background and related literature
2.1. Overview of current crop yield forecast methods

There are two types of crop forecasts: survey-based forecasts and regression-based forecasts.
Survey-based forecasts tend to be more accurate, especially when the harvest date is approaching,
usually available shortly before or around harvest time, but they are also more expensive and labor
intensive. Regression-based forecasts are more cost effective and can be available largely ahead of
harvest; however, their accuracy may be compromised.

Survey-based forecasts that are used by the U.S. Department of Agriculture, National
Agricultural Statistics Service (USDA-NASS) are made by conducting annually an agricultural
yield survey (AYS) and an objective yield survey (OYS), the details of which can be found in
USDA-NASS (2012). In the AYS, farmers are asked to self-report their anticipated yields, which
may become the actual yields if harvest has begun. In the OYS, NASS sends technical personnel to
the field to take objective measurements and counts of the plants. Both AYS and OYS are con-
ducted monthly from May to November, but soybean yield data are collected and soybean yield
forecasts are published from August to November. The final forecast is released in January of the
next year. The typical cycle of soybean production in the major producing states in the United
States is as follows: planting is in May and June, flowering is in July (which is its moisture/
temperature-sensitive stage), filling is in August, maturation is in September, and harvesting is
between October and November.

The second type of crop forecast is the regression-based forecast. This type of forecast is used
mostly by private agencies and occasionally as a supplementary forecast by public agencies. For
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example, the World Agricultural Outlook Board (WAOB) releases the World Agricultural Supply
and Demand Estimates regression-based forecasts, which use trend analysis and crop weather re-
gression models. Unlike the forecasts released by NASS at the end of the year, the WAOB releases
early forecasts throughout the growing season, from May to August (Irwin, Sanders, and Good,
2014). The comparison between NASS and WAOB yield forecasts and an evaluation of WAOB
forecast accuracy can be found in Irwin, Good, and Sanders (2015). The crop weather model (also
known as the modified Thompson model) utilizes a year trend variable, monthly weather vari-
ables, and an indicator if the crop is planted late. The crop condition model utilizes a year trend
variable, the proportion of the crop planted after a certain date (e.g., May 30 for soybeans; Irwin,
Good, and Tannura, 2009), and the proportion of the crop rated as good or excellent by USDA
(Crop Progress Report). The model we propose in this study is based on the crop weather model
but also adds NDVI variables. According to the literature, the modified Thompson model pro-
duces a good fit but performs poorly when events (such as insects and diseases) that cannot be
captured by a weather variable negatively affect crop yields. We hypothesize that using NDVI can
also monitor for insects and diseases because NDVI is a direct indicator of the greenness/health of
the vegetation, with the additional benefit that NDVI data are immediately available at a low cost
compared with the methods that rate crop conditions. Because regression-based forecasts typically
rely on aggregate-level information, such as climatological variables at the county or regional level,
a limitation of the regression-based forecasts is their inability to incorporate farm-level character-
istics such as managerial skills or soil characteristics. However, regression-based forecasts can
become useful when farm-level data are lacking, which is prevalent in many cases, especially
in yield forecasting in developing countries.

2.2. Crop yield forecasting using remote sensing

There have been numerous studies documenting the correlation between NDVI and crop yield
forecasts, at the national (Maselli and Rembold, 2002), regional, county (Bolton and Friedl, 2013),
and field level (Ferencz et al., 2004). Tucker (1979) determined that a time-integrated NDVI is
largely correlated with crop yields when the vegetation is at the maximum level of greenness. Some
studies focus on intra-annual variability showing how the correlation between the vegetation in-
dex and crop yields varies by the crop cycle and planting date (Basnyat et al., 2004). These studies
suggest choosing NDVI data over a specific period for each type of crop in order to produce better
forecasts. The weekly availability of NDVI data makes this crop-specific specification achievable.
Lv (2014) suggests using earlier May NDVI and the change in NDVI over the crop planting and
harvesting season for the most accurate yield forecasting. Johnson (2014) finds that crop yields
are highly correlated with NDVI and daytime land surface temperature. The author conducts a
regression of crop yields on NDVI for every week of the growing season and finds that the week in
which the correlation is at its peak is at the beginning of August.

In addition to NDVI derived from the National Aeronautics and Space Administration’s
(NASA) Earth Observing System (EOS) Moderate Resolution Imaging Spectoradiometer, called
eMODIS, other indexes and images have been used. For example, Doraiswamy and Cook (1995) is
one of the earliest studies that used Advanced Very High Resolution Radiometer (AVHRR) im-
agery. AVHRR data are coarser, whereas eMODIS data are finer; AVHRR data are available for an
extended period, whereas eMODIS data are only available after 2000. Later, Ferencz et al. (2004)
also used AVHRR and a vegetation index called general yield unified reference index. Bolton and
Friedl (2013) suggest to incorporate crop phenology and use a combination of the EVI2 (two-end
enhanced vegetation index), NDVI, and normalized differenced water index (NDWI) for crop
yield forecasting. They distinguish between semiarid and non-semiarid areas. They find that
vegetation indexes are the best type of indexes for predicting in non-semiarid areas, whereas
the NDWI is the best index for prediction in semiarid areas, because the water index is sensitive
to irrigation in these semiarid areas.
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Instead of using traditional statistical models, Bose et al. (2016) utilize spiking neural networks
from machine learning to analyze a remote sensing spatiotemporal relationship. Their work
focuses on finding the optimum number of variables (or “features” in machine learning) to be
included in regression analysis using machine learning techniques. They find that this type of
prediction can be made 6 weeks before harvest with an average accuracy of 95.64%. They find
that the year 2002 had the largest forecast error because of the 2002 drought. Adrian (2012)
applies the Bayesian hierarchical model. This model is suitable for modeling data with clusters.
It produces unique estimates for each state while requiring the estimates from each state to also
follow a prior distribution. Johnson et al. (2016) focus on comparing forecast performance using
linear versus nonlinear machine learning techniques and find that nonlinear models are not nec-
essarily advantageous compared with linear models. Li et al. (2007) find that neural network tech-
niques improve corn predictions compared with multivariate analysis. Kaul, Hill, and Walthall
(2005) find that a nonlinear model only outperforms the linear model for barley. Mkhabela
et al. (2011) categorize the Census Agricultural Regions (CARs) into three distinct agroclimatic
zones; however, even within CARs, there might be multiple soil types. Bolton and Friedl (2013)
emphasize the importance of delineating the boundary between farmland and nonfarmland, such
as grassland and forests, because nonfarmland may contaminate the NDVI–crop yield relation-
ship. Delineation can be done by using a land cover map such as Landsat Thematic Mapper (TM)
data (Bolton and Friedl, 2013). Another method of delineation is to identify single pixels as
agricultural or nonagricultural vegetation using statistical correction analysis (Maselli and
Rembold, 2002). Among those studies, there are soybean forecasts in the United States using
remote sensing (Lobell and Asner, 2003; Prasad et al., 2006). Chang et al. (2007) focus on using
NDVI to map corn and soybean farmland.

Fieuzal, Sicre, and Baup (2017) make corn yield forecasts using both a real-time approach and a
diagnostic approach. The real-time approach updates the estimates dynamically after the newest
image is acquired, whereas the diagnostic approach utilizes all the image data throughout the sea-
son. The authors find the two best estimates perform comparably. Burke and Lobell (2017) regress
the agreement between satellite-based yields and field-reported yields as a function of farm size
and find the vegetation index can most accurately predict crop yield when the field size is large.

All of the abovementioned studies employ a global model to produce the regression results that fit
all observations, with the major difference among the studies being the specific model they use. To
the best of our knowledge, this study is the first one to employ models that produce site-specific
regression results, allowing heterogeneous responses of soybean yields across counties. This is also
the first study to our knowledge that applies the FFTmodel to examine the yield-NDVI relationship.

3. Data and methods
3.1. Data

We use data for 797 counties from 10 major soybean-producing states in the United States from
2000 to 2016. According to NASS, the soybean production from these 10 states accounted for
78.5% (in 2016) and 79.8% (2000–2016 average) of the total soybean production in the
United States (see Table 1 for soybean production and yield by state). Mkhabela et al. (2011) state
that if a crop is not the dominant crop in the region, NDVI would give a poor prediction of crop
yield because it cannot distinguish between different crops. The soybean yield data are obtained
from the USDA-NASS QuickStats (https://quickstats.nass.usda.gov [accessed December 1,
2017]). This database provides official published aggregate statistics on U.S. soybean yields
and the value of soybean production. Soybean yield is measured in bushels per acre. The
NDVI data we use are from eMODIS onboard NASA’s EOS Terra satellite. Landsat TM and
eMODIS are two mainstream imagery sources. Though Landsat TM has a better spatial resolution
(30 m) than eMODIS (250 m), the latter provides a better temporal resolution (daily) than the
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former (16-day cycle). For monitoring purposes, we chose the eMODIS data. The eMODIS
instrument onboard the Terra satellite achieves global coverage on a daily basis and provides
7-day composited data sets for its suite of products. Each data set provides NDVI information
in GeoTIFF format that contains the reflective indices captured by Terra satellite at the resolution
of 250 m from 2000 onward. Ag-Analytics converts the 250-m-resolution raw images to county-
level NDVI. Ag-Analytics is an open-source, open-access database that provides data on agricul-
tural finance, environmental finance, insurance, and risks (Woodard, 2016). We calculate county-
level monthly NDVI values by taking a monthly average of the weekly NDVI values provided by
Ag-Analytics. Climatological data are obtained from PRISM (parameter-elevation regressions on
independent slopes model) Climate Data from Oregon State University and Ag-Analytics. We
include two weather variables: maximum temperature over a month and average monthly
precipitation. County boundary shapefiles are obtained from the U.S. Census Bureau. We obtain
a sample of 12,027 county-year observations for the FFT analysis.

3.2. Flexible Fourier transform model

When estimating crop yield response to input variables, traditional models use regional and tem-
poral dummies to capture spatial and intertemporal heterogeneity. Adding dummy variables can
only capture the difference in the value of the dependent variable across locations and time; it does
not take into account how the relationship varies according to site-specific and time-specific char-
acteristics. Another type of model uses a quadratic functional form to estimate the relationship
between crop yield and weather variables, assuming that crop yield is nonlinearly related to the
weather variable. However, these models may suffer from model misspecification, especially if
there is a threshold effect, driven by environmental risks such as drought and flooding
(Cooper, Nam Tran, and Wallander, 2017).

Gallant (1984) first proposed flexible Fourier functional transform to generate unbiased
production function approximation and proved its mathematical validity. Cooper, Nam Tran,
and Wallander (2017) applied an FFT function to estimate the relationship between crop yield

Table 1. Soybean production and yield in 10 major producing states

Soybean Soybean Soybean Soybean Soybean Soybean

Productiona Yield Production Yield Production Yield

State 2015 2016 2000–2016 Average

Illinois 544,320 56 592,950 59 461,082 48

Iowa 553,700 56.5 571,725 60.5 478,456 49

Minnesota 377,500 50 393,750 52.5 296,659 42

Indiana 275,000 50 324,300 57.5 260,298 48

Nebraska 305,660 58 314,150 61 237,676 49

Missouri 181,035 40.5 271,460 49 196,832 39

Ohio 237,000 50 263,780 54.5 206,655 45

South Dakota 235,520 46 255,915 49.5 161,933 37

North Dakota 185,900 32.5 249,000 41.5 125,860 32

Arkansas 155,330 49 145,700 47 119,596 39

Ten states 3,050,965 49 3,382,730 53 2,545,047 43

U.S. total 3,926,339 48 4,306,671 52.1 3,190,025 42

aSoybean production is measured in 1,000 bushels. Soybean yield is measured in bushels/acre.
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and temperature. We follow the approach and modeling in Cooper, Nam Tran, and Wallander
(2017) for the flexible Fourier function, which can be presented as follows:

Soybean yield � β0 �
XAugust

m�April

�β1mMaxTempm � β2mMaxTempSquarem�

�
XAugust

m�April

�β3mPrecipitationm � β4mPrecipitationSquarem�

�
XSeptember

m�April

�β5mNDVIm� � δ0TimeTrend �
X9
s�1

δsStateDummys

� 2
XA
α�1

XJ

j�1

vjαcos jk
0
αs NDVI� � � wjαsin

� �
jk

0
αs NDVI� �� �� �� error (1)

In this model, the dependent variable is soybean yield in a county for a given year. β0 is the
constant term. MaxTempm, Precipitationm, and NDVIm are the maximum temperature, the aver-
age precipitation, and the average NDVI in month m, respectively. We include the weather var-
iables from April to August, following the standard specification in the literature (Cooper, Nam
Tran, and Wallander, 2017). We include NDVI variables through September, following the re-
mote sensing literature (Li et al., 2007). The advantage of the FFT function is that it not only
allows for model flexibility but also incorporates multivariate estimation, which is difficult to
achieve through other nonparametric models such as kernel regression.

PrecipitationSquarem and MaxTempSquarem are the squared terms of MaxTempm and
Precipitationm. TimeTrend equals the year minus 1999. StateDummys is the state dummy variable.
NDVI is a vector with each element being NDVIm. s(NDVI) is the scaled version of NDVI such that
each element of s(NDVI) is in the range of [0, 2π]. In our case, only NDVI variables are transformed.

The β0 �
PAugust

m�April �β1mMaxTempm � β2mMaxTempSquarem� �
PAugust

m�April �β3mPrecipitationm

�β4mPrecipitationSquarem� �
PSeptember

m�April �β5mNDVIm� terms represent the quadratic regression

part. β1m, β2m, β3m, β4m, and β5m are parameters to be estimated. The 2
P

A
α�1

PJ
j�1

fvjα cos�jk0
αs�NDVI�� � wjα sin�jk0

αs�NDVI��g term models the functional flexibility using FFT.
Similar to the Taylor expansion, which uses a series of polynomial terms to approximate the true
function, the Fourier function uses a series of trigonometric terms to approximate the true func-
tion. The Fourier functional form is believed to be the only known functional form that satisfies
the Sobolev condition, meaning that the difference between the approximated function and the
true function approaches zero as the sample size becomes arbitrarily large. For a proof that the
Fourier function satisfies the Sobolev condition, refer to Gallant (1994). In the model, kα (α= 1, 2,
: : : , A) is the elementary multi-index vector, whose dimension equals the dimension of xFFT,
whereas A is the total number of elementary multi-indexes. The vector kα can be obtained in
the following way: first, exhaust the list of kα, such that kα has only integer elements and the
sum of the absolute value of each element in kα is no greater than K, where K is predetermined;
second, delete any kα whose first nonzero element is negative; and third, delete any kα whose ele-
ments have a common integer divisor. Monahan (1981) introduced a Fortran code to produce the
set of elementary multi-index vectors. Also in the model, J is the order of the Fourier transfor-
mation, whereas vjα and wjα are parameters to be estimated. We use the following parametri-
zation: K= 2, J= 2, which are chosen such that the rule of thumb—the number of variables after
transformation is roughly the square root of the number of observations (Fenton and Gallant,
1996)—is satisfied. Because there are 12,027 observations in the data we use, we include a total
of 120 variables after the adding the transformed NDVI variables.
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The model degenerates to the traditional OLS model when vjα= 0 and wjα= 0. In the following
discussion, the OLS model refers to equation (1), with vjα= 0 and wjα= 0 imposed. By testing the
statistical significance of variable vjα and wjα, we can decide whether the traditional quadratic
model should be rejected in favor of the more flexible FFT model.

A review of the relevant literature reveals that the FFT model has been used/tested by scholars
in different studies, fields, and situations. Chang et al. (2016) used the FFT to model the nonlinear
effect of temperature on electricity demand. Becker, Enders, and Lee (2006) proposed a unit root
test with a Fourier functional transform. Enders and Li (2015) approximated structural breaks in
U.S. GDP trends using Fourier forms. Jones and Enders (2014) provided a summary on using
Fourier forms to model structural breaks.

3.3. Prediction and forecast

We compare the prediction performance of the FFT model versus the OLS model. We conduct
out-of-sample predictions and evaluate prediction performance by comparing prediction errors
measured by the root-mean-square error (RMSE) and the mean absolute error (MAE), between
FFT and OLS, for three schemes: time-series prediction, cross-sectional prediction, and panel
prediction. RMSE and MAE are defined as follows:

RMSE �
��������������������������������
1
N

XN
i�1

�yi � ŷi�2
vuut : (2)

MAE � 1
N

XN
i�1

jyi � ŷij: (3)

Both RMSE and MAE are commonly used measures to evaluate prediction performance. They
measure the difference between true and fitted values for soybean yield. The unit for both RMSE
and MAE is bushels per acre. In a time-series prediction, we first select a year for prediction, then
we use observations from all other years to generate the model, and after that we predict the soy-
bean yield for the selected year using the fitted model, weather data, and NDVI data from the
selected year. In cross-sectional prediction, similarly, we select a state for prediction, then we
use observations from all other states to generate the model, and after that we predict the soybean
yield for the selected state using the fitted model, weather data, and NDVI data from the selected
state; in panel prediction, similarly, we make the prediction for a selected year and state. Though
commonly used, a shortcoming of using RMSE or MAE to measure prediction performance is that
we do not know whether the predicted yield overestimates or underestimates the final actual yield.

We make predictions and forecasts using the regression results from the models. In this study,
prediction refers to cases where we may use data afterward to predict for a specific time; forecast
refers to cases where we only use data up to a certain year to make predictions for that year.

4. Results
4.1. Descriptive analysis

The descriptive statistics for the main variables are reported in Table 2. The average soybean yield
across all states and years is 43.11 bushels per acre. From April to July, the average maximum
temperature and average NDVI increase steadily and reach their peak levels in August. The
average precipitation is highest in the months of May and June. These variables are included
as suggested by the modified Thompson model (Thompson, 1963) to account for weather effects.
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4.2. Flexible Fourier transform regression results

All FFT models were developed using Matlab R2017a (The MathWorks Inc.), following the meth-
odology in Cooper, Nam Tran, and Wallander (2017). Figures showing FFT results were made
using the ArcMap 10.3 software. The estimation results from the model incorporating FFT terms
are reported in Table 3. Because of the substantial number of variables (including 84 transformed
NDVI variables), we only report the results for the main variables, including the untransformed
weather variables and NDVI variables. However, the rest of the transformed variables are also
included in the model-fitting process. We calculate elasticities by applying the mean value theo-
rem to get the numerical approximation of the derivatives and fixing the values of independent
variables at the median value for each variable for each county. Thus, we obtain an elasticity esti-
mate for each county. We present the minimum, median, and maximum of FFT elasticity esti-
mates across counties in columns 2 through 4 in Table 3. For comparison purposes, we also use
the OLS regression results to calculate elasticity estimates for each county and report the elasticity
summary from the OLS regression in columns 5 through 7 in Table 3. The OLS model refers to
equation (1) with vjα= 0 and wjα= 0 imposed. For the weather variables, except for the July max-
imum temperature and the April average precipitation, the median of elasticity estimates derived
from OLS and the median of elasticity estimates from FFT have the same sign. On average, higher
temperatures from April to June and higher precipitation levels from June to August lead to higher
soybean yields. On the other hand, higher temperatures in August and higher precipitation levels
in May are associated with lower soybean yields.

Although the median of elasticity estimates for weather variables across counties is very similar
between the FFT and OLS results, the median elasticity estimates of NDVI variables differ

Table 2. Descriptive statistics

Variable
Number of
Observations Minimum Median Maximum Mean

Standard
Deviation

Soybean yield 12,027 2.9 44 73.1 43.11 10.05

Maximum temperature,a April 12,027 0.37 17.32 27.34 17.06 3.44

Maximum temperature, May 12,027 13.65 22.33 30.67 22.39 2.56

Maximum temperature, June 12,027 19.7 27.37 36.06 27.37 2.28

Maximum temperature, July 12,027 22.82 29.41 38.91 29.58 2.4

Maximum temperature, August 12,027 20.13 28.76 39.47 28.92 2.35

Precipitation, April 12,027 4.17 85.14 424.08 91.26 48.98

Precipitation, May 12,027 5.27 108.28 355.26 113.08 52.23

Precipitation, June 12,027 7.64 105.01 376.5 115.8 58.07

Precipitation, July 12,027 0.89 87.5 354.27 94.43 49.66

Precipitation, August 12,027 0 82.04 438 90.01 51.54

NDVI, April 12,027 −0.01b 0.33 0.79 0.35 0.12

NDVI, May 12,027 0.13 0.42 0.85 0.45 0.13

NDVI, June 12,027 0.24 0.59 0.87 0.58 0.1

NDVI, July 12,027 0.27 0.74 0.89 0.73 0.08

NDVI, August 12,027 0.27 0.75 0.88 0.72 0.1

NDVI, September 12,027 0.24 0.6 0.87 0.6 0.1

aTemperatures are measured in degrees Celsius; precipitation is measured in inches.
bNegative normalized difference vegetation index (NDVI) denotes snow cover.
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significantly between the FFT and OLS results, in terms of both sign (September NDVI) and mag-
nitude (April–August NDVI). NDVI elasticities estimated from the FFT model have a wider range
than those generated by OLS, because of the inclusion of the transformed NDVI variables. The
OLS results suggest that the August NDVI has a greater impact on soybean yields than the July
NDVI, whereas the FFT results suggest the opposite. According to Table 3, when the July NDVI
increases by 10%, the median soybean yield significantly increases by 4.5% or 1.94 bushels per
acre. The median effect of August NDVI is also positive, though not significant.

By testing the significance of the coefficient estimates for the Fourier terms, we can test whether
the FFT specification is overfitting the data. In Table 3, we present an F test of the FFT regression
versus the OLS regression; we find that the coefficients on the transformed Fourier terms are
jointly significantly different from zero, and thus the OLS is rejected in favor of the FFT regression.

The geographic distribution of coefficient estimates from FFT is presented in Figure 1. In each
panel, we present the geographic distribution of the median of the elasticity estimates of NDVI for

Table 3. Elasticity estimates from flexible Fourier transform (FFT) and quadratic ordinary least squares (OLS) models

FFT Quadratic OLS

Minimum Median Maximum Minimum Median Maximum

Maximum temperature, April 0.02 0.08 0.29 0.04 0.07 0.21

Maximum temperature, May −0.75 0.22*** 3.74 −0.82 0.27*** 1.38

Maximum temperature, June −0.11 0.42*** 5.99 −0.29 0.39*** 1.62

Maximum temperature, July −0.94 −0.04*** 1.14 −1.1 0.04*** 0.86

Maximum temperature, August −3.82 −0.48** −0.3 −1.46 −0.53 −0.37

Precipitation, April −0.03 0.0013*** 0.04 −0.04 −0.0047** 0.0048

Precipitation, May −0.15 −0.01* 0.01 −0.18 −0.01* 0.004

Precipitation, June −0.05 0.03*** 0.3 −0.07 0.04*** 0.08

Precipitation, July −0.29 0.04*** 0.35 −0.44 0.05*** 0.11

Precipitation, August 0.01 0.09*** 0.53 0.03 0.09*** 0.16

NDVI, April −3.27 −0.03*** 2.08 −0.22 −0.07*** −0.04

NDVI, May −1.04 −0.06* 1.09 −0.22 −0.09*** −0.04

NDVI, June −8.62 −0.15*** 1.14 −0.01 −0.01 −0.0032

NDVI, July −2.27 0.45*** 8.36 0.08 0.14*** 0.26

NDVI. August −3.74 0.34 7.46 0.13 0.22*** 0.32

NDVI, September −5.11 0.09 2.48 −0.11 −0.06*** −0.04

Number of observations 12,027 12,027

State fixed effects Yes Yes

Year trend effects Yes Yes

Adjusted R2 0.721 0.701

Rank test between Fourier
and OLS

F (84,11906)= 11.132

Notes: Because of the nonlinearity of the FFT regression, we report the elasticity estimates rather than the coefficient estimates of the main
variables. Significance here indicated by asterisks corresponds to the significance of the untransformed variables. Asterisks (*, **, and ***)
denote significance level of 10%, 5%, and 1%, respectively. In addition to these variables, an additional 84 Fourier transformed variables of
normalized difference vegetation index (NDVI) are included in the analysis—their coefficient estimates are not reported here, but they are
included in the elasticity calculations.
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each month (April, May, June, July, August, and September, respectively) across different coun-
ties. For some counties in the north of North Dakota, central Minnesota, central Indiana, western
Arkansas, and southwestern Missouri, soybean yields are highly responsive to July NDVI, but less
responsive to August NDVI. For most counties in Ohio and in eastern Arkansas, in contrast, the
soybean yield is responsive to August NDVI, whereas it is less responsive to July NDVI. For some
counties in the western parts of North Dakota and South Dakota, soybean yields are responsive to
April NDVI, whereas they are less responsive to August NDVI. These geographic differences in
soybean yield responsiveness to NDVI show that global flexibility needs to be considered when
making yield predictions.

4.3. Prediction and forecast results

The results of the time-series prediction and cross-sectional prediction performance for FFT ver-
sus OLS are shown in Table 4. The bolded numbers show cases where the FFT error is lower than
the OLS error. On average, FFT performs better than OLS in time-series predictions because both

Figure 1. Geographic distribution by state of elasticity estimates from flexible Fourier transform, April–September. Note:
NDVI, normalized difference vegetation index.
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MAE and RMSE for FFT are lower than those for the OLS model. For cross-sectional predictions,
FFT has a higher RMSE on average, but a lower MAE than OLS does.

Our results show that time-series predictions on average are more accurate than cross-sectional
predictions in terms of smaller predicting error. RMSE and MAE from time-series predictions are
consistently lower than cross-sectional predictions.

We also conduct out-of-sample panel predictions. We randomly select 1,000 observations from
all years and states, and predict the soybean yields for these 1,000 observations by OLS and FFT,
using all other observations excluding these 1,000 observations. We then compare the predicted soy-
bean yields with the actual yields and calculate the RMSE and MAE. We then repeat this sampling
process 200 times. The histogram shown in Figure 2 is of the distribution of RMSE and MAE. Two
findings are interesting. First, panel prediction has much lower prediction error than both time-series
and cross-sectional predictions in Table 4. This suggests that when predicting soybean yield for a
certain location, it is useful to include the already publicized yield data from other locations into the
training sample. Second, FFT has a consistently lower prediction error than the OLS model. FFT can
improve the prediction performance by a modest 0.3% according to MAE, or 0.4% according to
RMSE. This percentage is obtained by dividing the prediction error by the mean of crop yield (aver-
age MAE is 0.138, average RMSE is 0.1684, and mean soybean yield is 43.11).

The predictions so far may have used data from future periods to predict current soybean
yields. Therefore, we now include forecasts where soybean yield predictions are only based on
data from previous periods (Table 5). For RMSE, there are 10 years out of 16 years where

Table 4. Out-of-sample prediction performance: time-series and cross-sectional prediction

MAE RMSE MAE RMSE

Year OLS FFT OLS FFT State OLS FFT OLS FFT

2000 4.811 4.981 6.071 6.214 North Dakota 5.421 4.926 6.510 6.003

2001 3.879 3.936 4.921 5.022 South Dakota 5.358 6.273 6.883 8.729

2002 4.828 4.808 6.239 6.196 Iowa 4.801 4.078 5.851 5.118

2003 5.321 5.025 6.696 6.385 Ohio 4.318 4.717 5.335 5.771

2004 4.240 4.352 5.427 6.021 Illinois 6.200 5.578 7.582 6.947

2005 4.269 4.137 5.427 5.234 Indiana 4.617 4.468 5.546 5.457

2006 4.378 4.148 5.555 5.342 Nebraska 10.052 10.354 12.769 13.220

2007 4.620 4.741 6.203 6.338 Minnesota 4.979 4.981 6.343 6.532

2008 4.073 4.251 5.227 5.450 Missouri 4.685 4.723 5.919 5.925

2009 4.397 4.192 5.753 5.415 Arkansas 7.613 7.262 9.570 9.224

2010 3.857 3.757 4.925 4.875 Average 5.804 5.736 7.231 7.293

2011 4.374 4.531 5.573 5.671

2012 5.929 5.739 7.467 7.328

2013 4.945 4.894 6.189 6.174

2014 4.257 4.238 5.402 5.372

2015 4.492 4.464 5.839 5.798

2016 5.358 5.336 6.584 6.602

Average 4.590 4.561 5.853 5.849

Notes: Bolded numbers indicate that flexible Fourier transform (FFT) has lower prediction errors and therefore outperforms ordinary least
squares (OLS). MAE, mean absolute error; RMSE, root-mean-square error.
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FFT outperforms OLS. For MAE, there are 12 years out of 16 years in which FFT outperforms
OLS. In terms of average error, FFT has smaller RMSE and MAE than OLS does. Although the
forecasts are more realistic in terms of being based only on data from previous periods, the average
prediction errors are unsurprisingly higher than those for the predictions using all data including
from future periods in Table 4.

Figure 2. Histogram of root-mean-square error (RMSE) and mean absolute error (MAE) between ordinary least squares
(OLS) and flexible Fourier transform (FFT).

Table 5. Out-of-sample forecast performance

MAE RMSE

Year OLS FFT OLS FFT

2001 11.136 10.636 12.882 12.678

2002 6.303 6.502 7.956 8.235

2003 4.696 4.327 6.188 5.639

2004 5.956 5.395 7.117 7.394

2005 7.201 6.979 8.448 8.239

2006 4.758 4.546 6.319 6.051

2007 5.297 5.559 6.865 7.157

2008 4.242 4.758 5.475 6.143

2009 4.240 4.074 5.495 5.203

2010 4.353 4.277 5.545 5.489

2011 5.132 4.911 6.765 6.410

2012 6.239 6.124 7.835 7.730

2013 4.845 4.994 6.080 6.247

2014 4.240 4.218 5.388 5.335

2015 4.488 4.383 5.854 5.748

2016 5.358 5.336 6.584 6.602

Average 5.530 5.439 6.925 6.894

Notes: Bolded numbers indicate that flexible Fourier transform (FFT) has lower forecast errors and
therefore outperforms ordinary least squares (OLS). MAE, mean absolute error; RMSE, root-mean-
square error.
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We also conducted a panel model regression, which included county fixed effects, to explore
the within variation of the data. The results show lower prediction errors in a time-series predic-
tion and higher errors in cross-sectional prediction for models with county fixed effects (Table 6)
when compared with the models without county fixed effects (Table 4). The models with county
fixed effects show that OLS has smaller prediction errors than the FFT model when the prediction
is cross-sectional. However, for time-series prediction with county fixed effects, out of 17 years,
there are 10 (8) times when FFT outperforms OLS in terms of smaller mean MAE (RMSE).
Overall, the use of county fixed effects explored the within variation and improved prediction
over time, but worsened cross-sectional prediction.

According to the Crop Production report (USDA-NASS, 2016), the root-mean-square percent-
age error (RMSPE) of AYS/OYS forecasts for soybeans was 6.6% in 2016. In comparison, the
RMSPE of our FFT model forecasts in 2016 using time-series prediction was 9.29%. Though
the RMSPE from our FFT model is greater than that from USDA survey forecasts, FFT model
forecasts can substantially save labor and survey costs.

5. Conclusions
In this study, we used FFT to account for global flexibility in the relationship between NDVI
throughout the growing season and soybean yield. We produced county-specific coefficients

Table 6. Out-of-sample prediction performance with county fixed effects: time-series and cross-sectional prediction

MAE RMSE MAE RMSE

Year OLS FFT OLS FFT State OLS FFT OLS FFT

2000 4.1246 4.1621 5.2858 5.2991 North
Dakota

4.1488 5.2305 4.8985 6.0372

2001 3.2586 3.4405 4.1627 4.3735 South
Dakota

4.9816 6.0233 5.9978 6.9592

2002 3.5647 3.6346 4.5595 4.7035 Iowa 7.5167 8.6121 8.2265 9.2306

2003 4.8895 4.8078 6.0952 6.0159 Ohio 5.6129 6.7518 6.6215 7.6794

2004 3.764 3.7491 5.0481 4.9968 Illinois 6.8525 7.5782 7.6378 8.3345

2005 3.8178 3.8177 4.7016 4.6617 Indiana 6.2513 7.2419 6.9124 7.8397

2006 3.2359 3.148 4.219 4.1832 Nebraska 14.0015 16.1125 14.7071 16.7112

2007 3.9388 4.1172 5.0193 5.2704 Minnesota 6.3847 7.5013 7.1637 8.2296

2008 3.7597 3.6614 4.8143 4.7068 Missouri 5.6902 4.9128 6.6107 5.7695

2009 3.898 3.7821 5.0509 4.8781 Arkansas 6.6991 6.3144 7.6860 7.3413

2010 2.7168 2.7111 3.4873 3.4901 Average 6.8139 7.6279 7.6462 8.4132

2011 3.6341 3.6156 4.7376 4.6817

2012 4.7872 4.8085 6.0166 6.0447

2013 3.4953 3.8161 4.464 4.8339

2014 2.9774 3.0689 3.8074 3.9477

2015 3.3629 3.3447 4.4685 4.4134

2016 3.9657 3.9004 4.8404 4.8539

Average 3.7016 3.7303 4.7461 4.7813

Notes: Bolded numbers indicate that flexible Fourier transform (FFT) has lower prediction errors and therefore outperforms ordinary least
squares (OLS). MAE, mean absolute error; RMSE, root-mean-square error.
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and elasticities of NDVI on soybean yield. We found that the response of soybean yield to NDVI is
different across locations. For some counties located in the northern states, soybean yield is highly
positively related with the July NDVI, whereas for other counties located in the south, the August
NDVI is a better indicator of the soybean yield. Traditional OLS models seem to underestimate
the response of soybean yield to July and August NDVI.

Furthermore, we conducted out-of-sample predictions/forecasts and compared their perform-
ances for the OLS and FFT models. On average, predictions in time-series and forecasts from the
FFT model outperform those from the OLS models in terms of lower prediction errors. We found
that FFT models generally result in better out-of-sample predictions and forecasts than OLS
models.

A limitation of this work is that it does not distinguish pixels of soybean crops from those of
other crops or vegetation types. Nevertheless, incorporating NDVI in the model still results in
significant coefficients and an improved fit. Future work can use filters to select pixels that are
highly likely to be soybean crops. However, the use of globally flexible models may capture
the heterogeneous soybean to total land ratios across counties by allowing a flexible and nonlinear
relationship between NDVI and yield, compared with OLS, thus alleviating the contamination
caused by other crops. Future work that applies land cover filters may improve the results even
further.

This study uses data from the 10 major soybean-producing states in the United States for which
data are readily available. Our results show that using the FFT model helps improve the prediction
accuracy (lowers the prediction error) especially in panel predictions. The goal is to improve on
the forecast accuracy of soybean yield in order to allow market participants to make more in-
formed decisions with respect to anticipated crop yield and possible resulting prices. The FFT
model also has the potential to forecast crop yields in less developed countries where ground field-
work is too expensive to conduct or where the meteorological network is sparse—making this an
alternative feasible solution in making crop yield predictions.
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