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SEMIGROUPS UNDER A SANDWICH OPERATION

by J. B. HICKEY

(Received 25th August 1982)

For any element a of a semigroup (S, •), we may define a "sandwich" operation ° on
the set S by x o y = xay (x, y e S). Under this operation the set S is again a semigroup; we
denote this semigroup by (S, a) and call it a variant of S. Variants of semigroups of
binary relations have been studied by Chase [6, 7]. In this paper we consider variants of
arbitrary semigroups.

A related idea is that of a mididentity (i.e. an element u in a semigroup S such that
xuy = xy for all x,yeS). Such elements were called "middle units" in the work of
Yamada [13] and Blyth [3, 4, 5, 10] and in [8, §3.2, Exercise 12]. They have also been
studied by Ault [1, 2] who called them "midunits".

In Section 1 we review some known results [13, 1, 2] on mididentities. In Section 2
we prove some introductory results on variants; Green's relations on a variant are
considered and it is shown that, if an element a in a semigroup S satisfies a weak
cancellation condition, then (S, a) is isomorphic to a subdirect product of the
subsemigroups Sa and aS of (S, •). In Section 3 we consider semigroups with regular
elements. This produces a method of manufacturing semigroups with mididentities; in
particular, every variant of a regular semigroup is a semigroup with mididentity.
Further, every variant of a completely simple semigroup is shown to be isomorphic to a
rectangular group.

In Section 4 we introduce the idea of a regularity-preserving element in a semigroup S
containing a regular element. The set RP(S) of these elements in a semigroup S with
mididentity is seen to be a subsemigroup of S; it provides a generalisation to S of the
unit group in a semigroup with identity and contains the subsemigroup Ms [13, 1, 2] of
S. Another generalisation of the unit group is furnished by the set RRP(S) of regular
regularity-preserving elements in an arbitrary semigroup S: if RRP(S) is non-empty it
forms a completely simple subsemigroup of S; if S has a mididentity then RRP(S)
coincides with an obvious subsemigroup of Ms (that consisting of regular elements of S)
and RP(S) is an ideal extension of it by a null semigroup. The final result of the section
is that, for S a regular semigroup, every variant of S is isomorphic to S if and only if S
is a rectangular group.

We show in Section 5 that consideration of variants of a regular semigroup leads in a
natural way to a partial order on the semigroup. It is shown that this partial order
coincides with Nambooripad's partial order [11] on a regular semigroup.

371

https://doi.org/10.1017/S0013091500004442 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004442


372 J. B. HICKEY

1. Preliminaries

We use the notation of [8] and [9] throughout.
The definition of an inflation of a semigroup is given in [8, §3.2, Exercise 10], but the

following description, due to Petrich [12], will serve as an alternative (see also [2,
Lemma 1.7]). Let T be a semigroup, let Q be a (possibly empty) set disjoint from T and
let Q:Q->T be a mapping. Extend the multiplication in T to a multiplication in
F = T u g by taking

' x(y6) if xeT,yeQ,

(x8)y if xeQ,yeT,

(xO)(y6) if x,yeQ.

Then V is a semigroup, called an inflation of T (by Q, with associated mapping &).
An element u of a semigroup S will be called a mididentity if aub = ab for all a,beS.

We now review some results on such elements [13, 1, 2]. Note first that if a and b are
mididentities in a semigroup S then ab is an idempotent mididentity in S; also, a regular
mididentity in 5 is always idempotent. We need to distinguish between idempotent and
non-idempotent mididentities and will use the following notation: if S is a semigroup
with a mididentity, K(S) [/(S)] will denote the set of mididentities [idempotent
mididentities] in S. Clearly I(S) and K(S) are both subsemigroups of S.

Lemma 1.1. [2]. Let S be a semigroup with a mididentity. Then I(S) is a rectangular
band and K(S) is an inflation of I(S) by K(S)\I(S). The associated mapping
d:K(S)\I(S)->I(S) is given by xO = x2.

We note that if S is regular then K(S) = I(S) is a rectangular band. Further, if S is a
rectangular band then K(S) = S. An example of a non-regular semigroup S with the
property that K(S) = S is afforded by any null semigroup S with |S|>1.

We now establish some additional terminology. Let a be an element of a semigroup S.
By a pre-inverse [post-inverse'] of a we shall mean an element beS such that aba —a
[bab = b~]. We denote the set of pre-inverses [post-inverses] of a by Pre(a) [Post (a)].
Clearly V(a) = Pre (a) n Post (a), where, as usual, V(a) denotes the set of inverses of a in S.

2. Variants of a semigroup

Let (S, •) be a semigroup and let a e S. Define a binary operation = on S by

xoy=xay (x,yeS).

Then S becomes a semigroup with respect to this operation. We denote it by (S, • ;a, °),
or, more briefly, by (S, a), and we refer to (S, a) (for any a e S) as a variant of (S, •)• Since
we now may have more than one multiplication defined on the same set S we make the
following convention: if it is stated or implied that S (or a subset of it) is a semigroup,
then the multiplication in question will be that in (or inherited from) (S, •). Variants of
semigroups of binary relations have been studied by Chase [6, 7].
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If (S, + , ) is a ring and aeS, then (S, +,°) is a ring, where ° is the multiplication in
(S, a). Thus, if a semigroup S admits ring structure, so does (S, a) for each aeS.

We now consider Green's relations on a variant of a semigroup S. So let a be a fixed
element of S and, in an obvious notation, let Green's relations on (S, a) be denoted by
J2", X, 2V\ / ' and &. Then [c.f. 6, Lemma 1.2]

<£'<^Se, m'^m, Jf'SJf, / ' £ / and S>'^3>.

Further, it is easily seen that S is left simple [right simple, simple] if and only if (S, a) is
left simple [right simple, simple]. If S has a zero element 0 then clearly (S, a) has 0 as a
zero element. We may show then that, if S has zero element 0,

(S, a) is 0-simple [O-bisimple] =>S is 0-simple [O-bisimple].

The converse of each of these statements is false as can be seen by taking a = 0 in an
appropriate 0-simple [O-bisimple] semigroup.

We may note here that if a is a mididentity in a semigroup S, then (S, a) coincides
with S. Thus if a is any element of a rectangular band S then (S, a) = S. In the case when
S is a semilattice we again have a straightforward and easily verified result on variants:
for any a e S, the semigroup (S, a) is an inflation of Sa by S\Sa, with associated mapping
e-.S\Sa^Sa given by xd = xa.

If a is an element of a semigroup S we define mappings X*:S-*aS, p*:S-^Sa by

l*(x) = ax, p*(x) = xa (xeS).

So X*, p* are restrictions of the usual inner left and right translations ka, pa, respectively,
of S.

Lemma 2.1. Let S be a semigroup and let aeS. Then k*,p* are surjective
homomorphisms from (S, a) onto aS, Sa, respectively.

Proof. In (S, a), x ° y = xay for x, y e S. Then

so X* is a homomorphism; similarly for p*. The mappings are clearly surjective.

This shows that, if aeS is such that either ka or pa is a permutation of S, then
(S,a)^S. In particular, if S has an identity element and a is an element of the unit
group then (Jr,a) = S. We note here that if S is a rectangular band and aeS, then
(S, a) = S, but neither ka nor pa is a permutation in general.

Now let (S, •) be a semigroup, let aeS and let H be a subset of S. If H is closed under
the operation in (S, a), we will denote the resulting semigroup by (H, a). Conversely, the
statement "(H, a) is a subsemigroup of (S, a)" will mean that H is closed under the above
operation. In this case Ha and aH are both subsemigroups of (S, •) and it is readily
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verified that the subset Ta(H; •) of the cartesian product Ha x aH defined by

Ta(H;-) = {(xa,ax):xeH}

is in fact a subdirect product of Ha and aH.
For an arbitrary subset H of S, we will say that aeS is weakly cancellable on H (in

(S, •)) if, whenever x,yeH,

xa = ya and ax = ay => x=y.

Lemma 2.2 Let a be an element and H a subset of a semigroup S such that (H, a) is a
subsemigroup of(S,a). Then the mapping 6:(H,a)-yTa(H;-) defined by

6(x)=(xa,ax) (xeH)

is a surjective homomorphism. If a is weakly cancellable on H in (S, •), 6 is an isomorphism.

The proof is straightforward and will be omitted.
It follows that if a is weakly cancellable on S itself in (S, •) then the variant (S, a) is

isomorphic to a subdirect product of the subsemigroups Sa and aS of (5, •).
Suppose now that S is completely simple and that a e S. It is readily verified, using the

Rees theorem, that a is weakly cancellable on S itself, so (S, a) is isomorphic to a
subdirect product of Sa and aS. In fact we show later that (S, a) is a rectangular group
(i.e. the direct product of a rectangular band and a group). As a first step towards this
result we note here that every variant of S is completely simple. For, taking S to be the
Rees matrix semigroup Jt(G, I, A;P) over the group G, and letting a =
(a,g,P) (oceI,PeA,geG) be an arbitrary element of S, we get that (S,a) =
Jf(G, I, A; P'), where P'=(p'Xi) with

Thus (S, a) is a Rees matrix semigroup with the same f̂- and ^-classes as S but with a
(possibly) modified sandwich matrix. It follows that (S, a) is completely simple.

Lemma 2.2 gives some information on bands with mididentity elements. For let S be
a band and let a eS be a mididentity. Then a is weakly cancellable on S, as is easily
seen, so, by Lemma 2.2, (S,a) is isomorphic to Ta(S;-), i.e. S is isomorphic to Ta(S;-). In
the case when S is a rectangular band and a is any element of S, this reduces to saying
that S is isomorphic to the direct product of the left zero semigroup Sa and the right
zero semigroup aS.

The above result on bands with mididentity is a special case of a theorem of Blyth
[5]. He shows that, if S is an orthodox semigroup with a mididentity u, then S is
isomorphic to a spined product (being a pull-back for a related diagram) of uS and Su.
En route to this result he shows that u is weakly cancellable on S [5, Lemma 6].
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Lemma 2.3. Let S be a semigroup and let aeS. If the semigroup (S, a) has identity
element 1 then

(i) S has identity element,
(ii) the elements a, 1 lie in the unit group of S and are inverse to each other,

(iii) (S,a)^S.

Proof. Let (S,a) have identity element 1. Then, for all xeS, x ° l = l ° x in (S,a), i.e.
xa\ = \ax = x in S. Thus a2l = la2 = a, so aJVa2 in S, i.e. Ha is a subgroup of S by [8,
Theorem 2.16]. Let e be the identity element of Ha. Then, since a2\ = \a2 = a, we have
a\ = \a = e. Further, for any xeS,

So S has identity element e, and the elements a, 1 lie in the unit group of S and are
inverse to each other. Finally we have (S, a)^S by an earlier remark.

We note here that if S is a semigroup and aeS, then an element that is regular in
(S, a) is also regular in S. Thus, if (S, a) is regular then so is S. Furthermore, if a is a
mididentity in S and xeS, then x is regular in (S, a ) o x is regular in S.

3. Variants and regularity

We quickly find that there is a natural connection between pre-inverses [post-
inverses] of an element a e S and mididentities [idempotents] in (S, a).

Lemma 3.1. Let S be a semigroup and let aeS.

(i) / / b is a pre-inverse of a in S, then b is a mididentity in (S, a),
(ii) / / a is regular in S then b is a pre-inverse of a in S if and only if b is a mididentity

in(S,a).
(iii) b is a post-inverse of a in S if and only if b is idempotent in (S, a).

Proof. Let bePre (a ) and let x,yeS. Then, in {S,a), x°boy =
proving (i). Suppose now that a is regular in S and that b e K((S, a)). Then, for any
x, y e S, we have xabay = xay. Taking x = y = z, where z e Pre (a), we get azabaza = azaza,
i.e. aba — a, proving (ii). The result (iii) is obvious.

Lemma 3.1 (i) provides a way of constructing semigroups with mididentities: (S,a) is
such a semigroup whenever a is regular in the semigroup S. In particular, if S is regular
then every variant of S has a mididentity. That the converse of this is not true is evident
from consideration of a null semigroup S with |S |>1. The same example shows that
part (ii) of the lemma does not hold in general without the stipulation that a be regular.

If we take a to be a mididentity in S, we obtain the following corollary to Lemma 3.1.
As usual, E(S) denotes the set of idempotents in S.
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Corollary 3.2. Let a be a mididentity in a semigroup S. Then

(i)
(ii) if a is regular in S, Pre (a) =K(S),

(iii) Post(a) = £(S).

We recall that a mididentity in a semigroup is idempotent if and only if it is regular.
This enables us to prove the following corollary to Lemma 3.1.

Corollary 3.3. Let a be a regular element in a semigroup S. Then a pre-inverse of a in
S is an inverse of a in S if and only if it is regular in (S, a).

Proof. Let be Pre (a). Then b is a mididentity in (S,a), by Lemma 3.1 (i). So

b e V{a)ob e Post (a)

ob is idempotent in (5, a) (by Lemma 3.1 (iii))

ofc is an idempotent mididentity in (5, a)

ob is regular in (S, a),

giving the result.

Suppose now that S is regular and that a is a mididentity in S. Then (S,a)( = S) is
regular and, by Corollary 3.3, every pre-inverse of a in S is an inverse of a in S. By
virtue of Corollary 3.2 (ii), we have here

Pre (a) = V(a) = K(S) ( = I(S))

(c.f. [2, Lemma 1.2 (ii)]).

We now turn our attention again to completely simple semigroups. Let S be such a
semigroup and let a,beS. By [9, Exercise 11, p. 88],

It follows that Post (a) = Pre (a)( = V{a)). The regularity of 5 and Lemma 3.1 (ii), (iii) now
give

Lemma 3.4. Every variant of a completely simple semigroup is isomorphic to a
rectangular group.

Proof. Let S be completely simple and let aeS. We recall that (S, a) is completely
simple. Also, by the remarks above, E((S, a)) = /((S, a)). But I((S,a)) forms a band in
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(S,a), so (S, a) is orthodox. Hence (5, a) is isomorphic to a rectangular group [8,
Exercise 2(b) for §3.2].

Corollary 3.5. Let S be a completely simple semigroup with a mididentity. Then S is
isomorphic to a rectangular group and (S, a) £ S for every aeS.

Proof. If u e S is a mididentity then S = (S, u) is isomorphic to a rectangular group by
Lemma 3.4. We may take S to be the direct product BxG, where B is the rectangular
band on the cartesian product / x A, and G is a group. Then if a = ((i, A), g) e S {i e /,
Xe A, geG), the mapping 9:(S, a)->(S, •) defined by

U n), h)6 = ((;, ii), gh) (jeI,n€A,he G)

is easily seen to be an isomorphism.

We can remark further on this following the next lemma.

Lemma 3.6. Let S be a semigroup. Then S has a regular element a such that (S, a) = S
if and only if S has a mididentity.

Proof. Suppose (S, a)sS where a is regular in S. Then a has a pre-inverse in S, so
(S, a) has a mididentity. It follows that S must have a mididentity.

Conversely, if u e S is a mididentity, we put a = u2 and clearly (S, a) s S.

We can now say, using Corollary 3.5, that if a completely simple semigroup S has one
element x for which (S,x)sS then (S,a) = S for every aeS.

To complete this section we broaden the discussion and consider a semigroup S
containing a regular element a but otherwise arbitrary. We have Pre (a) = K((S, a)) and
V(a) = I{S,a)) by Lemma 3.1. So (Pre(a),a) and (V(a),a) are both subsemigroups of (S,a)
and, by Lemma 1.1, (Pre(a), a) is an inflation of the rectangular band (V(a),a). The
latter semigroup can, of course, be exhibited as the direct product of a left zero and a
right zero semigroup, and we now do this. The element a is weakly cancellable on V(a)
in (S, •), as is easily checked. So, by Lemma 2.2, (V(a), a) is isomorphic to

Ta(V(a);-) = {(xa,ax):xeV(a)},

which is the direct product of the left zero semigroup V(a)a = E(S)nLa and the right
zero semigroup aV(a) = E(S)nRa.

4. Generalisations of the unit group

For a semigroup S with mididentity, the following two subsets of S are important [13,
1,2]:

Ms = {xeS:xeK(S) or x has inverse x' with xx', x'xeI(S)},

RMs = {xeS:x has inverse x' with xx', x'xeI(S)}.

Then we have [2, Theorem 1.8]
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Lemma 4.1. Let S be a semigroup with mididentity. Then Ms and RMS are both
subsemigroups of S. The semigroup RMS is a rectangular group and Ms is an inflation of
RMS. The set of elements of Ms that are regular in S is precisely RMS.

Clearly Ms provides, for a semigroup S with mididentity, a generalisation of the unit
group in a semigroup with identity. We will discuss now other generalisations of the
unit group.

Let S be a semigroup with a regular element and let a e S. If x is a regular element of
S, we will say that a preserves the regularity of x if x is also regular in (S, a). If a
preserves the regularity of every regular element in S then we will say that a is a
regularity-preserving element in S. The set of such elements in S will be denoted by
RP(S). The set of regular regularity-preserving elements in S will be denoted by RRP(S).
If M is a mididentity in S then clearly u e RP(S) and u2 e RRP{S).

Lemma 4.2. Let S be a semigroup, let a e RP(S) and let b be a regular element of S.
Then bi£ab, bMba in S.

Proof. Since a preserves the regulari ty of b we have b°x°b = b in (S,a) for some
xeS, i.e. baxab = b. The result follows.

Lemma 4.3. Let S be a semigroup.

(i) / / aeRRP(S) then Ha is a subgroup of S.
(ii) / / aeRP(S) and beS is such that aebSnSb then beRP(S).

Proof, (i) For aeRRP(S) we have aJtifa2 in S by Lemma 4.2, so Ha is a subgroup of
S by [8, Theorem 2.16].

(ii) Let aeRP{S), let beS and suppose that a = bc = db, where c,deS. Let x be an
arbitrary regular element of S. Then, for some w e S, we have

x = xawax = x(bc)w(db)x

from which it follows that x is regular in (S, b). Thus b e RP(S) as required.

Theorem 4.4. Let S be a semigroup with RRP(S)j=0. Then RRP(S) is a completely
simple subsemigroup ofS.

Proof. Let R = RRP(S). First suppose that a,beR. Then a = abcba, b = badab for
some c,deS. Then ab = ab(cb)ab, so ab is regular in S. Now let x be any regular element
in S. Then x is regular in both (S, a) and (S, b), so there exist y, z e S such that

x = xayax = xbzbx.
Thus

x = xaya(xbzbx)

— x(abcba)yaxbz(badab)x
= xabvabx

where veS. Thus x is regular in (S, ab). It follows that R is a subsemigroup of S.
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Again, let aeR and let Ha denote the Jf-class of a in S. By part (i) of Lemma 4.3, Ha

is a subgroup of S, and, by part (ii) of the same lemma, Ha is contained in R. The group
inverse of a in Ha is thus an inverse of a in R, so R is regular.

Finally, let a,beR. Then, by Lemma 4.2, ai£ba, a&ab, bi£ab, bfflba in S. Suppose
that aba = a. Then by Green's lemma [8, Lemma 2.2] applied in S, pb\La,pa\Lb are
mutually inverse ^-class-preserving bijections from La onto Lb and from Lb onto La,
respectively. Thus bab = b. It follows from [9, Exercise 11, p. 88] that R is completely
simple. This completes the proof.

We note here that there can be no further restriction on RRP(S) in general, since if S
is an arbitrary completely simple semigroup then RRP(S) = S.

We now consider RP(S) for a semigroup S with a mididentity, u say. Since u2 is
regular in S, both RP(S) and RRP(S) are non-empty here.

Lemma 4.5. Let S be a semigroup with a mididentity and let aeS. Then the following
statements are equivalent:

(i) aeRP(S);
(ii) aS and Sa both contain a mididentity for S;
(iii) a preserves the regularity of an idempotent mididentity.

Proof. Let u be an idempotent mididentity in S.
Suppose (i) holds. Then u is regular in (5,a) so there exists zeS such that u = uazau.

Thus azaePre(u) in S, i.e. aza is a mididentity in S, by Corollary 3.2 (i). This gives (ii).
Suppose (ii) holds and that aw,ya (w,yeS) are both mididentities in S. Now let x be

any regular element of S, say x = xvx (v e S). Then

x = x(aw)v(ya)x = xa{wvy)ax,

so that a preserves the regularity of x. In particular, we have (iii).
Suppose, finally, that (iii) holds and that a preserves the regularity of an idempotent

mididentity u. Then u = uazau for some zeS. Now let x = xyx (yeS) be any regular
element of S. Then

x = xuyux = x(uazau)y(uazau)x

= xa(zayaz)ax,

so that x is regular in (S, a). This gives (i) and the lemma is proved.

We recall [12, Chapter III] that if S is an ideal of a semigroup T then T is said to be
an ideal extension of S by the Rees quotient semigroup T/S.

Theorem 4.6. Let S be a semigroup with a mididentity. Then RP(S) is a subsemigroup
of S, being an ideal extension of RRP(S) by a (possibly empty) null semigroup. It contains
the subsemigroup Ms of S.
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Proof. We recall that RP(S)=/=0 here. Suppose then that a,beRP{S). By Lemma 4.5
there exist mididentities ax, by (x, yeS) in S. Let u e S be an idempotent mididentity.
Then

u = u2 = u(ax)u = ua{by)xu = u{abyx)u,

so, by Corollary 3.2 (i), abyx is a mididentity. Thus abS (and, similarly, Sab) contains a
mididentity, so that abeRP(S) by Lemma 4.5. Thus RP(S) is a subsemigroup of S and
we easily see, again using Lemma 4.5, that it contains Ms.

To complete the proof it suffices to show that the product of two elements of RP(S) is
a regular element in S. So again, let a,beRP(S) and let by,wa (y,weS) be mididentities
in S. Then ab(yw)ab = ab, so ab is regular in S. This proves the theorem.

An example shows that Ms=fcRP(S) in general. Let S be the finite cyclic semigroup
<a>, where a has index 2 and arbitrary period meN. Let K denote the subgroup
{a2, . . . ,am + 1} of S. Then S has a unique mididentity, namely the identity element of K.
Since xS = Sx = K for every xeS, Lemma 4.5 gives that RP(S) = S. But clearly MS = K.

It is noted in [2] that if a semigroup S has an identity element then that element is a
unique mididentity for S. This fact, together with Lemma 4.5, tells us that, in a
semigroup S with an identity element, RP(S) (and hence RRP(S), from its definition)
coincides with the unit group of S.

We return now to RRP(S) for the case when S has a mididentity.

Theorem 4.7. Let S be a semigroup with a mididentity and let aeS. Then the following
statements are equivalent:

(i) aeRRP(S);
(i) a is Jf -equivalent in S to an idempotent mididentity;
(iii) aeRMs.

Proof. Suppose that (i) holds. Then, by Lemma 4.3 (i), Ha is a subgroup of S, with
identity element e, say. Let u be an idempotent mididentity in S. Then (ue)2 = ue. Also,
there exists yeS such that

u = uayau = (ue)ayau.

It follows that ueu = u, so e is an idempotent mididentity by Corollary 3.2 (i), giving (ii).
It is obvious that (ii) implies (iii). Suppose then that (iii) holds, i.e. that aeRMs. Then

aeMs implies that aeRP(S) by Theorem 4.6. Further a is regular, so aeRRP(S), giving
(i). This completes the proof.

We recall that, in a semigroup S with mididentity, RMS is a rectangular group
(Lemma 4.1).

Corollary 4.8. Let S be a semigroup with a mididentity. Then RRP(S) = RMS is a
rectangular group; if S is regular, RP(S) = Ms is a rectangular group.

The following result is obviously true.
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Lemma 4.9. Let S be a semigroup and let aeS. Then (S,a) is regularoS is regular
andaeRP(S).

Theorem 4.10. Let S be a regular semigroup. Then the following statements are
equivalent:

(i) (S,a)^SforallaeS;
(ii) S has a mididentity and (S, a) is regular for all aeS;
(iii) S is a rectangular group.

Proof. Suppose (i) holds. Then clearly (S,a) is regular for all aeS. Also, by Lemma
3.6, 5 has a mididentity, giving (ii).

Suppose (ii) holds. Then S = RP(S) by Lemma 4.9, and, since S has a mididentity, (iii)
holds by Corollary 4.8.

Finally, (iii)=>(i) by Corollary 3.5.

We may note here that a null semigroup S with |S| > 1 is an example of a non-regular
semigroup with the property that (S, a) s S for all a e S.

5. A partial order for regular semigroups

Any element of a regular semigroup appears as an idempotent in a suitable variant of
the semigroup. This observation leads in a natural way to a partial order on a regular
semigroup. For let S be a regular semigroup; if x, y e S, we will say that x is p-related to
y if there exists a variant of S in which x and y are both idempotents and satisfy x ^ y.

We may readily check that p is a partial order on S. It transpires, however, that p
coincides with Nambooripad's partial order [11] on S and we will simply verify that
this is the case.

Recall that, for a regular semigroup S, Nambooripad's partial order ^ on S may be
defined by

and x = xy'x for some y'e V(y).

Theorem 5.1. Let S be a regular semigroup and let a relation p be defined on S by

xpy<>3aeS such that x,yeE((S,a)) and satisfy x°y=yox = x in (S,a).

Then p coincides with Nambooripad's partial order on S and thus is itself a partial order
on S.

Proof. Suppose x,yeS satisfy x^y- Then there exist elements seS, y'eV(y) such
that

x = ysy = xy'x.
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Then clearly x,ye E{S, / ) ) and

xy'y = (ysy)y'y = ysy = x,

yy'x = yy'(ysy) = ysy = x,

soxoj; = j;ox = xin E((S,/)). Thus we have xpy.
Conversely, let a e S be such that

x = xax, y = yay, xay = yax = x.

Then
x = ya{xay) e ySy,

and, ify'eV(y),

xy'x = (xay)y'(yax) = xay ax = x.

This shows that x gj y, proving the result.
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