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Vortex interactions behind step cylinders with diameter ratio D/d = 2 and 2.4
at Reynolds number (ReD) 150 were investigated by directly solving the three-
dimensional Navier–Stokes equations. In accordance with previous studies, three
spanwise vortex cells were captured: S-, N- and L-cell vortices. In this paper,
we focused on vortex interactions between the N- and L-cell vortices, especially
the vortex dislocations and subsequent formations of vortex loop structures. The
phase difference accumulation process of every pair of corresponding N- and L-cell
vortices and its effects on the vortex dislocations were investigated. We revealed
that the total phase difference between N- and L-cell vortices was accumulated
by two physically independent mechanisms, namely different shedding frequencies
and different convective velocities of these two cells. The second mechanism has
never been reported before. The relative importance of these two mechanisms
varied periodically in the phase difference accumulation process of every pair of
corresponding N- and L-cell vortices. This variation caused the vortex dislocation
process and the subsequent formation of the loop structures to change from one
N-cell cycle to another. Our long-time observations also revealed an interruption of
the conventional antisymmetric vortex interactions between two subsequent N-cell
cycles in this wake. Moreover, the trigger value and the threshold value in the
phase difference accumulation processes were identified and discussed. Both values
contribute to better understanding of the vortex dislocations in this kind of wake flow.
Finally, the universality of our discussions and conclusions was investigated.

Key words: vortex interactions, vortex shedding, wakes

1. Introduction
Cylindrical structures are widely used in the marine offshore industry, for example,

the hull of a spar platform (Saiful-Islam et al. 2012), deep-water risers (Carter &
Ronalds 1998), etc. Wake flow behind circular cylinders has been a popular topic
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of investigation for researchers and engineers for decades. It is well known that
when the Reynolds number (ReD) is less than 50, the wake flow around a circular
cylinder is laminar and steady, and there is no vortex shedding behind the cylinder
(Williamson 1996). For 50 . ReD . 180, periodic two-dimensional vortex shedding
occurs in the wake behind the cylinder. When ReD exceeds 180, the wake becomes
three-dimensional. The well-known mode A and mode B appear at ReD = 180–194
and ReD= 200–250, respectively (Williamson 1996). Wake turbulence and shear layer
instabilities follow as ReD further increases.

However, even at ReD . 180, we can observe three-dimensional cylinder wakes
under certain circumstances, such as cylinders with non-uniform inflow, cylinders
with varying cross-sections, cylinders with free ends, etc. In these cases, three-
dimensionality is triggered by spanwise non-uniformity in either the incoming flow
or the configuration itself. Complex three-dimensional wake dynamics appear, such
as vortex split, vortex dislocation and oblique shedding. In order to investigate these
complex flow phenomena, a single step cylinder becomes an ideal configuration
in which geometric complications are removed except for the sudden diameter
change.

1.1. Single step cylinder wake
There are two important parameters in the wake flow behind a single step cylinder,
i.e. the Reynolds number (ReD) and the diameter ratio (D/d). The latter, D/d, is
the ratio between the large- and small-diameter parts of the step cylinder, while
ReD=UD/ν (where U represents the uniform inflow velocity, and ν is the kinematic
viscosity of the fluid).

The wake of step cylinders with 1.14<D/d< 1.76 at 67< ReD < 200 was initially
investigated by Lewis & Gharib (1992). They reported two vortex interaction modes:
a direct and an indirect mode. The direct mode occurs when D/d< 1.25, where two
dominating shedding frequencies ( fS and fL) correspond to vortices shed from the
small and large cylinders, respectively. The interactions between these two kinds of
vortices take place in a narrow region referred to as the interface. When they are in
phase, vortices from the two wake regions connect to each other one by one across
the interface. When they are out of phase, the direct connection will be interrupted
and at least one half-loop connection between oppositely rotating vortices will appear.
The period between two such interruptions is called a beat cycle. In the indirect mode
(D/d> 1.55), in addition to fS and fL, another distinct frequency f3 (which is referred
to as fN in the present paper) can be detected near the interface behind the large
cylinder. This region was first named the modulation zone by Lewis & Gharib (1992).
It prevents direct interactions between the vortices with shedding frequency fS and
those with shedding frequency fL. In the modulation zone, the velocity variation is
modulated by the main frequency behind the large cylinder, and an inclined interface
was found to occur at a beat frequency ( fL − fN). Lewis & Gharib (1992) found
that the vortex interactions in the indirect mode are more complex than in the direct
mode.

Based on the three dominating shedding frequencies, Dunn & Tavoularis (2006)
identified three types of spanwise vortices: (1) S-cell vortex shed from the small
cylinder with the highest shedding frequency fS, (2) N-cell vortex shed in the
modulation zone with the lowest shedding frequency fN , and (3) L-cell vortex
shed from the large cylinder with shedding frequency fL. The terminologies
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FIGURE 1. Vortex shedding in the wake behind a step cylinder. (a) Isosurfaces of
λ2 = −0.05 (Jeong & Hussain 1995) from our simulation, at ReD = 150 and D/d = 2.
(b) Isosurfaces of Q ≈ 2 × 10−3 from Morton & Yarusevych (2010b), at ReD = 150 and
D/d = 2 (image reproduced from Morton & Yarusevych (2010b), with the permission of
AIP Publishing). (c) Flow visualization image from Dunn & Tavoularis (2006), at ReD =

150 and D/d= 1.98 (image reproduced from Dunn & Tavoularis (2006) with permission
from Cambridge University Press).

S-, N- and L-cell were thereafter adopted in many studies (Morton, Yarusevych &
Carvajal-Mariscal 2009; Morton & Yarusevych 2010a,b, 2014; Tian et al. 2017a,b),
and are also used in the present study. The regions where these vortex cells occur
are indicated in figure 1(a).

The interactions between different vortex cells in the indirect mode were investigated
in the wake behind a single step cylinder with D/d≈ 2 and ReD≈ 150, experimentally
by Dunn & Tavoularis (2006) and numerically by Morton & Yarusevych (2010b).
These studies concluded that the S–N cell boundary (the region between the S- and
N-cell vortices) is stable and deflects spanwise into the large cylinder direction. At
this boundary, one N-cell vortex always connects to a counter-rotating N-cell mate
and an S-cell vortex. The vortex dislocations between the S- and N-cell vortices
occur at a beat frequency ( fS − fN) at the S–N cell boundary. During this dislocation
process, the half-loop connection between S-cell vortices is dominating. The number
of S- and N-cell vortices in a cyclic period (from one dislocation process to the next)
is determined by the ratio of the shedding frequencies of these two cells ( fS/fN).

Unlike the S–N cell boundary, the N–L cell boundary (the region between the N-
and L-cell vortices) is unstable. As the phase difference between the N- and L-cell
vortices accumulates, in parallel with the appearance of vortex dislocations between
N- and L-cell vortices, the shapes and lengths of the N-cell vortices and the position
of the N–L cell boundary vary periodically with the beat frequency ( fL− fN). Morton
& Yarusevych (2010b) defined these cyclic changes as the N-cell cycle. Tian et al.
(2017a) further investigated the dislocation processes at the N–L cell boundary. Two
new loop structures were identified: the NL-loop (the fake loop) formed between a
pair of N- and L-cell vortices with opposite rotating directions, and the NN-loop
(the real loop) formed between two subsequent N-cell vortices with opposite rotating
directions. In addition, antisymmetric vortex interactions between two adjacent N-cell
cycles were reported based on careful observations of the development of these two
kinds of loop structures.

When ReD increases, the wake gradually becomes more complex. However, the
three dominating spanwise vortices (S-, N- and L-cell vortices), the vortex dislocation
between them and the cyclic variation of the N-cell vortices are still observable in
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the wake flow (Morton & Yarusevych 2010b). In addition, Morton & Yarusevych
(2010a, 2014) reported that the duration of the N-cell cycle varies and fits a Gaussian
distribution at relatively high ReD = 1050.

Other characteristics of the wake behind a single step cylinder with different
diameter ratios and different Reynolds numbers have been discussed in several papers.
Ko, Leung & Au (1982), Yagita, Yoshihiro & Matsuzaki (1984), Norberg (1992)
and Dunn & Tavoularis (2006) found that the vortex shedding behind the small
cylinder was seldom influenced, but the flow behind the large cylinder was strongly
affected by the step. When this induced effect becomes strong enough, N-cell vortices
appear (Norberg 1992; Dunn & Tavoularis 2006). In addition to the three main vortex
cells (S, N and L), two pairs of streamwise vortices (i.e. junction vortices and edge
vortices) have also been identified around the step region (Dunn & Tavoularis 2006;
Morton et al. 2009; Tian et al. 2017b).

1.2. Vortex dislocation
It is widely accepted that most of the observations mentioned above for the step
cylinder are closely related to vortex dislocations. As an interesting physical
phenomenon, vortex dislocations have also been investigated in various types of
flow, such as in uniform cylinder wakes, mixing layers and nonlinear waves.

The phrase vortex dislocation was first introduced by Williamson (1989) when he
observed multiple vortex cells with different shedding frequencies in his experiments
of flow past a circular cylinder at ReD < 200. Neighbouring vortex cells are observed
to move either in phase or out of phase with each other due to their different shedding
frequencies. When these vortex cells move out of phase, at the boundary between
them, the contorted ‘tangle’ of vortices appears and looks like dislocations that appear
in solid materials. Williamson (1989) defined this kind of flow phenomenon as vortex
dislocation. He reported that, at ReD= 100, vortex dislocations occur at the boundary
between cells (the end-plate cell of frequency fe and the single cell of frequency fL)
at a constant beat frequency fL − fe, accompanied by an obvious minimum amplitude
of the velocity fluctuations at the boundary. In addition, by comparing velocity
signals from different vortex cell regions, the time trace of phase differences was
plotted. Williamson (1992) further investigated the dislocation by adding a small
‘ring’ on a circular cylinder in order to force the dislocation to happen. This study
revealed more detailed features of vortex dislocations, such as the vortex dynamics
and the effects of vortex dislocations in the wake flow. An interesting long-period
characteristic of the vortex dislocation was first reported in McClure, Morton &
Yarusevych (2015) by investigating flow past dual step cylinders. They defined the
time period between two identical vortex dislocations as the fundamental dislocation
cycle. Further investigations of this characteristic in the wake behind the single step
cylinder can be found in Tian et al. (2019). Vortex dislocations in other types of
wakes and mixing layers have been reported by many others. For details, the reader
is referred to the works of Gaster (1969), Eisenlohr & Eckelmann (1989) and Dallard
& Browand (1993).

1.3. Objectives of the present study
There have been many attempts to describe the vortex dislocations in the step cylinder
wake. Previous studies pointed out that it is the accumulation of phase differences
that causes the vortex dislocation between different adjacent spanwise vortex cells.
However, the investigations of how phase differences accumulate and how they affect
the vortex dislocations are still limited.
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Williamson (1989) and Lewis & Gharib (1992) experimentally examined the time
trace of the phase difference by using probes to monitor velocity signals in different
vortex cell regions positioned 10 cylinder diameters downstream. However, at such
a location, oblique vortex shedding, complex vortex interactions and the stretching
and tilting of the vortices make it difficult to accurately evaluate phase differences.
Another interesting phenomenon in the wake flow behind the step cylinder is the
cyclic changes of the N-cell vortex, which was defined as the N-cell cycle by Morton
& Yarusevych (2010b). However, they analysed this phenomenon in a relatively short
time period containing only a few N-cell cycles. Whether N-cell cycles have any
long-period variations or very low-frequency features is still unknown.

The primary goal of the present numerical study is to thoroughly investigate the
mechanisms of phase difference accumulation in the step cylinder wake, and their
effect on vortex interactions. Considering that the wake behind the small cylinder part
is seldom influenced by the step, and the contributions of the streamwise vortices on
the vortex dislocation between the S- and N-cell vortices are unclear, we only focus
on the vortex dislocation between the N- and L-cell vortices. To achieve this objective,
we analyse the time and space signals of several flow quantities (velocity, vorticity and
λ2) obtained from a direct numerical simulation (DNS) of flow past two different step
cylinders with diameter ratios D/d= 2 and 2.4. In order to change the diameter ratio
of the step cylinder, we keep D constant, and change d. These two cases share the
same coordinate system, computational method and data analysis process.

First, in §§ 2–5, the flow problem, the numerical settings and analyses of the
wake flow field are described in detail based on the D/d = 2 case. Then, in § 6,
the universality of our discussions and conclusions is studied by investigating the
D/d= 2.4 case. Last but not least, we also aim to present a reliable method that can
be used to calculate the phase information (ϕ) and phase difference (Φ) of vortices,
since such a method is lacking in the literature. Details of the method are included
in appendix A.

2. Flow configuration and computational aspects
2.1. Flow configuration and coordinate system

A sketch of the D/d = 2 step cylinder geometry is shown in figure 2(a), where L
and l represent the lengths of the large and small parts of the cylinder, respectively.
In figure 2(b), the computational domain and coordinate system are shown, where x-,
y- and z-directions correspond to the streamwise, cross-flow and spanwise directions,
respectively. The origin is located in the centre of the interface between the small and
large cylinders. The inlet plane is 10D upstream from the centre of the step cylinder,
while the outlet plane is 20D downstream. The spanwise height of the domain is 45D,
of which the small and large cylinders occupy 15D (l) and 30D (L), respectively.
The width of the domain is 20D. This domain is larger than that used by Morton
& Yarusevych (2010b) for the same D/d and ReD. Boundary conditions applied in
the present study are as follows.

(i) The inlet boundary: uniform velocity profile, u=U, v = 0, w= 0.
(ii) The outlet boundary: Neumann boundary condition for velocity components

(∂u/∂x= ∂v/∂x= ∂w/∂x= 0) and constant zero pressure condition.
(iii) The other four sides of the computational domain: free-slip boundary conditions

(for the two vertical sides, v= 0, ∂u/∂y= ∂w/∂y= 0; for the two horizontal sides,
w= 0, ∂u/∂z= ∂v/∂z= 0).

(iv) The step cylinder surfaces: no slip and impermeable wall.
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FIGURE 2. (a) A sketch of the step cylinder geometry (D/d = 2). (b) Computational
domain, origin and coordinate system illustrated from two different viewpoints. The
diameter of the large cylinder, D, is the length unit. The origin is located in the centre
of the step, i.e. the interface between the small and large cylinders.

2.2. Computational method
For all cases in the present investigation, a thoroughly validated finite-volume-based
numerical code MGLET (Manhart 2004) is used to directly solve the incompressible
Navier–Stokes equations. The midpoint rule is used to approximate the surface integral
of flow variables over the faces of the discrete volumes, leading to second-order
accuracy in space. A third-order explicit low-storage Runge-Kutta scheme (Williamson
1980) is used for time integration with a constant time step 1t that ensures a
Courant–Friedrichs–Lewy (CFL) number smaller than 0.65. The pressure–velocity
coupling is handled by solving a Poisson equation with Stone’s strongly implicit
procedure (SIP) (Stone 1968). The same code has recently also been used to
investigate other complex flows, such as the spheroid wake (Jiang et al. 2016)
and the curved cylinder wake (Jiang, Pettersen & Andersson 2019).

All simulations are conducted on a staggered Cartesian mesh, while the solid surface
of the step cylinder is handled by an immersed boundary method (IBM) (Peller et al.
2006). The computational domain is divided into cubic Cartesian grid boxes, named
level-1 boxes. In each of them, N × N × N cubic Cartesian grid cells are uniformly
distributed. In order to refine the grid regions in which complex flow phenomena take
place, such as the regions close to the step cylinder geometry, the region around the
‘step’, the regions where vortex dislocations happen, etc., all the grid boxes (the level-1
boxes) are equally split into eight smaller cubic boxes (the level-2 boxes). In each
level-2 box, there are also N × N × N cubic grid cells. Hence, the grid resolution
on level 2 is two times finer than that on level 1. This splitting process goes on
automatically until the finest grid level is reached. The overall properties of the grids
for all simulations can be found in table 1. A schematic illustration of the mesh design
is shown in figure 3.

2.3. Grid convergence study
Table 2 shows the Strouhal number (St) of the three dominating vortex cells
(StS = fSD/U, StN = fND/U and StL = fLD/U) behind the step cylinder calculated
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FIGURE 3. An illustration of the multi-level grids: (a) a slice of the computational domain
in the x–z plane at y/D = 0, and (b) a slice of the computational domain in the x–y
plane at z/D= 0− (at the large diameter D region). Each square represents the slice of a
corresponding cubic Cartesian grid box that contains N×N×N grid cells. Here, there are
five levels of grid boxes, where the first four levels are indicated by numbers. Owing to
different minimum grid sizes, different cases have either five or six levels of grid boxes.
(c) A zoom-in plot of the grid cells in the step region (red rectangle in panel (b)) for
case 2.

Case Minimum grid Time step, Number of Number of grid cells Total number of
cell size, D 1tU/D grid levels in one grid box grid cells (million)

1 0.025 0.0080 5 30× 30× 30 30.2
2 0.020 0.0067 5 36× 36× 36 48.8
3 0.015 0.0050 6 24× 24× 24 81.0
4 0.012 0.0040 6 30× 30× 30 173.8

TABLE 1. Detailed mesh information of all D/d= 2 cases. The Reynolds number for all
cases is ReD =UD/ν = 150.

by a fast Fourier transform (FFT) of the time series of the streamwise velocity u
along a vertical sampling line positioned at (x/D, y/D) = (0.6, 0.2). For these four
cases, the differences between St numbers of the same vortex cell are small. In
figure 4(a), the distributions of mean streamwise velocity along the line AB (as
indicated in inset figure 4(a1)) for all four cases are plotted to illustrate the flow
variation on the ‘step’ just in front of the small cylinder. The curves in figure 4(a)
and a zoom-in view in the inset figure 4(a2) clearly show a convergent tendency from
case 1 to case 4, and there are only minor differences between case 3 and case 4.
Moreover, figure 4(b) shows time traces of the spanwise velocity (w) in the N-cell

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.110


891 A24-8 C. Tian, F. Jiang, B. Pettersen and H. I. Andersson

0 0.2 0.4 0.6 0.8

0.8
0.15

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.7
0.6
0.5
0.4
0.3
0.2
0.1 0.16

0.59
0.60
0.61

0.18 0.20

Case 2

Case 1
Case 2
Case 3
Case 4

Case 3 Case 4 Morton & Yarusevych
(2010b) 
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FIGURE 4. (a) Distributions of mean streamwise velocity ū/U along a sampling line AB
in the x–z plane at y/D= 0. Insets: (a1) a sketch of the sampling line AB of length 0.8D,
positioned 0.15D in front of the small cylinder; and (a2) a zoom-in plot of the upper part
of the curves in panel (a) (black rectangle in panel (a)). (b) Time traces of the spanwise
velocity w at point (x/D, y/D, z/D)= (1, 0,−2.5) in the N-cell region. The green line is
obtained from Morton & Yarusevych (2010b); T is the period of one N-cell cycle, which
is the same time scale as Morton & Yarusevych (2010b) used.

Case 1 2 3 4 Morton & Yarusevych Norberg
(2010b) (1994)

StS 0.294 0.295 0.290 0.292 0.320 0.297
StN 0.153 0.153 0.155 0.154 0.157 —
StL 0.177 0.177 0.178 0.178 0.179 —

TABLE 2. Strouhal numbers of the three dominating vortex cells (S-cell, StS = fSD/U; N-
cell, StN = fND/U; and L-cell, StL = fLD/U) for all cases studied. Results from Morton &
Yarusevych (2010b) are from their numerical simulations for a step cylinder with D/d= 2
at ReD = 150. The result from Norberg (1994) is calculated by (2.1), which was derived
by Norberg based on laboratory experiments. (Note that, in our cases, StS is calculated
based on the large-cylinder diameter, so a factor 2 should be used when using Norberg’s
equation.)

formation region where the velocity varies dramatically with time. The fluctuations
and the mean values of w from case 3 and case 4 almost coincide. However, the
computational cost of case 4 is significantly higher than that of case 3, due to the
large number of grid cells and smaller time step. The long-period features of the flow
that we will discuss in later sections require exceptionally long simulations (more
than 3000D/U). All discussions are therefore based on data from case 3. Case 4 was
run only for a limited time for this convergence test.

2.4. Comparison with previous studies
An overview of the vortical structures in the wake of the step cylinder is illustrated
in figure 1(a) by plotting the isosurface of λ2 =−0.05 (Jeong & Hussain 1995). By
comparing figures 1(a), (b) and (c), one can see that the overall wake structures from
the present study compare well with the previous numerical simulations by Morton
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FIGURE 5. (a) Streamwise velocity spectra along a spanwise line behind the step cylinder
at (x/D, y/D) = (0.6, 0.2). (b) Power spectrum plotted at position (x/D, y/D, z/D) =
(0.6, 0.2, −4.4), in which StN , StL, Stbeat and an exceptionally low-frequency St1 are
marked by small black circles. (Note that there is no S-cell vortex in the wake flow at
spanwise position z/D=−4.4, so StS does not show up in this figure.)

& Yarusevych (2010b) and experiments by Dunn & Tavoularis (2006). Behind the
step cylinder, as mentioned in § 1, the shedding of S-cell vortices is barely influenced,
which makes it reasonable to introduce the correlation derived by Norberg (1994),

St= 0.1835− 3.458/Re+ 1.51× 10−4 Re, (2.1)

to validate our StS. From the data in table 2, we see that StS from the present
study is slightly lower than that from Morton & Yarusevych (2010b), but compares
better with the experimental value reported in Norberg (1994). In addition, we have
obtained spanwise velocity data from Morton & Yarusevych (2010b) and displayed
them in figure 4(b). The match between the present study and Morton & Yarusevych
(2010b) is convincing. Based on all these careful comparisons, we believe that the
grid resolution in case 3 is good enough to accurately simulate this flow.

3. Features of the present wake flow
Generally, the wake behind the two step cylinders (D/d= 2 and 2.4) in the present

study are very similar. In order to ease the discussions, only the wake flow behind the
D/d= 2 case is described in §§ 3–5. The D/d= 2.4 case is presented as a justification
case in § 6.

3.1. Overview of the flow development
In figure 5(a), the streamwise velocity spectrum is obtained by means of a discrete
Fourier transform (DFT) of continuous velocity data along a vertical sampling line
parallel to the Z-axis at position (x/D, y/D)= (0.6, 0.2), over a long period of 2500
time units (D/U). As in the previous studies (Dunn & Tavoularis 2006; Morton &
Yarusevych 2010b; Tian et al. 2017a), the three dominating frequency components
(StS= fSD/U, StN = fND/U and StL= fLD/U) and the beat frequency (Stbeat= fbeatD/U)
are dominating.

The vortex structures in the near wake are illustrated by consecutive snapshots
of the isosurface of λ2 in figure 6. The time t is set to t = t∗ − 2378.1D/U, where
t∗ is the actual time in the simulation. This applies all through §§ 3–5. All N- and
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t = 4.5 t = 13.5 t = 22.5 t = 40.5t = 18 t = 27 t = 36t = 9

N0

L0 L0 L0L2 L2L4
L�1 L�1 L�1L�3

L2L4 L4L6 L6 L8 L12 L12L10 L10
L8

L6
L�3

L�3

L�5 L�7 L�7 L�11 L�9

L�9

L�13 L�11L�5

L�5
N�1 N�1

N0N2 N0N2
N�3

N�3
N�5 N�5 N�9 N�9N�11

N2 N4N4 N6 N8
N8 N8N10 N10N6 N4
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FIGURE 6. Isosurface of λ2 = −0.05 showing developments of vortex structures on the
−Y side. The time t is set to t = t∗ − 2378.1D/U (t∗ is the actual time). Solid and
dashed curves in panels (g) and (h) indicate the loop structures on the −Y and +Y side,
respectively. The red and green curves point to different NL-loop structures. In panels
(a) and (b), the black solid line at z/D=−2.9 and the black dashed line at z/D=−14
indicate the positions of vorticity contours given in figure 9.

L-cell vortices are labelled by a combination of capital letters and numbers: ‘N’ and
‘L’ represent N- and L-cell vortices, respectively, while the number indicates the
shedding order. To differentiate vortices shed from different sides of the step cylinder,
we use capital letters with primes (N′ and L′) to represent vortices shed from the +Y
side; and only capital letters (N and L) to represent vortices shed from the −Y side.
In figure 6(a–f ), every N-cell vortex has one corresponding L-cell vortex with
the same direction of rotation (e.g. N0 and L0; N′1 and L′1, etc.). Owing to
different shedding frequencies of N- and L-cell vortices, loop structures appear
when corresponding N- and L-cell vortices are out of phase. From figure 6(g,h),
loop structures (N8–L′9) and (N′9–L10) form, and are indicated by green and red
curves, respectively. Details of the formation processes of those loop structures were
described in Tian et al. (2017a). Based on the order of their appearances, the green
and red curves are named the NL-loop 1 and NL-loop 2, respectively.

Based on long-time observations (2500D/U), a schematic topology sketch is shown
in figure 7. This will be used to introduce some important concepts. In figure 7,
the short and long straight lines represent the N- and L-cell vortices, respectively.
Between them, the curved solid lines connect the N-cell vortex and its counterpart L-
cell vortex. The dashed curves indicate broken connections that are not able to persist
due to dislocations. Detailed visualizations of vortex connections and dislocations in
the first N-cell cycle are shown in figure 6. To ease the observation, we only show
the connections between the N- and L-cell vortices. The L–L and N–N loops (Tian
et al. 2017a) are not shown in this figure.

We define the side of the N-cell vortex in an NL-loop structure as the side of the
loop itself. For example, the NL-loop N8–L′9 (shown by green curves) in figure 6(g)
is identified to form at the −Y side. As shown in figure 7, from the first to the seventh
N-cell cycle, the NL-loop 1 (the green curves) appears alternately at the +Y and
−Y side between subsequent N-cell cycles. This is what we called the antisymmetric
vortex interactions in Tian et al. (2017a). However, an unexpected interruption of
this antisymmetry is observed between the seventh and eighth N-cell cycles. Figure 7
shows, in both the seventh and eighth N-cell cycles, that the NL-loop 1 appears at
the −Y side (green curves connect to black short lines which represent the N-cell
vortex on the −Y side). We introduce the term ‘long N-cell cycle’ to identify the
uninterrupted series of antisymmetric N-cell cycles. Within one long N-cell cycle,
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The 8th N-cell cycle

The 8th dislocation
process

The 7th dislocation
process

The 2nd dislocation
process

The 1st dislocation
process

The 7th N-cell cycle The 2nd N-cell cycle The 1st N-cell cycle

The 1st long N-cell cycle
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L118 L116 L114

N100
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L102 L100 L98 L26 L24 L12 L10 L8 L6 L4 L2 L0

L�101 L�27 L�11 L�9 L�7 L�5 L�3 L�1L�25 L�23L�99
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N�87 N�23 N�21 N�9 N�7 N�5 N�3 N�1

FIGURE 7. Schematic topology sketches illustrating the long-time history of the vortex
connection topology and the vortex shedding. The thick black and grey straight lines
represent vortices on the −Y and +Y sides, respectively. Only the N- and L-cell vortices
are shown by short and long straight lines. The connections between them are depicted
by thin solid curves. Black and grey solid curves indicate the connections between an
N-cell vortex and its counterpart L-cell vortex. The red and green curves reveal different
NL-loop structures (same colour code as used in figure 6). The dashed curves, on the
other hand, indicate broken connections that are not able to persist due to dislocations.
We define a new term ‘long N-cell cycle’ containing several conventional N-cell cycles,
while the conventional N-cell cycle was firstly defined by Morton & Yarusevych (2010b)
and adopted also in the present study.

antisymmetric vortex interactions appear between subsequent N-cell cycles. However,
at the boundary between two long N-cell cycles, this antisymmetry is interrupted.
Our long-time observation covering eight long N-cell cycles shows that there are
either seven or eight N-cell cycles in one long N-cell cycle. In fact, an exceptionally
low frequency (St1) is captured in figure 5(b) where a power spectrum at position
(x/D, y/D, z/D) = (0.6, 0.2, −4.4) is shown. The value of St1 is 0.0032, and is
around Stbeat/7.5. This coincides well with our observation that one long N-cell
cycle contains either seven or eight N-cell cycles. We believe that this low-frequency
component is related to the long N-cell cycles. More detailed information on this
long-period phenomenon, and the unexpected interruption, will be discussed in § 5.
The other visible frequency components in figure 5(b) are combinations of the basic
frequency components, i.e. StS, StN , StL and St1 (Gerich & Eckelmann 1982).

3.2. Necessity of monitoring the phase information of each N- and L-cell vortex
All the interesting physical phenomena, i.e. the formation of NL-loops, the unexpected
interruption of the antisymmetry, etc., are directly related to the vortex dislocations
in the wake behind the step cylinder. A consensus from the literature (Williamson
1989; Lewis & Gharib 1992; Morton et al. 2009) is that vortex dislocations are
attributed to different shedding frequencies. In the present configuration, if both N-
and L-cell vortices shed regularly, it is natural to directly use fL and fN to measure the
phase difference (Φ) between N- and L-cell vortices. However, the actual wake flow is
more complicated. In figure 8(a,b), we plot time traces of the instantaneous cross-flow
velocity v at two locations in the L- and N-cell regions in the symmetry plane. Two

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.110


891 A24-12 C. Tian, F. Jiang, B. Pettersen and H. I. Andersson

0 20 40 60 80 0 20 40 60 80

0.6
0.3

0
-0.3
-0.6

0.6
0.3

0
-0.3
-0.6

t t

√/U
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FIGURE 8. Time trace of the oscillating cross-flow velocity v is plotted as the solid line:
(a) at the sampling point (x/D, y/D, z/D)= (1.4, 0,−14.8) in the L-cell region, and (b) at
the sampling point (x/D, y/D, z/D)= (1.4, 0,−2.8) in the N-cell region. For comparison,
pure sinusoidal curves are plotted as dashed lines with frequency fL in panel (a) and
frequency fN in panel (b); fL and fN are calculated by FFT obtained from figure 5.

dashed sinusoidal curves with constant frequencies fL and fN are also plotted in
figure 8. By comparing figures 8(a) and (b), it is clear that, unlike the regularly
shed L-cell vortices, the shedding frequency of the N-cell vortex slightly fluctuates
during every N-cell cycle. This was also briefly mentioned by Morton & Yarusevych
(2010b), but not investigated further. The irregularity of the N-cell shedding makes
it challenging but necessary to monitor the phase information of every N-cell vortex.
Therefore, we developed a method to obtain the phase information (ϕ) and the phase
difference (Φ) of vortices. Details can be found in appendix A.

4. Two different phase difference accumulation mechanisms and their effects on
vortex interactions

4.1. Two different phase difference accumulation mechanisms
From figure 6, one can see that both the N- and L-cell vortices are spanwise vortices.
This means that the variation of the streamwise distance between corresponding N-
and L-cell vortices can reflect the changes in their phase difference (Φ). In the
present study, we use the location of the most concentrated spanwise vorticity (ωz) to
indicate the position of the corresponding vortex. In figure 9, we plot instantaneous
spanwise vorticity ωz contours at an (x, y) plane in the N-cell region z/D=−2.9 and
L-cell region z/D=−14. Four black lines indicate the positions of vortices N0 and
L0. One can see that from tU/D = 4.5 to 9, the streamwise distance between N0
and L0 increases from 1.8D (3.7D − 1.9D) to 2.3D (7.7D − 5.4D) as they convect
downstream. This means that, even after both N0 and L0 disconnect from the shear
layer, as shown in figure 6(a), Φ between them continues to accumulate. By marking
the moment when the N-cell vortex just forms as an individual wake-type vortex, we
divide the process of Φ accumulation into two parts. Before this moment, Φ between
the N- and L-cell vortex is dominated by their different shedding frequencies, called
Φf . After this moment, Φ is caused by different convective velocities in the N-
and L-cell regions, and called Φc. Detailed descriptions of monitoring Φf and ϕ
can be found in appendix A. Owing to the spatial inhomogeneity of the convective
velocity, it is difficult to accurately assess its effect on Φ. Yet, the distributions of
mean streamwise velocity (ū) in different vortex cell regions can roughly indicate the
influence.

In figure 10, the spanwise distributions of ū are plotted at several downstream
positions. As shown in figure 10(a), the mean streamwise velocity in the N-cell region
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FIGURE 9. Instantaneous spanwise vorticity ωz (ωz = ∂v/∂x− ∂u/∂y) contour plots in an
(x, y) plane in (a,c) the N-cell region z/D=−2.9 (black solid line in figure 6(a,b)) and
(b,d) in the L-cell region z/D = −14 (black dotted line in figure 6(a,b)). By detecting
the location of concentrated vorticity, the positions of vortices N′9 and L′9 are marked by
black lines. (Note that we have compared the position of the centre of the concentrated
vorticity and the centre in the region defined by λ2 isolines, and confirmed only tiny
differences.)
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FIGURE 10. (a) Distributions of the mean streamwise velocity (u/U) along spanwise lines
with the same x-coordinate (x/D= 1.6), but for different y-coordinates. (b) Distributions
of mean streamwise velocity ū/U along spanwise lines with different x-coordinates in the
symmetry plane (y/D= 0).

in the symmetry plane (y/D = 0) is nearly 0.2U less than that in the L-cell region.
At the side plane y/D = 0.8, this difference still reaches 0.1U. From figure 10(b),
we see that the difference in mean streamwise velocity is clear until a downstream
position x/D= 4. In other words, at least until x/D= 4 in the wake, the convective
velocity distribution is distinctly non-uniform in the spanwise direction. This
non-uniformity induces an additional Φ when the vortices convect downstream.
We note that this role of the non-uniform convection velocity and its effects have
never been addressed before.

4.2. Effects of two phase difference accumulation mechanisms
4.2.1. Differences in formation positions of the NL-loop 1 and NL-loop 2

The formation process of the NL-loop 1 in each N-cell cycle is repetitive. An
example of this process is presented in figure 11, where the vortex structures are
shown from both +Y and −Y sides of the step cylinder. In figure 11(a,b), and
the corresponding zoom-in plots (figure 11f,g), the foot of vortex N8 completely
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FIGURE 11. The formation process of the NL-loop 1 structure in the first dislocation
process (defined in figure 7) is shown from the −Y and +Y sides in (a–e) and (k–o) rows,
respectively. In ( f –j), zoom-in plots of vortex structures at N-cell region (black rectangle
in panel a) are shown. The black circles highlight the position where the NL-loop 1 forms.

disconnects from the shear layer at x/D=2.8 (marked by a black line in figure 11(b,g)).
At this moment (tU/D= 33.3) the NL-loop 1 structure has not yet formed, because
there is still no direct connection between N8 and L′9. It takes some more time
for N8 to convect downstream and eventually develop into the NL-loop 1 with L′9
at x/D = 3.3 and tU/D = 34.5. This process is indicated in figure 11(b–e) and
the corresponding zoom-in plots (figure 11g–j). By following the same process as
described in § 4.1, we found that from tU/D= 33.3 to 34.5, the streamwise distance
between vortex N′9 and L′9 increases from 5.3D to 6.1D as they move downstream.
When Φ between vortex N′9 and L′9 increases, L′9 gradually disconnects from its
counterpart N′9 and forms the NL-loop 1 with N8 (see figure 11k–o).

Unlike the NL-loop 1 structure, which has a distinct formation position, it is
difficult to pinpoint where the NL-loop 2 forms. As shown in figure 12(a–e), in the
black circle area, it is not clear how the foot of vortex N′9 completely separates
from the shear layer and subsequently connects to L10 as they move downstream.
The connection between N′9 and L10 forms in the very near wake before N′9
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FIGURE 12. The formation process of the NL-loop 2 structure in the first dislocation
process is shown from both +Y and −Y sides. The black circles highlight the position
where the NL-loop 2 structure is formed.

completely disconnects from the shear layer. In order to compare with the formation
process of the NL-loop 1 structure shown in figure 11, we use the same method to
monitor the variation of the streamwise distance between vortices N10 and L10. At
tU/D = 36.9 (the corresponding instantaneous isosurface of the vortex structure is
shown in figure 12(g)), the distance between vortex N10 and L10 reaches 5.9D. This
is very close to the distance between N′9 and L′9 at tU/D= 34.5 (figure 11n), when
L′9 successfully induces N8 to connect to itself and together form the NL-loop 1
structure. At tU/D = 36.9, as shown in figure 12(b), the leg of vortex N′9 is at
position x/D= 2.8. At the same downstream position, the foot of vortex N8 already
disconnects from the shear layer, as shown in figure 11(b). It is reasonable to
speculate that Φ between N10 and L10 becomes sufficiently large to attract N′9 to
connect to L10 before it disconnects from the shear layer. As a consequence, the
formation position of NL-loop 2 is not so clear.

The time trace of Φf accumulation proves our speculation. By using the method
described in appendix A, the time trace of Φf accumulation in the first N-cell cycle
is shown in figure 13(b). Circles in this figure represent Φf of corresponding N- and L-
cell vortices, in which the green circle represents Φf between N′9 and L′9, and the red
circle represents Φf between N10 and L10. Eventually, the dislocations of the vortex
pairs corresponding to the green and red circles cause formation of the NL-loop 1
structure (N8–L′9) and the NL-loop 2 structure (N′9–L10), respectively.

One can see that the red circle represents a larger Φf value than the green one,
which means that Φf between N10 and L10 is larger than that between N′9 and
L′9. Therefore, compared to the vortex pair N10–L10, the vortex pair N′9–L′9 needs
a larger contribution of Φc to achieve a sufficiently large Φ to trigger the vortex
dislocation between them, and the subsequent formation of the NL-loop 1 (N8–L′9). In
other words, due to the reduced need of a contribution from Φc, the vortex dislocation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.110


891 A24-16 C. Tian, F. Jiang, B. Pettersen and H. I. Andersson

0 100 200 300 400 500 600 0 10 20 30

6

5

4

3

2

1

0

6

5

4

3

2

1

t t

Ï f
U

/D
R1R1 R2 R3 R4 R5 R6 R7

R8
G1G1 G2 G3 G4 G5 G6 G7

G8

C8

LNC1 LNC2(a) (b)

FIGURE 13. (a) Time trace of Φf between corresponding N-cell and L-cell vortices in
the first (LNC1) and second (LNC2) long N-cell cycles, i.e. from the first to the 15th
N-cell cycle. The circles represent Φf between an N-cell vortex and its counterpart L-cell
vortex. The green and red circles indicate Φf , which eventually causes formation of the
NL-loop 1 and NL-loop 2 structures, respectively. From the first to the eighth N-cell cycle,
the green and red circles are numbered. (b) A zoom-in plot of the time trace of Φf in the
first N-cell cycle (the black dashed rectangle in panel a). From the left to the right, circles
represent Φf between the vortex pair N′1–L′1 to the vortex pair N10–L10, respectively.
(Note that the detailed calculation processes can be found in appendix A. All detailed
data about Φf and the longer-time trace of Φf are included in the supplementary material,
file 1, available at https://doi.org/10.1017/jfm.2020.110. The trigger value and the threshold
value are estimated based on 55 N-cell cycles, as shown in supplementary file 3.)
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FIGURE 14. The just-formed NL-loop 1 structures in the first to the eighth N-cell cycle
are plotted from both the −Y and +Y sides (the first long N-cell cycle consists of the first
to the seventh N-cell cycles). The black line marks the formation position of NL-loop 1.
The red circle in panel ( f ) highlights an irregular absence of the NL-loop 1 structure,
which will be discussed later.

between N10 and L10 and the subsequent NL-loop 2 (N′9–L10) is formed closer to
the cylinder, which causes the unclear formation position.

4.2.2. Variation of formation positions of the NL-loop 1 structures
In figure 14, the NL-loop 1 structures in the first eight N-cell cycles are plotted.

The black vertical lines show the positions where the NL-loop 1 structures just form.
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FIGURE 15. Relation between Φf and the formation position (x/D) of corresponding
NL-loop 1 structures in the first to the seventh long N-cell cycles (52 N-cell cycles are
included). Based on the trends of the curves, one stable range and two unstable ranges are
identified. A straight dashed line outlines the trend of the stable range. The occasionally
absent NL-loop 1 structures in these seven long N-cell cycles are marked by red colour
at the expected formation positions, which can be obtained by linear interpolation.

N-cell cycle no. 1 2 3 4 5 6 7

Formation position (x/D) 3.3 3.7 3.8 4.1 4.3 — 5.2
Φf U/D 4.485 4.470 4.345 4.275 4.225 4.115 4.085

TABLE 3. Formation positions and Φf values that cause the NL-loop 1 structures in
the first to seventh N-cell cycle (the first long N-cell cycle). The corresponding vortex
structures are shown in figure 14(a–g). In the sixth N-cell cycle, there is a loop formation
failure.

Except for the sixth N-cell cycle (figure 14f ), the NL-loop 1 structures alternately
appear at the +Y and −Y side of the step cylinder from the first to the seventh N-
cell cycles (the first long N-cell cycle). The shape and the formation position of the
NL-loop 1 structure also vary, as depicted in figure 14(a–h).

In table 3, the relation between the formation positions of the NL-loop 1 structures
in the first long N-cell cycle and their Φf are presented. One can see that, except for
the sixth N-cell cycle, the formation positions move downstream as the corresponding
Φf decreases. This can easily be ascribed to the already discussed two different phase
difference accumulation mechanisms. Formation of the NL-loop 1 structures requires
sufficiently large Φ. Since Φf decreases, Φc must contribute more, which consequently
leads to a longer formation time and further downstream formation position. To be
more clear, the relations between Φf and formation positions of the corresponding NL-
loop 1 structures during the first–seventh long N-cell cycles are plotted in figure 15.
Generally, except for several irregular points, the formation position shifts downstream
as Φf decreases. (Note that the appearances of the irregular points will be discussed
in § 5.3.)
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Based on the discussions above, we conclude that, for the NL-loop structures, Φ
is accumulated by the joint influence of different shedding frequencies and different
convective velocities

Φ =Φf +Φc. (4.1)

As the relative magnitude of Φf and Φc varies, the formation processes of the NL-loop
structures change.

5. Characteristics of the long N-cell cycles
5.1. Trend of Φf variation

The time trace of Φf accumulation between corresponding N- and L-cell vortices is
plotted in figure 13(a). We use green and red circles to indicate Φf of the pair of
N- and L-cell vortices whose dislocation eventually causes the NL-loop 1 and NL-
loop 2, respectively. Two solid lines with the same corresponding colours describe the
decreasing tendency in Φf of both NL-loop 1 and NL-loop 2 over time.

The gradual decrease of Φf in each N-cell cycle can be expressed as

S= α
1

2 fL
− β

1
2 fN

, (5.1)

where S (with dimension D/U) is a measure of the phase shift of every vortex pair
in one N-cell cycle, as compared to the N-cell cycle before it. In this expression, α
and β represent the number of L- and N-cell vortices in one N-cell cycle; and fL
and fN are the shedding frequencies of L- and N-cell vortices. In the present case,
α = 15, β = 13, fLD/U = 0.1780 and fND/U = 0.1545 (from figure 5), from which
we obtain S = 0.064D/U. This means that, in one N-cell cycle, the duration of 13
N-cell and 15 L-cell vortices is not exactly the same. Although S has a very small
value, after a certain number of N-cell cycles, the accumulated difference becomes
large enough to influence the dislocation process. Moreover, by checking figure 13(a)
and the supplementary file 1, one can find that from R1 to R7 or from G1 to G7,
Φf decreases by approximately 0.4D/U, i.e. Φf decreases by around 0.067D/U after
every N-cell cycle, which is close to the S value from expression (5.1).

It is worth mentioning that the numbers α = 15, β = 13 and S = 0.064D/U are
related to the particular configuration studied. For different configurations, i.e. different
D/d and ReD, these numbers in expression (5.1) may vary. But what we observe in
figure 13(a) will be a common feature, because it is extremely unlikely to attain an
S value exactly equal to zero.

5.2. Interruption of the antisymmetric phenomenon
From figure 14(a–h), one can clearly see that the NL-loop 1 structure alternately
appears at the −Y and +Y side of the step cylinder in subsequent N-cell cycles.
This is the antisymmetric phenomenon reported in Tian et al. (2017a). In the
present case, the long-time observation reveals that this antisymmetric phenomenon
will be interrupted once in a while. As shown in figure 14(g,h), instead of being
antisymmetric, the loop structures in the seventh and eighth N-cell cycles are
symmetric. In these two N-cell cycles, both NL-loop 1 structures, i.e. N86–L′99
and N100–L′115, are formed at the −Y side.

This interruption is caused by the decreasing tendency in Φf , as we discussed in
§ 5.1. Normally, there are 13 N-cell and 15 L-cell vortices in one N-cell cycle. The
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odd number of N-cell vortices causes the antisymmetric phenomenon. However, as
shown in figure 13(a), when Φf continues to decrease along the green line from G1 to
C8, it eventually becomes insufficient in point C8. Even by including the contribution
of Φc, Φ is still not large enough to induce the formation of the expected NL-loop 1
(N′99–L114). Therefore, in this N-cell cycle, one additional vortex pair shedding
is needed to make Φ sufficiently large to induce formation of the NL-loop 1. The
additional one pair of N- and L-cell vortices makes the number of N-cell vortices
in the eighth N-cell cycle become even, and thereby interrupts the antisymmetric
phenomenon. In the supplementary file 3, the time trace of Φf between N- and L-cell
vortices in the first to the eighth long N-cell cycles (the first to the 55th N-cell
cycles) is illustrated.

5.3. Trigger value and threshold value of vortex dislocations
Based on the results from earlier papers (Williamson 1989; Morton & Yarusevych
2010b) and our discussions in §§ 5.2 and 4, it is clear that only when Φ becomes
sufficiently large can the vortex dislocation process be triggered. We call this value
the ‘trigger value’. Based on (4.1), Φ consists of two parts, Φf and Φc. Owing to
the complexity of Φc, an accurate trigger value is hard to obtain, but an approximate
value is possible to estimate. As we discussed in § 4, unlike the NL-loop 1 structure,
which has a clear formation position, the NL-loop 2 structure forms in the near wake.
This makes it hard to define the exact formation position of the NL-loop 2. It means
that the Φf that induces this NL-loop 2 is very close to the trigger value, and only a
modest contribution from Φc is needed. Therefore, by considering all the largest Φf

corresponding to the NL-loop 2 structures, we can draw the blue line in figure 13(a)
to approximate the trigger value (around 5.60D/U).

Besides the trigger value, there is another interesting value of Φf that should be
noted. As we discussed in § 5.2, when Φf continues to decrease from G1 to C8
(figure 13a), the expected formation of the NL-loop 1 (N′99–L118) fails. We can
speculate that there is a threshold value for Φf , such that when Φf becomes less
than this value, a vortex dislocation will not occur, even when taking the contribution
from Φc into account. By connecting all of the smallest values of Φf in green (Φf

inducing the NL-loop 1), the threshold value can be estimated by the yellow line in
figure 13(a), with a value around Φf U/D= 4.30.

Owing to the complexity of Φc, the formation of NL-loop structures becomes quite
unstable when Φf is close to the trigger value or to the threshold value. As shown in
figure 15, one stable Φf range and two unstable Φf ranges can be identified. A dashed
straight line outlines the trend in the stable range (4.45.ΦU/D. 4.65), in which the
distribution of markers is concentrated, and the formation position decreases almost
linearly as Φf increases. Outside this stable range, the tendency becomes unclear.
When Φf is smaller than 4.45D/U, i.e. much smaller than the trigger value 5.60D/U
and close to the threshold value 4.30D/U, the contribution of Φc becomes significant
and determines whether the NL-loop 1 is able to be formed or not. Figure 15
shows that, in the unstable range (4.30 . Φf U/D . 4.45), all NL-loop 1 structures
are generated beyond a downstream position x/D = 4, i.e. Φ of these NL-loop 1
structures cannot exceed the trigger value upstream of x/D= 4. In this situation, how
much Φc can accumulate downstream of x/D= 4 determines whether these NL-loop 1
structures will appear or not. In figure 10(b), we see apparent differences between
the convective velocity in the N- and L-cell regions, while these differences diminish
as we move downstream. Downstream of x/D= 4, the differences become very small.
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In other words, the accumulation of Φc is modest downstream of x/D = 4. Based
on the above observation, we can conclude that, for the NL-loop 1 structures with
Φf in the range (4.30D/U–4.45D/U), their phase differences are around a critical
value, and a small variation in Φc can influence their formation positions, and even
lead to unsuccessful formations. The fact that all the red markers in figure 15, which
represent the occasionally absent NL-loop 1 structures, are located in this range also
supports this conclusion.

Another unstable range appears when Φf corresponding to NL-loop 1 becomes
larger than 4.65D/U, which is close to the approximate level of the trigger value.
In this situation, only a small contribution from the convective velocity is needed
for NL-loop 1 to form. Meanwhile, as shown in figure 10(b), when x/D is smaller
than 3 (x/D = 1.4, 1.6, 1.8, 2, 3) the differences between the convective velocities
in the N- and L-cell regions are obvious. These differences are able to increase Φc
rapidly. Variations in the convective velocity could also affect the formation position,
and lead to a less clear tendency.

Detailed investigations show that many interesting and important features of vortex
dislocation in a step cylinder wake may easily be overlooked if the observation time
is too short. In the present case, during one long N-cell cycle, most N-cell cycles need
an odd number of N- and L-cell vortices to accumulate sufficient Φ, and to trigger
the vortex dislocation, which leads to antisymmetry between subsequent N-cell cycles.
However, between two long N-cell cycles, the antisymmetry is interrupted. In our
earlier paper (Tian et al. 2017a), we did not foresee this interruption, because we tried
to conclude that the antisymmetric dislocation process is a result of fL/fbeat≈ 7.5, such
that two dislocations are needed to compensate for the frequency differences between
the N- and L-cells, and that the wake could return to normal one-to-one shedding.
However, more detailed observations based on substantially longer simulations show
that the small differences (i.e. S in expression (5.1)), which were ignored when
we obtain the fL/fbeat ≈ 7.5 relationship, are continuously accumulating and cause
a decreasing tendency in the time trace of Φf . This is exactly what causes the
interruption of the antisymmetry discussed in this section. We note again that these
results require exceptionally long simulations. The value of S is so small that it
may easily be ignored in short-term observations. But it turns out to lead to very
interesting vortex dislocation phenomena. We mentioned that McClure et al. (2015)
also reported similar small differences in the vortex dislocations behind a dual step
cylinder. However, instead of investigating how different vortex dislocations vary, they
focused on when two identical vortex dislocations appear.

6. Investigation on universality
In order to investigate the universality of the two different phase difference

accumulation mechanisms and their effects on vortex dislocations, the wake behind a
step cylinder with D/d= 2.4 at the same ReD = 150 is investigated. All observations
are consistent with our findings from the D/d = 2.0 case and support our previous
discussions and conclusions.

In general, comparing with the wake in the D/d= 2 case, the change in D/d brings
no fundamental changes. As shown in figure 16, the three dominating frequency
components, i.e. StS, StN and StL, and the beat frequency Stbeat are all captured,
similar as in figure 5(a). Moreover, similar non-uniform distributions of the mean
streamwise velocity u are shown in figure 17. This means that, for the D/d = 2.4
case, the differences in convective velocities in the N- and L-cell regions can increase
Φ when vortices convect downstream, just as for the D/d= 2.0 case.
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FIGURE 17. Distributions of mean streamwise velocity ū/U in the D/d= 2.4 case.

In figure 18(a,b), the two phase difference accumulation mechanisms (4.1) are
examined. As Φf decreases along the red and green lines in figure 18(a), larger
contributions from Φc are needed to make Φ sufficiently large to trigger the vortex
dislocation, which makes the formation positions of the NL-loop 1 structures move
downstream during two long N-cell cycles, as shown in figure 18(b).

This decreasing tendency in Φf corresponding to the NL-loop 1 and NL-loop 2
in figure 18(a) can be explained by (5.1). In figure 18(a), from G1 to G7,
Φf decreases by 0.52D/U (4.69D/U − 4.17D/U), i.e. it decreases by around
0.087D/U after every N-cell cycle, which is close to the value from (5.1), i.e.
13 × 1/(2× 0.1767U/D) − 11 × 1/(2× 0.1499U/D) = 0.094D/U. As Φf continues
to decrease, the expected interruption of the conventional antisymmetry appears in
the D/d = 2.4 case. The NL-loop 1 structures in seven continuous N-cell cycles are
plotted in figure 19(a)–(g). The NL-loop 1 alternately appears at the −Y and +Y
side in the first six N-cell cycles, i.e. from the second to the seventh N-cell cycle,
from figure 19(a) to ( f ). But this conventional antisymmetry is interrupted in the
seventh and eighth N-cell cycles. In figure 19( f,g), the NL-loop 1 appears at the
same side of the step cylinder. Based on the interruption of the antisymmetry, the
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FIGURE 18. (a) Time traces of Φf between N-cell and L-cell vortices are plotted in the
first and second long N-cell cycles in the D/d = 2.4 case. The same annotations as in
figure 13 are also used here. (b) Relation between Φf and the formation position (x/D)
of NL-loop 1 structures in the first and second long N-cell cycles in the D/d = 2.4
case (same as in figure 15). (All detailed data about ϕ and Φf are included in the
supplementary file 2.)
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FIGURE 19. From (a) to (g), the NL-loop 1 structures in the second to the eighth N-cell
cycles are plotted from both the −Y and +Y side in the D/d= 2.4 case. The black line
marks the formation position of an NL-loop 1.

long N-cell cycle, the trigger value (blue line) and the threshold value (yellow line)
are also indicated in figure 18(a), similar as in the D/d= 2 case.

These investigations prove that our discussions and conclusions in §§ 4 and 5 are
valid not only in the wake behind the step cylinder D/d = 2 case, but also in other
D/d cases.

7. Conclusions
We use DNS to investigate vortex interactions, especially the vortex dislocations

between the N- and L-cell vortices, in the near wake behind two single step cylinders
with diameter ratio D/d = 2 and 2.4 at ReD = 150. Our results in the D/d = 2
case show good agreement with previous studies (Dunn & Tavoularis 2006; Morton
& Yarusevych 2010b; Tian et al. 2017a), with respect to the three dominating
spanwise vortices (i.e. S-, N- and L-cell vortices), vortex dislocations occurring
at the N–L cell boundaries, loop structures (NL-loop 1 and NL-loop 2) appearing
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during the dislocation processes, and antisymmetric phenomena between subsequent
N-cell cycles. In addition, the numerical results provide more detailed information on
how the phase difference (Φ) between the corresponding N- and L-cell vortices is
accumulated and finally triggers the formation of vortex dislocations and concomitant
NL-loop structures. A phase difference accumulation mechanism is identified for the
first time, i.e. Φ =Φf +Φc. We have clearly identified that there are two qualitatively
different physical factors contributing to the accumulation of Φ: one is different
shedding frequencies (Φf ), the other is varying convective velocities in the different
vortex cell regions (Φc). While Φf is relatively well known, the contribution from
convective velocity Φc has never been examined before.

Based on the new understanding of the phase difference accumulation mechanism,
we manage to obtain a clearer insight into various phenomena during the dislocation
process. Most importantly, the variations of the formation position of the NL-loop 1
and NL-loop 2, and the irregularity of the NL-loop 1 formation, have been fully
explained. For a pair of N- and L-cell vortices, as Φf decreases, Φc must contribute
more to ensure a sufficiently large Φ (we refer to it as the trigger value) that can
trigger the vortex dislocations. This makes the formation position of the corresponding
NL-loop structure move downstream.

Moreover, the long-time trace of the accumulation of Φf clearly shows cyclic
trends, which are caused by minute differences accumulated during each N-cell cycle
(as indicated by S in expression (5.1)). Owing to the accumulation of this difference,
the antisymmetric phenomenon, reported in Tian et al. (2017a), will be cyclically
interrupted when Φf decreases below a certain value. We refer to this value as the
threshold value. The long N-cell cycle is defined based on this phenomenon. Finally,
in § 6, the universality of our discussions and conclusions is justified by investigating
the D/d= 2.4 case.

The identification of the phase difference accumulation mechanism, explanations
of the formation positions of the NL-loops and observations of the long-period
characteristics offer a deeper and more complete understanding of the vortex
dislocation phenomenon in the wake behind a step cylinder.

Although all investigations in the present paper are based on single step cylinders
at Reynolds number 150, the N- and L-cell vortices and their vortex dislocations were
observed in other step cylinder cases with 1.55<D/d<2 at 67<ReD <1100 (Norberg
1992; Dunn & Tavoularis 2006; Morton & Yarusevych 2010a,b). In these cases, due to
the abrupt change in diameter, vortex shedding frequencies and convective velocities
are different in N- and L-cell regions. With these two mechanisms present in the flow,
we believe that our discussions and conclusions are also valid for the above-mentioned
cases. We anticipate that the phase difference accumulation mechanism we report here
also exists in other wake flows that contain several adjacent spanwise vortices. In
addition, the method we have developed to obtain the phase information and phase
differences of vortices may also be applicable in other wake flows.
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Supplementary material is available at https://doi.org/10.1017/jfm.2020.110.

Appendix A. The method used to obtain the phase information and phase
difference of vortices

In order to perform detailed investigations on how the phase difference between
corresponding N- and L-cell vortices accumulates and triggers the vortex dislocation,
we need a reliable method to obtain the phase information (ϕ) and the phase
difference (Φ) of the wake vortices. According to Green & Gerrard (1993) and
Griffin (1995), the end of the vortex formation region coincides with the location
where the vortex strength becomes maximum. By monitoring the time traces of the
strength of a vortex and the corresponding vorticity distribution along a centreline
at y/D= 0, we found that in the present low-Reynolds-number case the time instant
when the vortex strength reaches its maximum coincides with the instant at which
the corresponding largest ωz appears at the centreline. A detailed example is shown
in supplementary file 4. Based on this feature, the ‘shed position’ of a vortex is
defined as the position where the corresponding largest ωz appears at the centreline.
Moreover, ϕ of one vortex is defined as the time instant when the corresponding
ωz reaches its maximum at the sampling point. At a downstream sampling point, Φ
between a pair of N- and L-cell vortices is the time difference between the time
instants when they pass this sampling point:

Φ = ϕN − ϕL. (A 1)

Ideally, we monitor ϕN and ϕL at the shed position of the N- and L-cell vortex,
respectively. Then, by using equation (A 1), Φ can be obtained. However, there are
two challenges:

(i) Only when both the N- and L-cell vortex are monitored at the same downstream
position can we get Φ between them without taking the effects from the
convective velocity into account. Owing to different shedding frequencies, the
shedding positions of the N- and L-cell vortices are different. Moreover, the
fluctuations in the shedding frequencies of N-cell vortices, as discussed in § 3.2,
make the situation even more complicated.

(ii) In the L-cell region, due to the oblique shedding, the phases of the L-cell vortices
vary when the sampling point shifts in the spanwise direction.

The general process developed to overcome these two challenges is as follows.
(1) Find the regular shedding regions of the N- and L-cell vortices. (2) Monitor shed
positions of the N- and L-cell vortices, and find the suitable sampling positions for
both of them. (3) Develop a method to minimize effects of the oblique shedding
in the L-cell region. The complete process of obtaining Φ in the D/d = 2 case is
described in the following.

A.1. Selection of the sampling region and the signal variable
The root mean square (r.m.s.) values of the spanwise vorticity ωz in a part of the
N-cell region (−3.2< z/D<−2.4) and the L-cell region (−18.8< z/D<−15.8) are
plotted in figure 20. From figure 20(a), one can see that, except for the lowest curve
(at z/D=−2.4), the trends of the other five curves are the same. Especially at position
z/D = −2.8 and −2.9, the r.m.s. values coincide, as presented in the zoom-in view
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FIGURE 20. (a) (I) The distribution of r.m.s. of vorticity component ωzD/U in a part
of the N-cell region (−3.2< z/D<−2.4). (II) A zoom-in view of the peak area of the
curves in main panel (I). (b) (I) The distribution of r.m.s. of vorticity component ωzD/U
in a part of the L-cell region (−18.8< z/D<−15.8). (II) A zoom-in view of the peak
area of the curves in main panel (I).
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FIGURE 21. The time traces of magnitude of vorticity (|ω|D/U) and its three components
(ωxD/U, ωyD/U and ωzD/U) in the L-cell region at the point (x/D, y/D, z/D) =
(1.5, 0,−15.8) are plotted in panels (a), (b), (c) and (d), respectively.

(figure 20a(II)). This means that the N-cell vortices can be treated as a regular shed
spanwise vortex in the region −3.2. z/D.−2.6. In the L-cell region, as illustrated in
figure 20(b), the differences between the results of four sampling points are negligible.
The zoom-in view (figure 20b(II)) shows that the largest difference in r.m.s. of ωz

is approximately 0.01U/D, i.e. only 0.3 % of the peak value. Generally, the regions
−3.2. z/D.−2.6 and z/D.−15.8 can be treated as the regular shedding region of
N- and L-cell vortices, respectively.

As illustrated in § 3.2, far away from the step position, vortices shed regularly in
the L-cell region. In figure 21, the vorticity magnitude |ω| and the three vorticity
components (ωx, ωy and ωz) are checked at point (x/D, y/D, z/D) = (1.5, 0, −15.8).
The time traces of all three vorticity components completely repeat themselves with
the same period as the L-cell vortex. All vorticity components oscillate regularly
enough to be used to monitor Φ of L-cell vortices. On the other hand, in the
N-cell region, the vortex shedding is more complicated. In figure 22, at the position
(x/D, y/D, z/D) = (1.5, 0, −2.9), which is in the regular shedding region of N-cell
vortices, the time traces of both ωx and ωy show substantial irregularities, which
are possibly caused by the intensive downwash (Dunn & Tavoularis 2006) and the
two pairs of streamwise vortices (Dunn & Tavoularis 2006; Morton et al. 2009),
respectively. However, without disturbances, ωz oscillates regularly in figure 22(d).

In general, ωz of the N- and L-cell vortices oscillate regularly in parts of their
shedding regions. It therefore becomes reasonable to select ωz as the signal variable.
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FIGURE 22. Same as in figure 21, but at a different position (x/D, y/D, z/D) =
(1.5, 0,−2.9), i.e. in the N-cell region.

A.2. The method for obtaining the phase (ϕ) and the shed position of vortices
Both the N- and L-cell vortices shed alternately from the two sides of the step
cylinder. As mentioned at the beginning of appendix A and in supplementary file 4,
in the present low-Reynolds-number case, the strength of a vortex and its induced
vorticity at the centreline (y/D = 0) approximately reach their extreme values at
the same time. Therefore, we can obtain ϕ and the shed position of vortices by
monitoring the distributions of ωz in the symmetry plane. (Note that the following
analysis is based on data obtained from high-density (0.01D) sampling lines with
sampling frequency 200U/D. Considering that the shedding frequency of the N- and
L-cell vortex is around 0.2U/D, 200U/D is long enough to get accurate results.)

(i) Determination of ϕ and shed position of the vortex along a sampling line.
By checking the variation of ωz along a sampling line in the symmetry
plane (y/D = 0), the shed position and ϕ of each vortex can be obtained. In
figure 23(a), as a vortex passes through a sampling line (from (x/D, y/D, z/D)=
(1, 0,−15.8) to (2, 0,−15.8)), the distributions of ωz along this line are plotted
in the period from tU/D = 4.205 to 6.205 with a time interval 0.1D/U. In
figure 23(a), the maximum of each curve is marked by a small red circle,
whose position (x/D, ωzD/U) represents the core line position and strength of
the source vortex. A zoom-in plot of the red circle concentrated area (black
rectangular area in panel (a)) is shown in figure 23(b), and the corresponding
time trace of these red circles is plotted in figure 23(c). The number below
each red circle represents its temporal order. One can see that, from the first
to the tenth red circle, the corresponding ωz gradually reaches its maximum
at x/D = 1.46 (as shown in figure 23b) and at tU/D = 5.265 (as shown in
figure 23c). This means that the source vortex contains maximum vorticity and
separates from the shear layer at x/D = 1.46 when tU/D = 5.265. In other
words, the shed position of this vortex is x/D = 1.46, and the corresponding ϕ
at position (x/D, y/D, z/D)= (1.46, 0,−15.8) is 5.265D/U.

(ii) Obtaining ϕ of vortices at a fixed sampling point.
For a fixed sampling point in the symmetry plane (y/D= 0), ωz will oscillate as
vortices pass through the point. When the core lines of vortices pass the sampling
point, ωz reaches its extremum at this point. Figure 23(d) shows the oscillation
of ωz at position (x/D, y/D, z/D)= (1.46, 0,−15.8), from which the abscissa of
the peaks and troughs of this curve represents ϕ of vortices shed from the −Y
and +Y sides of the step cylinder, respectively.

A.3. Monitoring both the N- and L-cell vortices at the same downstream position
In figure 24, the shed positions of the N- and L-cell vortices in the first 500D/U are
examined. Figure 24(b) shows that, at two spanwise positions z/D=−15.8 and −17.8
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FIGURE 23. (a) From tU/D = 4.205 to 6.205, distributions of vorticity ωzU/D along a
sampling line (from (x/D, y/D, z/D)= (1, 0,−15.8) to (2, 0,−15.8)) are plotted with a
time interval of 0.1D/U. The maximum of each curve is marked by a small red circle.
(b) A zoom-in plot of the rectangular area in panel (a), where the number below each
red circle represents the time series of the corresponding curve. (c) Time trace of the
maximum vorticity ωzU/D (red circles in panel (a)). (d) Time trace of vorticity ωz at
sampling point (x/D, y/D, z/D= (1.5, 0,−15.8)).
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FIGURE 24. (a) Time traces of the shed positions of the N-cell vortices are calculated
along two sampling lines (from (x/D, y/D, z/D) = (1, 0, −2.8) to (2, 0, −2.8) and
from (x/D, y/D, z/D) = (1, 0, −2.9) to (2, 0, −2.9)) and are plotted in red and
black, respectively. Every small circle represents an N-cell vortex. (b) Time traces of
the shed positions of the L-cell vortices are calculated along two sampling lines (from
(x/D, y/D, z/D)= (1, 0,−15.8) to (2, 0,−15.8) and from (x/D, y/D, z/D)= (1, 0,−17.8)
to (2, 0, −17.8)) and are plotted in red and black, respectively. Every small circle
represents an L-cell vortex.
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(which are in the L-cell vortex’s regular shedding region discussed in § A.1), most of
the L-cell vortices shed at position x/D = 1.46. Only a few L-cell vortices shed at
x/D= 1.47. Considering that 0.01D is a very small distance and equal to the spatial
interval of the sampling points, x/D = 1.46 can be defined as the shed position of
L-cell vortices. On the other hand, as illustrated in figure 24(a), the shed position of
N-cell vortices severely fluctuates between x/D= 1.4 and 1.6, which makes it hard to
define a fixed shed position for all N-cell vortices. Luckily, as shown in table 4, at
the key instant when the vortex dislocations occur, ϕ of the N-cell vortex is stable.

In table 4, ϕ of each vortex is calculated in two ways: (1) in the first column,
ϕ is obtained along a sampling line (from (x/D, y/D, z/D) = (1, 0, −2.9) to
(2, 0, −2.9)) by using the method (i) described in § A.2; (2) in the second
column, ϕ is obtained by using the method (ii) described in § A.2 at a fixed point
(x/D, y/D, z/D) = (1.5, 0, −2.9), in which x/D = 1.5 is the averaged shed position
of the N-cell vortices. The differences between these two calculation methods are
shown in the third column. The phases of the N-cell vortices that induced the vortex
dislocations and formations of the NL-loop structures are highlighted in italics. At
these key instants, the largest difference in ϕ is 0.015D/U, which is small and equal
to the finest grid size (all analysis is based on case 3 in table 1). Differences at the
other points are even smaller than 0.1D/U. The present paper focuses on the trend
of Φ accumulation, rather than the exact value of Φ. We believe that these small
differences have negligible influence on our discussions and conclusions.

For the L-cell vortices, at x/D = 1.5, they already shed from the shear layer and
move regularly downstream. We admit that, from x/D= 1.46 (the shed position of the
L-cell vortices) to 1.5, the convective velocity contributes to the accumulation of Φ.
Since these two points are only 0.04D apart in the x-direction, the contributions from
the convective velocity will be limited. We believe that Φ calculated at x/D = 1.5
is still dominated by the different shedding frequencies between the N- and L-cell
vortices. Therefore, the downstream position x/D= 1.5 is selected as the streamwise
position of the sampling points for both N- and L-cell vortices. The Φ between
the corresponding N- and L-cell vortices is calculated at this position, and defined
as Φf .

A.4. The method to correct L-cell vortices from oblique shedding effects
Owing to the oblique shedding in the L-cell region shown in figure 1, ϕ of the L-cell
vortices varies as the observation position moves in the spanwise direction. In order
to get rid of this effect, ϕ of the L-cell vortex is divided into two parts:

ϕLM = ϕL + ϕθ . (A 2)

In (A 2), ϕLM is the phase of the L-cell vortex obtained at a specific sampling position,
ϕθ is the component of ϕLM that can be affected by the oblique shedding and ϕL is the
other component that is unaffected. In other words, when the sampling point moves
in the spanwise direction within the L-cell region, ϕLM and ϕθ vary, but ϕL remains
constant. As an example, we keep the monitoring position of the N-cell vortex at
(x/D, y/D, z/D)= (1.5, 0,−2.9), and capture ϕ of the L-cell vortices at two sampling
points (x/D, y/D, z/D)= (1.5, 0,−15.8) and (1.5, 0,−17.8). By using equation (A 1),
two time traces of Φf are calculated and shown in figure 25(a,b), in which the small
circles represent Φf between an N-cell vortex and its corresponding L-cell vortex. One
can see that the trend of the curves coincide in figure 25(a,b). When the sampling
position of the L-cell vortex moves, the oblique shedding only
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FIGURE 25. Time traces of Φf during the first long N-cell cycle are calculated at two
groups of sampling points. (a) The calculations of Φf are based on ϕ of the N- and L-
cell vortices which are calculated at (x/D, y/D, z/D)= (1.5, 0,−2.9) and (1.5, 0,−17.8),
respectively. (b) The calculations of Φf are based on ϕ of the N- and L-cell vortices which
are calculated at (x/D, y/D, z/D)= (1.5, 0,−2.9) and (1.5, 0,−15.8), respectively. (c) By
using the regression method described in § A.4, the results in green and black in panel (c)
have been obtained from panels (a) and (b), respectively. The circle represents Φf between
an N-cell vortex and the corresponding L-cell vortex. In order to ease the observation, we
reduce the size of the green circles.

ϕ obtained from a ϕ obtained at a Difference
sampling line (D/U) fixed point (D/U) (D/U)

6.095 6.05 0.045
9.055 9.055 0
12.24 12.27 −0.03

15.625 15.585 0.04
18.78 18.73 0.05
22.12 22.2 −0.08
25.7 25.68 0.02
29 28.95 0.05

32.325 32.315 0.01
...

...
...

74.365 74.355 0.01
...

...
...

116.28 116.29 −0.01
...

...
...

158.29 158.3 −0.01
...

...
...

200.3 200.29 0.01
...

...
...

242.23 242.215 0.015

TABLE 4. Phase information ϕ of the N-cell vortices is obtained by two methods. In the
first column, we use method (i) described in § A.2 to obtain ϕ along a sampling line (from
(x/D, y/D, z/D)= (1, 0,−2.9) to (2, 0,−2.9)). In the second column, we use method (ii)
described in § A.2 to obtain ϕ at a fixed sampling point (x/D, y/D, z/D)= (1.5, 0,−2.9).
The differences between the first and second column are shown in the third column. The
ϕ of the N-cell vortices that induce vortex dislocations are highlighted in italics.
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causes a downward shift of the curves from figure 25(a) to (b). By subtracting the
average value of all small red circles in each figure, we obtain the green curve
(figure 25a) and the black curve (figure 25b), and we easily find that these two
curves almost coincide. The average value of all the small red circles is ϕθ in (A 2).
As long as the sampling position of the L-cell vortex is far from the step position,
after subtracting ϕθ , figure 25(c) can always be obtained.

In the D/d= 2 case, by using the method described in this appendix, we obtained ϕ
of the N- and L-cell vortices at (x/D, y/D, z/D)= (1.5, 0,−2.9) and (1.5, 0,−15.8);
therefore Φf is calculated on this basis. Following this method, Φf in the D/d = 2.4
case can also be obtained. The detailed data of ϕ and Φf for both the D/d = 2 and
2.4 cases are included in the supplementary files 1 and 2, respectively.
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