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A C O U N T E R E X A M P L E USING 4-LINEAR F O R M S

DAVID PEREZ-GARCIA

We prove that, for n ^ 4 and arbitrary infinite dimensional Banach spaces X\,..., Xn,
there exists an extendible n-linear form T : X\ x • • • x Xn —• K that is not integral.

1. INTRODUCTION AND NOTATION

The fact that one cannot expect a general Hahn-Banach theorem for multilinear
forms or homogeneous polynomials has been known for a long time. One can see it
as follows [7]. Since every bilinear form on £&, is weakly sequentially continuous, one
can take, for instance, the inner product on a real Hilbert space, which is not weakly
sequentially continuous (see [13]) and, therefore, cannot be extended to i^.

However, which partial results can one expect? The first line of work in this direc-
tion was the search of the superspaces of a given space to which every multilinear form
(polynomial) can be extended. The work in this direction goes back to the work of Arens
in 1951 [1, 2], where he extended the product of a Banach algebra A to its bidual A".
This work was continued by Aron and Berner in [3], where they gave a general procedure
to extend every multilinear form to the product of the biduals. Lindstrom and Ryan
gave in [12] a method to obtain extensions to ultrapowers, generalising in some sense the
previous work. A nice review about Aron-Berner extensions and related topics can be
found in [4].

Another profitable line of research has been the characterisation of the extendible
multilinear forms (polynomials), that is, the forms that can be extended to every super-
space of a given space. In this direction, Carando and Zalduendo [6] showed that every
integral homogeneous polynomial is extendible. In [11], Kirwan and Ryan characterised
the extendible 2- homogeneous polynomials from £x, £00 and L2 spaces. This work was
completed by Carando [5] and Castillo, Garcia and Jaramillo [7], where they showed
(independently) that

THEOREM 1 . 1 . For a Banach space with cotype 2, the extendible bilinear forms
(2-homogeneous polynomials) are exactly the integral ones.

Received 21st June, 2004
The author was partially supported by DGICYT grant BMF2001-1284.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 SA2.00+0.00.

469

https://doi.org/10.1017/S0004972700034717 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034717


470 D. Perez-Garcia [2]

In [7], they also contributed to the topic by showing the relation of the problem
with the local complementability defined in [10], and characterising the spaces £<» as the
spaces in which every multilinear form is extendible in a linear and continuous way.

However, with the exception of this last result, very little is known apart from the
bilinear case. In this paper (Section 2) we shall show that Theorem 1.1 is a bilinear
(maybe trilinear) result, in the sense that every possible generalisation to the 4-linear
case fails.

The notation and terminology used in the paper will be the standard in Banach space
theory, as for instance in [9], which is also our main source for unexplained notation. All
the operators that appear in the paper will be continuous. The basis field K can be both
E or C and (ei)"=1 will denote the canonical basis in Kn. We shall denote by e and n,

respectively, the injective and projective tensor norms and we refer the reader to [8] for
more about tensor norms. A multilinear form is said to be integral if it is continuous for
the injective norm.

If 1 ^ p < oo and A > 1, a Banach space X is said to be an £PIA space if, for every
finite dimensional subspace E C X there exists another finite dimensional subspace F,

with E C F C X and such that there exists an isomorphism v : F —> £ j i m F with
v\\\\v-H<\.

2. THE RESULT

The ideas needed to get the example can be summarised as follows. In Lemma 2.1 we
see that 1% (£) £% can be seen as a subspace of ££ (g) £^0. This is essentially Grothendieck's

Theorem. In Lemma 2.2 we use this, the fact that the diagonal of ^ 0 ^ is isometric to
e

P^, and the injectivity of ^ to obtain the counterexample in 1%. Then, using Dvoretzky's
Theorem, we extend the counterexample to every Banach space in Theorem 2.3.

LEMMA 2 . 1 . If i : £% <->• Xn C £%, is an isomorphic inclusion with \\i\\ < 2 and

Hi"1 II < !> we have that h = * ® * : %<8)% —> Xn<g)Xn C ££<g>££ is an isomorphic

inclusion with \\I2\\ ^ 4/Q; and H/^1!! ^ 1, where KG is Grothendieck's constant and we
are considering the norm in Xn (g) Xn inherited from £

PROOF: Clearly Ẑ "1 factorises as

r- l . y i d

which gives us that \\I^\\ ^ ||id|| Hi"1!!2 ^ 1.

To see that ||/2|| < AKG we take a bilinear form T : £^ x ^ —> K and consider

the operator 5 = T(i, i) : £% x £% —• K. It is enough to see that the norm of 5 as a
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linear form S : ^ 0 ^ —> K is bounded by AKG. So, we consider the linear operator
£

S : £% —> 2̂ associated to 5 and we have the following diagram:

ij7l S /rn

pN „ pN

By Grothendieck's Theorem i" is 1—summing and vri(z*) ^ ifc||i | | ^ 1KG and by
[9, Corollary 5.8] i'f is integral with c(i*f) ^ 2KG. Our result follows trivially. D

LEMMA 2 . 2 . If i : £? <-> Xn C £%, is an isomorphic inclusion with \\i\\ ^ 2 and
ll^'ll ^ 1, then t ie operator

eN (&> eN

7T

verifies that ||/4||

P R O O F : We consider a generic vector

x =
i,j=l e e £

As the map d : ei >-> e* ® ê  is an isometric inclusion of ££, in we have

Moreover, using Lemma 2.1, we have that I2d : P^ ^y Yn c ^ ® ^ is an isomorphic in-

elusion with ||/2d|| ^ ^KG and U^d)"1!! ^ 1. But P^ is a 1-injective space, which implies
that Yn is 4A"c;-complemented in 1%, ® £^,. As n preserves complemented subspaces,

]U(x)\\ > (l/(4KG)2) {hd)®{I2d)\ ( J^AyCiSC,-

By, for example, [14, Proposition 7], there exist scalars Ay such that

\yej ® e, ^ 1,
e

1 r-
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Hence, we can conclude that

D

THEOREM 2 . 3 . Let X be an infinite dimensional Banach space and n ^ 4. There
exists an extendible n-lineai form T : X x • • • x X —>• K that is not integral.

P R O O F : It is equivalent to show that, if j : X <-> ico(Bx') is the canonical isometric
inclusion, the linear operator

is not bounded.

For this, it is enough to show that J4 is not bounded. Now, by Dvoretzky's Theorem
[9, Theorem 19.1], for each n e N we can find a subspace Zn of dimension n in X and
an isomorphism A; : ££ <->• Zn with ||&|| ^ \ /2 and \\k~1\\ ^ 1. Moreover, as £oo{Bx-)
is an £OO,A space for every A > 1, we can find N € N, an iV-dimensional subspace
WN C £oo(Bx') such that jk^) C WN and an isomorphism h~ : WN <-*• ££ with
\\h\\ ^ V2 and \\h~l\\ < 1. We define h to be the extension of ft to £X{BX') with the
same norm.

If we now let i = hjk : 1% <->• Yn C £%,, then the hypothesis of Lemma 2.2 is satisfied.
So we obtain ||/4|| ^ ( l /128/f^)>/n.

But, if/sT4 = A;(8»A;(8iA;<8ifc and Hi-h®h®h®h, then 74 = H^J^K^ and therefore

^ < ||/4|| ^ INI4 || Jill ll^ll4 < 161| J4 | |

for every n. D

Standard arguments can lead us now to the symmetric version, that is

THEOREM 2 . 4 . Let X be an inBninte dimensional Banach space and n > 4.
There exists an extendible n-homogeneous polynomial P : X —v K that is not integral.

Similarly, it is straightforward to change the above reasoning to obtain Theorem 2.3
for different Banach spaces.

THEOREM 2 . 5 . Let X\,..., Xn be arbitrary infinite dimensional Banach spaces

with n ^ 4. TAere exists an extendible n-linear form T : Xi x • • • x Xn —• K that is

not integral.

REFERENCES

[1] R. Arens, 'The adjoint of a bilinear operator', Proc. Amer. Math. Soc. 2 (1951), 839-848.
[2] R. Arens, 'Operations induced in function classes', Monatsh. Math. 55 (1951), 1-19.

https://doi.org/10.1017/S0004972700034717 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034717


[5] A counterexample using 4-linear forms 473

[3] R. Aron and P.D. Beraer, 'A Hahn-Banach extension theorem for analytic mappings',
Bull. Soc. Math. Prance 106 (1978), 3-24.

[4] F. Cabello, R. Garcia and I. Villanueva, 'Extension of multilinear operators on Banach
spaces', Extracta Math. 15 (2000), 291-334.

[5] D. Carando, 'Extendibility of polynomials and analytic functions on iv\ Studia Math.
145 (2001), 63-73.

[6] D. Carando and I. Zalduendo, 'A Hahn-Banach theorem for integral polynomials', Proc.
Amer. Math. Soc. 127 (1999), 241-250.

[7] J.M.F. Castillo, R. Garcia, and J.A. Jaramillo, 'Extensions of bilinear forms on Banach
spaces', Proc. Amer. Math. Soc. 129 (2001), 3647-3656.

[8] A. Defant and K. Floret, Tensor norms and operator ideals, North Holland Math. Studies
176 (North-Holland Publishing Co., Amsterdam, 1993).

[9] J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators (Cambridge Univ.
Press, Cambridge, 1995).

[10] N. K alt on, 'Locally complemented subspaces and £p-spaces for 0 < p < 1', Math. Nachr.
115 (71-97).

[11] P. Kirwan and R. Ryan, 'Extendibility of homogeneous polynomials on Banach spaces',
Proc. Amer. Math. Soc. 124 (1998), 1023-1029.

[12] M. Lindstrom and R. Ryan, 'Applications of ultraproducts to infinite dimensional holo-
morphy', Math. Scand. 71 (1992), 229-242.

[13] R. A. Ryan, 'Dunford-Pettis properties', Bull Acad. Polon. Sci. Ser. Sci. Math. 27
(1979), 373-379.

[14] C. Schiitt, 'Unconditionality in tensor products', Israel J. Math. 31 (1978), 209-216.

Area de Matematica Aplicada
Departamento de Matematicas y Fisica Aplicadas y

Ciencias de la Naturaleza
Escuela Superior de Ciencias Experimentales y Tecnologia
Universidad Rey Juan Carlos
Edificio Departamental II
28933 Mostoles (Madrid)
e-mail: dperezg@escet.urjc.es

https://doi.org/10.1017/S0004972700034717 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034717

