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Lagrangian data assimilation is a complex problem in oceanic and atmospheric
modelling. Tracking drifters in large-scale geophysical flows can involve uncertainty in
drifter location, complex inertial effects and other factors which make comparing them
to simulated Lagrangian trajectories from numerical models extremely challenging.
Temporal and spatial discretisation, factors necessary in modelling large scale flows,
also contribute to separation between real and simulated drifter trajectories. The
chaotic advection inherent in these turbulent flows tends to separate even closely
spaced tracer particles, making error metrics based solely on drifter displacements
unsuitable for estimating model parameters. We propose to instead use error in
the coherent structure colouring (CSC) field to assess model skill. The CSC field
provides a spatial representation of the underlying coherent patterns in the flow, and
we show that it is a more robust metric for assessing model accuracy. Through the
use of two test cases, one considering spatial uncertainty in particle initialisation,
and one examining the influence of stochastic error along a trajectory and temporal
discretisation, we show that error in the coherent structure colouring field can be used
to accurately determine single or multiple simultaneously unknown model parameters,
whereas a conventional error metric based on error in drifter displacement fails.
Because the CSC field enhances the difference in error between correct and incorrect
model parameters, error minima in model parameter sweeps become more distinct.
The effectiveness and robustness of this method for single and multi-parameter
estimation in analytical flows suggest that Lagrangian data assimilation for real
oceanic and atmospheric models would benefit from a similar approach.

Key words: chaotic advection, geophysical and geological flows, nonlinear dynamical systems

1. Introduction
Models of oceanic and atmospheric geophysical flows are of great importance

in weather prediction and nowcasting (Kalnay 2002), understanding the effects of
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Coherent structure colouring 887

natural disasters such as tsunamis (Ioualalen et al. 2007; Yamazaki et al. 2011)
and anthropogenic disasters such as oil spills (Mariano et al. 2011) and quantifying
transport of nutrients and passive tracers such as heat and salt in the ocean (Böning
& Hermann 1994). Due to the large length scales of such flows, they are frequently
directly measured by sparse sensors that approximately follow the flow, including
ocean drifters and weather balloons. These sensors provide valuable data on flow
velocities, temperature, density and other parameters that can be used to validate
and tune the numerous parameters in the complex models developed to simulate
these flows. However, the integration of the real Lagrangian flow data into typical
Eulerian model descriptions is complicated by the nonlinear relationship between
the underlying flow velocities and the paths taken by individual parcels of fluid or
fluid tracers. In flows with significant chaotic advection, even small uncertainties in
spatial or temporal initial conditions can lead to a large divergence in the trajectories
taken by tracers that are initially closely spaced (Guckenheimer & Holmes 1983).
Further, real drifters experience effects such as added mass, Basset forces and windage
that influence their trajectories (Putman & He 2013; Olivieri et al. 2014). Because
oceanic and atmospheric models frequently use error in physical positions of simulated
Lagrangian particles compared to real drifters in the flow to assess the accuracy of the
models (Apte, Jones & Stuart 2008), the combination of these factors can complicate
parameter determination leading to large errors even for physically correct models.
All of the factors noted previously need to be accounted for when comparing real
drifters to simulated drifters for the purposes of Lagranginan data assimilation. Often
even a small uncertainty in these factors can lead to large departures of the simulated
trajectories from the real drifters. It is, therefore, useful to make sure any method for
trajectory comparison is robust to reasonable levels of uncertainty.

This issue necessitates the development of error metrics that are robust to the effects
of chaotic advection and uncertainties in drifter position. Recent advances in coherent
pattern identification provide a potential solution. One goal of coherent pattern (or
coherent structure) identification is to gain insight into transport barriers in flows.
This can be accomplished by identifying lines or surfaces of maximal separation
of initially closely spaced particles, as in finite time Lyapunov exponent (FTLE)
analysis (Haller 2000; Shadden, Lekien & Marsden 2005), by clustering trajectories
using machine learning algorithms (Froyland & Padberg-Gehle 2015), identifying
groups of trajectories that remain spatially compact (Hadjighasem et al. 2016),
bounding intertwining lines in a hybrid spatial/temporal parameter space (Thiffeault
2010) or clustering trajectories based on their relative dissimilarities (Schlueter-Kuck
& Dabiri 2017a). With the exclusion of FTLE analysis, these techniques have been
developed to be compatible with sparsely initialised tracer distributions, making them
well suited for analysis of ocean drifters and weather balloons. The underlying flow
structure represented by these coherent patterns can potentially provide an effective
metric for quantifying error in models.

Recently, one innovative study combined these ideas of coherent structure
identification and model parameter estimation for Lagrangian data assimilation. In
this study, the authors used principal component analysis (PCA) of the evolution of
the horizontal position of a set of drifters initialised around the centre of two gyre
cores in an analytical flow field (Maclean, Santitissadeekorn & Jones 2017). They
successfully identified model parameters when a random component was added to
the advected drifter location at every time step. However, this study did not address
several factors that complicate the use of global positioning system (GPS)-enabled
drifters to map ocean currents. Namely, while the positions of drifters may be
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known with high accuracy, even minimal error in the initial location of the drifters
can significantly impact the drifter trajectory. Furthermore, due to the difficulty in
simultaneously deploying drifters, irregular or random initialisation of drifters must be
accounted for. Here, we propose a method of parameter estimation based on coherent
structure colouring, which uses the dissimilarity in the drifter trajectories to identify
the underlying coherent flow patterns. This method has been shown to be robust to
measurement uncertainty and data loss, is effective even in instances of sparse data
(approximately 300 drifters tracked in a two-dimensional flow) and is effective at
identifying coherent sets of trajectories (Schlueter-Kuck & Dabiri 2017b).

This analysis is focused on two specific test cases. In the first test case, the effects
of error in spatial initialisation are examined. In the second case, effects on parameter
estimation due to temporal discretisation, error in spatial initialisation and stochastic
error along the drifter trajectories (meant to represent any number of inertial effects
and/or spatial discretisation), are quantified. Section 2 details the computational
setup of the analysis and § 3 presents results of the analysis. Conclusions and future
directions are discussed in § 4.

2. Methods
2.1. Test case 1: drifter position uncertainty

The first test case examined here seeks to quantify the effect of uncertainty in the
initial location of Lagrangian drifters on the parameter estimation process. Because
chaotic advection in fluid flows tends to separate even closely spaced fluid particles
over sufficiently long periods of time, even a small uncertainty in spatial initialisation
can lead to large particle displacement errors (e.g., Putman & He 2013). For this case,
the analytical quadruple gyre, governed by (2.1)–(2.3), is used to model the underlying
flow:

ux =
dx
dt
=−πα sin(πf ) cos(πy), (2.1)

uy =
dy
dt
=πα cos(πf ) sin(πy)(2ax+ b), (2.2)

where x and y are the spatial coordinates, t is time and

a= ε sin(ωt), b= 1− 2ε sin(ωt), f = ax2
+ bx. (2.3a−c)

Parameter values of α = 0.1, ε = 0.1 and ω = 2π/10 are used, giving the flow a
periodic east-west oscillation.

To build a set of ‘real’ trajectories, analogous to an array of drifter positions at
discrete moments in time in an oceanic or atmospheric flow, a set of 500 drifters is
randomly initialised in the domain x= [0, 2], y= [−1, 1]. These drifters are advected
using a fifth-order Runge–Kutta integration scheme with a relative error tolerance of
10−6 and an absolute error tolerance of 10−9. These parameters are used for calculation
of all ‘real’ trajectories in this study. The ‘simulated’ particles are initialised near the
initial locations of the real trajectories, with an offset of 0.18 in a random direction,
corresponding to 9 % of the length of the domain. For the single-parameter analysis,
the parameter ε in (2.3) is assumed to be unknown, and a set of simulated trajectories
is created for 201 equally spaced values of ε in the range ε= [0, 0.4]. For each value
of ε, 10 independent simulations with different initial conditions are run in order to
examine the repeatability of the results. For the multiple-parameter analysis, α, ω and
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ε in (2.1)–(2.3) are assumed to be unknown, and a set of simulated trajectories is
created for all combinations of 21 equally spaced values of α in the range α=[0, 0.4],
21 equally spaced values of ω in the range ω= [0, π] and 21 equally spaced values
of ε in the range ε = [0, 0.4]. Each unique combination of parameters is tested using
10 independent simulations, resulting in 92 610 simulations of 500 particles each for
the multi-parameter study.

2.2. Test case 2: temporal discretisation in model and stochastic position error
along trajectories

The second test case in this study examines the combined effects of model temporal
discretisation and stochastic error on parameter estimation. Because there are many
factors that influence the divergence of simulated drifter trajectories in models from
the real, observed drifter trajectories, it is critical that any parameter estimation
scheme be able to account for the complex interaction of several of these factors.
This test utilises the analytical Bickley jet flow, frequently used as a model of zonal
atmospheric currents (Rypina, Brown & Beron-Vera 2007), which is defined by the
stream function ψ =ψ0 +ψ1, where

ψ0 = c3y−UL tanh (y/L) , (2.4)

ψ1 =UL sech2 (y/L)
3∑

n=1

εn cos (kn (x− σnt)) . (2.5)

For this analysis, U=62.66 m s−1, L=1770 km, kn=2n/r0, c=[0.1446U,0.205U,
0.461U], σ = c − c(3), and ε = [0.0075, 0.15, 0.3] and the flow is computed on the
interval x=[0,20×106

] m, y=[−3×106,3×106
] m over the time interval t=[0,80]

days.
For this test, the ‘real’ trajectories are calculated by initialising 500 particles in the

domain and advecting them using a fifth-order Runge–Kutta scheme, with the same
error tolerances as noted previously. The drifters are advected over 80 days according
to (2.4) and (2.5).

For this analysis, the ‘simulated’ particles are initialised near the initial locations of
the real drifters, offset by 60 km (0.3 % of the horizontal spatial domain) in a random
direction. Although 60 km is more uncertainty than could be expected from GPS data
alone, this value is meant to capture some of the effect of spatial discretisation in
the model as well, which is not directly considered. A random drifter initialised in
the Bickley jet flow at t = 0 with a spatial resolution of 100 km will, on average,
accumulate 60 km of error when compared to a ‘real’ drifter after one 30-minute
time step if linear interpolation between grid points is used to estimate velocity. The
particles are advected using Euler integration with a temporal discretisation of 30 min.
At every time step, a stochastic error with a standard deviation of 60 m is added to
the drifter position. For this analysis, the parameter ε(3) is assumed to be unknown,
and a set of simulated trajectories is created for 201 equally spaced values of ε(3) in
the range ε(3)= [0, 1].

2.3. Coherent structure colouring and error quantification
In each test case above, the underlying coherent flow pattern is quantified using
the coherent structure colouring (CSC) vector calculated for the ‘real’ trajectories
and each set of simulated trajectories (Schlueter-Kuck & Dabiri 2017a). In the CSC
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algorithm, dissimilarity between two particle trajectories is numerically represented
using a weighted adjacency matrix A, where aij contains the weight of the edge
connecting particle i and particle j:

aij =
1

rijT1/2

[
T−1∑
k=0

(rij − rij(tk))
2

]1/2

, (2.6)

where rij(tk) is the distance between two particles i and j at time tk and rij is the
average distance between the two fluid particle trajectories. Conceptually, aij quantifies
the standard deviation of the distance between particle trajectories normalised by their
average spacing. The corresponding generalised eigenvalue problem that quantifies the
difference between dissimilar particles is

LX = λDX, (2.7)

where

dij =


0, i 6= j

N∑
k=1

aik, i= j, (2.8)

and L= D − A is the graph Laplacian. In order to maximise the differences between
dissimilar particles, X1=X is the eigenvector associated with the maximum eigenvalue,
λ1, of this problem, under the constraint that X′DX remains finite. Each element of
X1 assigns that value of CSC to the corresponding fluid particle. This vector can be
visualised in the spatial domain by mapping each element of the CSC vector to the
initial particle location and interpolating between particles to obtain a contour field.

Two error metrics are examined for each test case. The first metric, the average
particle displacement error, is defined by

Edisp =
1

NT

N∑
i=1

T∑
j=1

|xi,j
real − xi,j

sim|, (2.9)

where N is the number of drifters tracked, T is the number of time steps and xi,j
real and

xi,j
sim are the spatial locations of the ith real drifter and simulated drifter, respectively,

at the jth time step.
The error in the CSC field is calculated as follows:

ECSCf =
1
M

M∑
i=1

∣∣CSCi
f ,real −CSCi

f ,sim

∣∣ , (2.10)

where CSCi
f ,real and CSCi

f ,sim are the CSC field values of the ith Cartesian grid node
for the set of real and simulated sets of drifters, respectively, and M is the number
of Cartesian grid nodes in the CSC field. It is important to note that the error in the
interpolated CSC field is found to be more effective for parameter estimation than the
CSC vector itself, as it is more robust to individual particle position. This point will
be expanded upon in the results section. The CSC field is calculated by interpolating
the CSC vector onto a grid of spatial locations using triangulation-based linear
interpolation, and M is the product of the number of discrete horizontal locations and
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the number of discrete vertical locations. The error based on the CSC field is found
to be insensitive to the interpolation grid coarseness, as long as the average spacing
between grid elements is smaller than the average spacing between particles tracked.
The CSC vector error, shown in the results section for comparison, is quantified as
follows:

ECSCv =
1
N

N∑
i=1

∣∣CSCi
v,real −CSCi

v,sim

∣∣ , (2.11)

where CSCi
v,real and CSCi

v,sim are the CSC vector values of the ith drifter for the set of
real and simulated sets of drifters, respectively, and N is the total number of drifters
tracked.

3. Results
3.1. Test case 1: drifter position uncertainty

The first test case examined the effect of error in initial drifter position on the ability
to accurately determine the parameter ε, the magnitude of the periodic horizontal
oscillation in the quadruple gyre flow. Figure 1 examines the ‘real’ and simulated
trajectories (with the correct value of the unknown parameter, ε = 0.1 but a slightly
errant initial position) for two initial positions, one within the lower left coherent
vortex, and the second near the transport barrier located at the intersection of the four
quadrants. It is clear that by the end of the simulated time interval of four horizontal
oscillation cycles, chaotic advection in the flow has strongly separated the real drifter
located near the centre of the domain (i.e., figure 1(b), black trajectory) from most of
the simulated trajectories of the same drifter. In fact, there are simulated trajectories
that end up in each of the four quadrants. This separation is due to the error in
initial position resulting in the particles being initialised in a different quadrant of
the flow. Subsequently, the transport barrier separating the ‘real’ particle from the
corresponding simulated particles leads to an exponentially large spatial separation in
time. In contrast, for the drifter initialised at the centre of the lower left vortex, the
simulated trajectories remain compact, as there are no transport barriers separating the
‘real’ drifter initial position from the simulated initial positions.

Figure 2 shows the CSC fields for the real drifter trajectories (a), the simulated
trajectories with the correct value of epsilon (b) and the simulated trajectories with
incorrect values of ε = 0 (c) and ε = 0.4 (d). For the simulated case with the correct
value of epsilon, the CSC field highlights the largest kinematic dissimilarity in the
flow between the particles that remain in the gyre cores (with high CSC values) and
those particles that switch quadrants during the prescribed time interval (with low
CSC values). By comparing the CSC fields for the real and correctly simulated sets,
it is evident that the CSC field is robust to chaotic advection of individual drifters.
This is because the Lagrangian drifters are used as landmarks for interpolating the
underlying coherent patterns in the flow, but do not individually dictate these patterns.
It should be noted that the magnitude of CSC vector and field values is dependent on
the number of particles used for analysis. Thus, when assessing relative error values,
the number of particles tracked must be held constant. Furthermore, because the CSC
vector is an eigenvector associated with the generalised eigenvalue problem given
by (2.8), both the calculated CSC vector and its negative will need to be considered
when comparing the real and simulated drifter sets, and the minimum error kept.

Because of the factors noted above, two independently initialised sets of particles
should have the same CSC field, up to error on the order of particle separation
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FIGURE 1. (Colour online) Sample drifters in quadruple gyre flow. Solid black lines
indicate ‘real’ drifter trajectories and dashed lines of other colours indicate simulated
drifter trajectories. Closed circles correspond to drifter initial locations at t0=2.5 and open
circles to drifter final locations at tf =42.5. (a) Drifter initialised in the centre of the lower
left coherent vortex. (b) Drifter initialised near the intersection of the four quadrants.
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FIGURE 2. (Colour online) CSC contours for quadruple gyre overlaid with dots
indicating initial positions of 500 drifters for t = [2.5, 42.5]. (a) ‘Real’ trajectories.
(b) Simulated trajectories with errant initial position but correct value of ε = 0.1.
(c) Simulated trajectories with errant initial position and with incorrect value of ε = 0.
(d) Simulated trajectories with errant initial position and with incorrect value of ε = 0.4.

distance, regardless of how different the spatial initialisations are. The CSC field for
the incorrect value of ε = 0 clearly has a different underlying flow structure, where
the largest kinematic dissimilarity is between the quadrants that have counterclockwise
rotation and those with clockwise rotation of fluid. Similarly, the CSC field for the
incorrect value of ε = 0.4 also has a flow structure distinct from the ‘real’ flow;
the magnitude of the left-right oscillation is strong enough to eliminate the coherent
vortices in each quadrant, and the flow mixes chaotically. This example highlights
why using the error in the interpolated CSC field is more robust than using the error
in the CSC vector. A drifter just outside the boundary of a coherent structure will be
assigned a different CSC value than a drifter just inside the boundary, but the location
of the boundary itself in the CSC field will be the same regardless of the location
at which that particular drifter is initialised. By moving away from an individual
trajectory analysis, and towards a field-based analysis of the underlying flow, correct
model parameters can be identified unambiguously.
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FIGURE 3. (Colour online) Normalised error versus candidate parameter ε. Error metrics
are normalised by the lowest error over the range of ε tested. Solid black line indicates
the error averaged over 10 individual sweeps and shaded region bounds the range of errors
seen for an individual sweep. Red dotted line indicates the correct value for the parameter
ε. (a) Particle displacement error; i.e., (2.9). (b) CSC vector error; i.e., (2.11). (c) CSC
field error; i.e., (2.10).

The conventional particle displacement error and the CSC field error are compared
in figure 3 as a function of the selected value of ε for the simulated particle set. While
the CSC error is minimised at the correct value of ε = 0.1, the particle displacement
error and CSC vector error are not. Hence, model parameter estimation using the
CSC field recovers the correct parameter value despite the potentially confounding
effects of initial position uncertainty. The conventional error metric fails under the
same conditions. It is also interesting to note that the CSC field error has a larger
difference in error between the correct and incorrect states, with the error at ε = 0
exceeding five times the error for ε = 0.1. In contrast, the particle displacement error
varies less than 30 % from the minimum error over the range of parameters tested.
This means that not only does the CSC field aid in accurately predicting the correct
model parameter, but it amplifies the error between correct and incorrect parameter
values.

The purpose of the multi-parameter analysis is to evaluate the effectiveness of this
method for determining more than one unknown parameter simultaneously, a problem
that is frequently encountered in oceanic and atmospheric models. An analysis of the
full parameter space, while not computationally efficient, is used here for completeness
and visualisation purposes. It is beyond the scope of this work to investigate various
optimisation techniques for determining the global error minimum, although any viable
techniques would need to take into account the noisiness of the error signal as well
as its non-convexity. These factors make common approaches such as gradient descent
optimisation unfeasible.

Figure 4 shows the average particle displacement error (a) and average CSC field
error (b) as a function of the three unknown parameters, α, ω and ε, averaging
the error produced for each unique combination of parameters over 10 independent
simulations with different initial offsets for each drifter. Data for only five of the
21 values of ε is displayed for simplicity. The location of the minimum in the error
is highlighted by the white circles for each case. It is clear that both the particle
displacement error and the CSC field error exhibit global minima in approximately
the same region of the parameter space. The error minima are examined more closely
in table 1, which shows the parameter values where the displacement, CSC vector and
CSC field error are minimised for each of the individual 10 parameter sweeps as well
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FIGURE 4. (Colour online) Normalised error metrics averaged over 10 individual three-
parameter sweeps in α, ω, and ε. Error metrics are normalised by the lowest error over
the range of all three parameters tested. (a) Displacement error for selected ε-slices. (b)
CSC field error for selected ε-slices. White circles indicate the approximate location of
the global minimum.

Error metric Edisp ECSCv ECSCf

Run no.
Average (0.10, 2π/10, 0.08) (0.18, 5π/20, 0.16) (0.10, 2π/10, 0.10)

1 (0.08, 2π/10, 0.08) (0.18, 5π/20, 0.08) (0.10, 2π/10, 0.10)
2 (0.10, 0 , 0.10) (0.38 7π/20, 0.30) (0.10, 2π/10, 0.10)
3 (0.10, 2π/10, 0.08) (0.28, 5π/20, 0.24) (0.10, 2π/10, 0.10)
4 (0.06, 7π/20, 0.04) (0.26, 5π/20, 0.28) (0.10, 2π/10, 0.10)
5 (0.08, 0 , 0.34) (0.22, 5π/20, 0.18) (0.10, 2π/10, 0.10)
6 (0.08, 19π/20, 0.12) (0.26, 3π/10, 0.24) (0.10, 2π/10, 0.10)
7 (0.10, 2π/10, 0.08) (0.20, 5π/20, 0.14) (0.10, 2π/10, 0.10)
8 (0.08, π, 0.26) (0.18, 2π/10, 0.20) (0.10, 2π/10, 0.10)
9 (0.10, 2π/10, 0.08) (0.36, 7π/20, 0.22) (0.10, 2π/10, 0.10)

10 (0.10, 2π/10, 0.06) (0.36, 3π/10, 0.24) (0.10, 2π/10, 0.10)

TABLE 1. Global minima, (αmin, ωmin, εmin), for each of 10 individual three-parameter
sweeps, along with the global minimum in the error averaged over all 10 sweeps.

as for the averaged error field for each metric. These data show that while averaging
data from 10 sweeps results in a nearly correct identification of all three unknown
parameters for both the displacement error and the CSC field error, individual sweeps
of the displacement error result in wildly incorrect parameter identification, while
the CSC field error results in a global minimum at the correct parameter-space
location for every single individual parameter sweep. The tenfold-reduction in the
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FIGURE 5. (Colour online) Normalised displacement error slices through the three-
parameter sweep. Solid black line indicates the error averaged over 10 individual sweeps
and shaded region bounds the range of errors seen for an individual sweep. Blue stars
indicate error for a single representative sweep. Dotted red lines indicate the correct value
of the parameter. (a) Slice at ω=2π/10, ε=0.08. (b) Slice at α=0.10, ε=0.08. (c) Slice
at α = 0.10, ω= 2π/10.
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FIGURE 6. (Colour online) CSC field error slices through the three-parameter sweep.
Solid black line indicates the error averaged over 10 individual sweeps and shaded region
bounds the range of errors seen for an individual sweep. Blue stars indicate error for a
single representative sweep. Dotted red lines indicate the correct value of the parameter.
(a) Slice at ω = 2π/10, ε = 0.10. (b) Slice at α = 0.10, ε = 0.10. (c) Slice at α = 0.10,
ω= 2π/10.

number of simulations needed for correct parameter identification using the CSC field
error is potentially extremely beneficial for complex and computationally expensive
simulations of oceanic and atmospheric flows, where large simulation ensembles are
currently required in practice (Kalnay 2002). Figure 5 shows slices of the error field
for the displacement error at the parameter values where the global minimum is
identified, in this case at (αmin, ωmin, εmin)= (0.10, 2π/10, 0.08). Data from one of the
individual sweeps is plotted along with the average of all 10 sweeps and the range
of error values resulting for each parameter combination. Figure 6 shows comparable
data for the CSC field error, with slices taken at (αmin, ωmin, εmin)= (0.10, 2π/10, 0.10).
It is clear from these plots that there is less variation among the 10 sweeps for the
CSC field error, especially in regions of the parameter space close to the global
minimum. This feature of the CSC field error allows for correct identification of
all of the unknown parameters simultaneously, without the need for an ensemble of
multiple simulation iterations.
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FIGURE 7. (Colour online) Ten drifters in the Bickley jet flow. (a) ‘Real’ trajectories.
(b) Trajectories with temporal discretisation, no stochastic position error and correct value
of ε(3) = 0.3. (c) Trajectories with temporal discretisation, stochastic position error and
correct value of ε(3)= 0.3.

3.2. Test case 2: temporal discretisation in model and stochastic position error
along trajectories

The second test case uses the Bickley jet flow to highlight the effect that temporal
discretisation and position error, both initially and along the drifter trajectory, have
on the process of determining model parameters accurately. Figure 7 shows a sample
of 10 of the 500 total trajectories for the ‘real’ set of drifters (a); the simulated
set with the correct value of ε(3)= 0.3, with temporal discretisation but no position
error (b); and the simulated set with the correct value of ε(3) = 0.3, where both
temporal discretisation and position error are included (c). Temporal discretisation
and stochastic position error both tend to push drifters near the centres of the gyre
cores towards the edge of the gyres or even out completely into the background
flow, although in all three cases highlighted in figure 7, the zonal meandering jet and
gyre cores remain distinct. It is clear that both temporal discretisation and stochastic
position errors will act to degrade the effectiveness of the error analysis, and if
pushed to extremes, will render any error metric ineffective at parameter estimation.
The question, in this case, is whether the minimum in the displacement error and/or
CSC field error are robust to reasonable levels of these effects. One potentially useful
technique in countering the effects in this study is selective drifter placement. Here,
the set of ‘real’ drifters are initialised near the centre of the coherent structures in the
flow, as dictated by the ridges in the FTLE field. Figure 8 shows the selected ‘real’
drifter initial positions, with the FTLE field in the background. Practically, it might
be challenging to know where to initialise real drifters in an oceanic or atmospheric
flow, but this could potentially be accomplished using iterative deployments: the first
to determine drifter placement for the second, and the second set of drifters used to
tune model parameters. Figure 9 shows the CSC field for the real set of particles
(a), the simulated set of particles with temporal discretisation and stochastic position
error with the correct value of ε(3) = 0.3 (b) and the simulated set of particles
with an incorrect value of ε(3)= 0 (c). For both the real set of trajectories and the
simulated set with the correct value of ε(3), the flow is dominated by the meandering
jet and the flanking vortices. Despite the addition of error in trajectory calculation,
the CSC field for the simulated sets of trajectories still exhibits distinct coherence.
For the incorrect values of ε(3), the jet has a much wider vertical extent, and only
portions of the flanking vortices are seeded, while the extent of the jet for the correct
value of ε(3) is similar to that of the real flow. The particle displacement error,
CSC vector error, and CSC field error for the full range of tested parameters are
shown in figure 10. As with the previous study, each parameter value is tested using
10 individual simulations, and the average and range of error for each parameter
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FIGURE 8. (Colour online) Initial positions for the ‘real’ drifters in the Bickley jet study,
indicated by the red stars. Background shows the FTLE field calculated over the time
interval t= [0, 3456× 103
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FIGURE 9. (Colour online) CSC contours for the Bickley jet flow overlaid with dots
indicating initial positions of 500 drifters for t= [0, 6912× 103

] s. (a) ‘Real’ trajectories.
(b) Simulated trajectories with temporal discretisation and stochastic position error, but
correct value of ε(3) = 0.3. (c) Simulated trajectories with temporal discretisation,
stochastic position error and incorrect value of ε(3)= 0.

value is shown in the figure, along with the correct value of ε(3) = 0.3. The same
trends seen in test case 1 are also present here. The minimum error in the CSC
field is very close to the correct value of ε(3), with identified values of ε(3) ranging
from 15 % below the real value to 9 % above. However, the error metric based on
particle displacement identifies values of ε(3) ranging from 7 % to 20 % below the
real value. In this case, the CSC vector error comes close to estimating the unknown
parameter correctly, in contrast with the study focusing solely on initial particle error.
Additionally, the CSC error metric enhances the difference in error between correct
and incorrect parameter values over particle location error, as with the previous study
(i.e., compare the vertical axes of the panels in figure 10).

It is useful to understand the effects of using a random drifter distribution instead of
a set of drifters initialised inside the coherent structures in the flow. Figure 11 shows
the CSC field for simulated set of trajectories with a correct value of ε(3) (panel a)
and the CSC field error for a range of epsilon values, again using a random initial
particle distribution and otherwise identical parameters to the study discussed in this
section. Due to the lack of particles remaining in the vortex cores, the CSC analysis
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FIGURE 10. (Colour online) Normalised error versus candidate parameter ε(3). Error
metrics are normalised by the lowest error over the range of ε(3) tested. Solid black
line indicates the error averaged over 10 individual sweeps, and shaded region bounds
the range of errors seen for an individual sweep. Red dotted line indicates the correct
value for the parameter ε(3). (a) Particle displacement error; i.e., (2.9) (b) CSC vector
error; i.e., (2.11) (c) CSC field error; i.e., (2.10).
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FIGURE 11. (Colour online) Effects of random particle distribution (a) CSC field for
simulated trajectories with temporal discretisation, initial error and path error and a correct
value of ε(3)= 0.3. (b) Normalised CSC field error; i.e., (2.10) versus candidate parameter
ε(3). Error metric is normalised by the lowest error over the range of ε(3) tested. Solid
black line indicates the error averaged over 10 individual sweeps, and shaded region
bounds the range of errors seen for an individual sweep. Red dotted line indicates the
correct value for the parameter ε(3).

is unable to detect the kinematic dissimilarity between the vortices and the jet, and
instead identifies as most dissimilar the drifters in the jet from those directly outside
the jet. Due to this, the CSC field error is unable to correctly identify the model
parameter being analysed. This highlights the importance of understanding the effects
driving real and simulated trajectories apart, and how to mitigate these effects on the
CSC field for simulated particles by using appropriate drifter placement.

It is also necessary to consider the relative importance of the individual sources
of error considered in this analysis. To this end, figure 12(a) shows the CSC field
error for simulated trajectories without both temporal discretisation and stochastic
position error. In this case, the trajectories are deterministic, and the error at the
correct parameter value of ε(3) = 0.3 is identically zero, because the simulated
trajectories perfectly match the real set of trajectories. Figure 12(b) shows the CSC
field error with temporal discretisation but no initial or path error and figure 12(c)
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FIGURE 12. (Colour online) CSC field error; i.e., (2.10) versus candidate parameter ε(3).
Error metric is not normalised in this case. Red dotted line indicates the correct value
for the parameter ε(3). (a) Trajectories advected with no temporal discretisation and no
path or initial error. (b) Trajectories advected with temporal discretisation and no path or
initial error. (c) Trajectories advected with temporal discretisation, path error and initial
error, data collected over 10 independent parameter sweeps.

includes both temporal discretisation and stochastic error. When considering only
temporal discretisation, the trajectories are deterministic given a value of the unknown
parameter ε(3). The CSC field error for temporal discretisation has a global minimum
at the correct value of ε(3)= 0.3, but the error values are generally higher, and the
shape of the error curve is different, exhibiting several local minima. The difference
between figures 12(b) and 12(c) shows that the addition of initial and path error to
temporal discretisation serves to increase the noise in the error curve, which leads
to the spread of identified parameter values around the correct value, as discussed
previously. It is important to note that while the parameters chosen for temporal
discretisation and position uncertainty do lead to some error in the identification of
the test parameter, the CSC field error still provides a better metric for identifying
unknown parameters than the particle displacement error.

4. Conclusions
The two test cases examined in this study identify and characterise the influence of

initialisation errors, temporal discretisation and stochastic path error on the process of
Lagrangian data assimilation for model parameter estimation. By considering a field-
based definition of the underlying flow structure using coherent structure colouring,
model parameters can be more accurately and robustly determined than by considering
particle displacement errors alone. This study highlights the value of coherent structure
identification, and the CSC algorithm in particular, in model parameter estimation.
This method can potentially be extended from the determination of model parameters
in analytical flows to the more complex problem of Lagrangian data assimilation into
large-scale oceanic and atmospheric models. The CSC-based method could eliminate
the need for simulation ensembles in order to accurately estimate model parameters,
thereby advancing the state of the art in numerical flow prediction.
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