Can. J. Math., Vol. XXXI, No. 1, 1979, pp. 181-183

ON A CLASS OF ANALYTIC FUNCTIONS OF SMIRNOV
J. L. SCHIFF

1. Introduction. The class S of functions under study in this paper was
introduced by V. I. Smirnov in 1932. This class was subsequently investigated
by wvarious authors, a pertinent paper to the present work being that
of Tumarkin and Havinson [2], who showed that a plane compact set of
logarithmic capacity zero is S-removable. Another important development,
due to Yamashita [3], was that the class S could be characterized as those
analytic functions f for which log™ | f| has a quasi-bounded harmonic majorant.

In what follows, we discuss the Smirnov class in the context of planar
surfaces, exploiting some ideas in the work of Hejhal [1] to establish that a
closed, bounded, totally disconnected set is S-removable if and only if its com-
plement belongs to the null class Og.

This result would be elementary in the event that O, = Ogs. llowever, at
present, it is not known if the inclusion O, C Og is strict or not, nor for that
matter whether or not the related inclusion Os C O, is strict for 0 < p < 1.
In fact, a resolution of the former question in the affirmative (i.e. the inclusion
is strict), would resolve the latter question likewise, since O¢ C Os C Opp.

2. Preliminaries. In the sequel, we make use of the following notation.

C: Riemann sphere

R: open Riemann surface

A(R): the class of analytic functions on R
" the least harmonic majorant of ¢

S(R): {f € A(R) : log* (|f|/¢) has a harmonic majorant on R for some g > 0
(and hence for all w > 0) and (log* (|f|/u))"(z¢) = 0 as u — o0, for
some 2y € R}

Os:  the class of Riemann surfaces R which carry no nonconstant functions
belonging to S(R).

3. Planar Surfaces. We turn now to the problem of establishing a necessary
and sufficient condition for a planar set to be S-removable.
Let E be a bounded closed totally disconnected subset of C.

Turorem 1. Let U C C be a hyperbolic domain containing E. If
fe€S(U—E)NAU), then f € S(U).

Proof. Let x = (log*|f])" on U — E. We may assume o ¢ U, and let
{U,} be an exhaustion of U by smoothly bounded subregions, with £ C Uj, as
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in Hejhal [1]. Set x, = (log* |f])" on U, — E and fix 2, € U, — I2. We take
an exhaustion U, — G, 2 U, — E, where the G,, are finite unions of disjoint
Jordan regions such that

G, =FE.
m=1
Then
~ + 9g ,
x(20) 2 xx(20) = lim f log ()| === (€3 20; U — Gu)d¢]
Mmoo OUn+9 Gm ()ﬂ(
>

= Iim f lOg%“f@‘)' 'éa—& ((, 20, Uﬂ - (I‘m) ldf'
dUn ng

, 9 )
= f log"[f(§)] 5‘& (¢ 20; Uy — E)|d¢],
AUn Ny

where the last equality follows from the fact that on U, we have

98 ot oy A9
anf (fsz:Un Gm)/an( Q_szyUn L)

Furthermore, as in [1], there exists a X with 0 < N\ = 1 such that
g(C520 Uy — £) =2 M (85205 Uy)

for all » 2 1 and ¢ € C, a simple closed curve in U, with {z,} U
E C int C C U,. lence

0 x) 2 w22 [ 1ol © GE Gz U]

for all n = 1. Since f ¢ A(U), log* |f| is subharmonic on U. Thus (*) implies

log* | f| has a least harmonic majorant on U, say k, and
(**) x(20) = M(30).

As Mis independent of f, and f/u(p > 0) belongs to S(U — [£) M .1 (U) when-
ever [ does, (**) holds for [ replaced by f/u. Consequently,

lim [log* (| f|/w) ]z (20) = L llim log" (|fI/m)le-z (20) = 0,

B0 B
and thus f € S(U) which proves the theorem.
If the set E is sufhciently “small’’, it turns out that a function in S(U — I£)

will have an analytic extension to U, and consequently by the preceding
theorem belong to S(U).

THEOREM 2. Let U be « hyperbolic domain containing E. If C — I € O,
then S(U — E) C A(U).

Proof. It suffices to prove the result for U a Jordan domain with smooth
boundary. Let x = (log* |f])" on U — E for f € S(U — L). As in [1], let
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Q, = U— E, be an exhaustion of U — E towards E. Then f = g + % on
U — E, where ¢ € A(U) and h € A(C — E) with h(c0) = 0. Also, [g| £ M
and hence |h] = M + |f]. Since log* (@ 4+ b) < a + log* b, for a and b
nonnegative, we obtain

log* || < logt (M + |f]) £ M + logt |f| £ M + x

on U — E. B
Let 7, = (logt |k|)" on C — E,. Then, as before, there is a constant K
independent of f, g, or & such that 1 £ K < o0 and (cf. Hejhal [1], p. 11)

To(z0) = Ku-;?; fm (M + x(s’“))(—%% (€320 Q)]ds| = K(M + x(20))

for 2z fixed in U — E M {Q,}. Since {7} is an increasing sequence bounded
at z9, I, T = (logt |h|)G—r. Moreover

T'(z0) = K(M + x(20)).
Replacing f, g, k, by f/u, g/u, h/u respectively, it follows that

llog* ([h]/m)]&-z(20) = K(M/u+ [log* (|fI/m)]-r(20)).

Since the RHS — 0 as u — 00, we have i € S(C — E). However,C — E ¢ Oy,
and k(00 ) = 0, implying & = 0. Therefore f = g € A(U).

Definition. E € Ny if and only if S(U — E) = S(U) for every subdomain
U of C containing E.

The set Vg is characterized by the following:
THEOREM 3. E € Ngif and only if C — E € Os.
Proof. That E ¢ Ng implies C — E € Oy is trivial. Assume C — E ¢ Os.

If U € O¢ (parabolic), we may take oo € U, and set U = C — F, where F
is compact, cap (F) =0, EN F = @. By Theorem 3 of Tumarkin and
Havinson [2], ¥ € Ng. Thus S(U — E) = S(C — F — E) = S(C — E), and
C — E € Ogyields S(C — E) = {constants} = S(U).

For U ¢ Og, Theorems 1 and 2 imply S(U — E) = S(U), i.e. E € Ns.
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