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SUMMARY
Cooperative transportation by human and robotic coworkers constitutes a challenging research
field that could lead to promising technological achievements. Toward this direction, the present
work demonstrates that, under a leader–follower architecture, where the human determines the
object’s desired trajectory, complex cooperative object manipulation with minimal human effort
may be achieved. More specifically, the robot estimates the object’s desired motion via a pre-
scribed performance estimation law that drives the estimation error to an arbitrarily small residual
set. Subsequently, the motion intention estimation is utilized in the object dynamics to determine
the interaction force between the human and the object. Human effort reduction is then achieved
via an impedance control scheme that employs the aforementioned estimations. The feedback relies
exclusively on the robot’s force/torque, position as well as velocity measurements at its end effector,
without incorporating any other information on the task. Moreover, an adaptive control scheme is
adopted to relax the need for exact knowledge of the object dynamics. Finally, an extension for mul-
tiple robotic coworkers is studied and verified via simulation, while extensive experimental results
for the single robot case clarify the proposed method and corroborate its efficiency.

KEYWORDS: RAAD2018; pHRI; Cooperative transportation; Prescribed performance; Impedance
control.

1. Introduction
Although robots have been involved in industry for a long time, most cases refer to repetitive tasks
implemented in isolated workplaces in the absence of human workers (see Fig. 1(a)). Nonetheless,
as robots are advancing in both industry and everyday life, human–robot collaboration proves to be
a vast and highly emerging field that aims at allowing humans and robots to safely share a common
workspace while mutually assisting each other in meaningful tasks (see Fig. 1(b)). Among human–
robot collaboration, physical human–robot interaction (pHRI) could justifiably be characterized as a
rather challenging research field especially for complex tasks previously performed by one or more
humans. In particular, the present work focuses on cooperative object manipulation and envisages
an architecture that prioritizes the benefits of available human cognitive skills while maximizing
the autonomy of robotic partners. In this way, a combination of robot power with human planning
and decision-making capabilities based solely on implicit communication provided by the physical
interaction is expected to lead to a powerful and versatile technology for the industry.
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Fig. 1. (a) Robots in industry. (b) Human–robot cooperative transportation task.

Related research has been conducted with early results pertaining to passive robotic assistants.
As shown in refs. [1, 2], such systems cooperate well with humans through physical interaction and
may be useful in the transportation of bulky objects, although they lack the ability to reduce human
effort by actively contributing to the transportation task. On the contrary, cooperative human–robot
object manipulation faces various technical issues toward the integration of a proactive system that
resembles the execution of cooperative tasks explicitly by humans. In ref. [3], confronting the concept
of role assignment, novel strategies have been developed for effort sharing. Although these strategies
can be very helpful in terms of effort reduction, the requirement for predefined globally known task
trajectory makes them applicable mostly for repetitive tasks in well-structured environments.

Alternatively, control schemes that do not assume a priori knowledge of the desired trajectory
have been developed to provide more autonomous and reactive solutions. In these works, the desired
trajectory that is explicitly determined by humans is estimated based on the system’s sensing ability.
Usually, a force control scheme is designed based on these estimates to impose the desired charac-
teristics on the system. In ref. [4], for a simple transportation task with known starting and ending
points, Kalman filtering is used to estimate the parameters of the minimum jerk profile. Likewise, in
ref. [5], non-linear least squares were employed in a similar task. Therefore, the results were fed into
an admittance and impedance control scheme. Estimations based on minimum-jerk profile showed
interesting results, but these strategies require a known goal position. However, profiles that corre-
spond to more complex tasks than point-to-point motion have not been considered. An EKF was also
used in ref. [6] for prediction of the human’s desired trajectory and was effectively combined with a
reactive reinforcement learning controller to develop a behavior-based gain controller that relies on
prediction confidence levels for a cooperative lifting task. In refs. [7–9] based on impedance control, a
controller is defined for co-manipulation of unknown weight parts. The first uses only force, position
and velocity measurements, while the rest use various machine learning techniques to optimize the
control parameters to reduce human effort. Another approach for human motion intention estimation
is presented in ref. [10], where a neural network was trained to predict human motion intention using
the position, velocity and force measurements as inputs. The predicted trajectory was then provided
to an adaptive impedance controller. To the best of our knowledge, experimental verification of the
aforementioned works was restricted to either 1DoF experiments or plain tasks in higher dimensions.

Other modern approaches rely on task-specific learning and programming-by-demonstration tech-
niques. Plenty of these approaches also provide experimental evaluation for complex transportation
or manipulation tasks. In ref. [11], a statistical model, based on Gaussian mixture models, was trained
in a pure leader–follower role distribution after a set of demonstrations. The task, which was an object
lifting scenario, was autonomously reproduced using Gaussian mixture regression. Demonstrations
were also employed in ref. [12] to reproduce a task-parametrized formulation of a Gaussian mix-
ture model, from which the desired trajectory was extracted. Moreover, based on the same statistical
model, optimal controllers have been designed with respect to the variance of the robot’s state mea-
surements during the demonstrated task. In ref. [13], an experience-based scheme was proposed,
where the robot was in compliant control and detected/classified, based on hidden Markov mod-
els, interaction patterns generated during transportation tasks. Human cognitive skills were further
employed to rate the recognized task segments when necessary. The robot after some repetitions
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was able to predict the desired trajectory and implement it through an admittance scheme. Although
these works have shown remarkable results, the non-negligible overhead of training renders them
inconvenient for industrial applications.

This paper addresses the motion intention estimation problem via a robust prescribed perfor-
mance estimation law that drives the error between the actual and the desired trajectory estimation
to an arbitrarily small residual set. The proposed method is based only on position, velocity and
interaction force/torque measurements at the robot end effector. In this respect, the interaction
force/torque between the human and the object, which is unknown and cannot thus be employed
in the control design, is determined by the object’s dynamics and the estimation of the desired
trajectory. Subsequently, based on the aforementioned motion intention estimation, an impedance
control scheme is designed that leads in significant human’s effort reduction through the impedance
specifications of the controller. Moreover, the control scheme is extended for the non-trivial case of
uncertainties in object dynamics. An adaptive scheme is proposed to overcome the unknown object
dynamics contributing to the system’s autonomy and robustness since only a rough estimate of the
object’s parameters is required. A cooperative transportation task between a human leader and mul-
tiple robotic agents is also examined. In the multiple agent scenario, alongside the decentralized
estimation law, an impedance control scheme was developed to augment further the human capa-
bility to handle heavy and bulky objects, necessitating however for lean inter-robot communication.
In this paper, we demonstrate that we are able to achieve cooperative object transportation for chal-
lenging 6DoF trajectories and execute complex transportation tasks without resorting to learning
techniques. In conclusion, the main contributions of the present work are:

• a robust estimation algorithm that converges even though the desired object’s acceleration profile
is nonzero (i.e., the arbitrary object’s desired trajectory based on human motion planning, as long
as it is bounded and smooth)

• the successful integration of the estimation with an impedance control scheme in order to reduce
the required human effort for a collaborative task.

• reinforcement of the closed-loop robustness by incorporating parametric uncertainty in the object
dynamics.

The rest of the manuscript is organized as follows. In Section 2, preliminaries related to the
kinematics and dynamics of the system components are provided. Section 3 presents the problem
statement and the proposed strategy in detail. Experimental results and simulation studies are given
in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Preliminaries
In this paper, a human–robot cooperative system is investigated that involves a human and one or
more robotic manipulators in a leader–follower architecture, handling a rigidly grasped object. It is
assumed that each robotic manipulator has at least 6 DoFs, is fully actuated and is equipped with
a force/torque sensing handle at its end effector. Although the geometric and inertial parameters of
the grasped object are initially considered known, such assumption is relaxed later by employing an
appropriately designed adaptive scheme.

2.1. Kinematics
Let us denote the frames �k, k ∈ {l, f1, ..., fN}, where the subscripts l, f stand for leader and follower,
respectively and N is the number of manipulators attached to the object. The origin and the orientation
of each frame �k with respect to an inertial frame {�I}1 are given by pk ∈ �3 and Rk ∈ SO(3). We
denote the angular velocity vector as ωk ∈ �3 and the generalized velocity vector as vk = [ṗT

k , ωT
k ]T

.
We denote also the unit quaternion derived from Rk as Qk = {ηk, εk} ∈ S3 ⊂ �4. For a unit quaternion
Qk = {η, ε}, it holds that η = cos θ

2 , ε = sin θ
2 r are the scalar and vector part, respectively, and they

are constrained by

η2 + εTε = 1 (1)

1The frame with respect to which a quantity is expressed is denoted by a right superscript that is, pI
k. The superscript I

is dropped for simplicity when the quantity is expressed in �I that is, pk. The frame �I is also referred as base frame.
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The relation between the time derivatives of η̇, ε̇ and the angular velocity ω is described by

η̇ = −1

2
εTω (2)

ε̇ = 1

2
E(η, ε)ω (3)

with

E(η, ε) = ηI − S(ε) (4)

where S(.) denotes the skew symmetric matrix operator performing the cross product. Similarly, let
frame �o be attached to the object’s center of mass with the corresponding quantities denoted by
po ∈ �3, Ro ∈ SO(3), Qo = {ηo, εo} ∈ S3 ⊂ �4, vo = [ṗT

o , ωT
o ]T ∈ �6. Notice that the frame �o can be

attached to the object’s center of mass only when it is considered known. If such information is not
available, then �o can be chosen as an arbitrary frame on the object. In this case, a preferable choice

for the origin of �o could be the mean vector of all grasping points, that is,
∑N

i=1 pfi
N .

Moreover, let qfi , i ∈ {1, ..., N} be the joint space variables of the i-th manipulator and Jfi(qfi) be
the geometric Jacobian matrix such as

vfi = Jfi(qfi)q̇fi (5)

Following the virtual stick14 convention, we can augment each manipulator by a constant translation
and rotation such that each of the manipulator’s virtual end effector coincides with the origin �o.
The same convention holds for the human arm. Assuming that the contacts are rigid, the following
kinematic constraints hold:

pk = po − rk (6)

Rk = RoRo
k (7)

where rk ∈ �3 denotes the virtual stick from the k-th end effector (or the human hand) to the origin
of �o, while Ro

k refers to the relative orientation between �o and �k. Differentiating (6) and (7) and
using the relation Ṙk = S(ωk)Rk, we can derive the following:

ṗk = ṗo − rk × ωo (8)

ωk = ωo (9)

or in compact matrix form

vk = Jokvo =
[

I3×3 −S(rk)

03×3 I3×3

]
vo (10)

where Jok is the Jacobian from the end effector (or the human hand) to �o. Notice that since the end
effector and the object are rigidly connected, the aforementioned Jacobian is always full rank and
hence a well-defined inverse J−1

ok exists. Finally, differentiating (10) with respect to time, we also
establish the generalized acceleration relation:

v̇k = J̇okvo + Jokv̇o (11)

2.2. Manipulator dynamics
The dynamics of the manipulator can be written in the form of:

Mri

(
qfi

)
q̈fi + Cri

(
q̇fi, qfi

)
q̇f i

+ Gri

(
qfi

) = τ fi + JT
fi

(
qfi

)
hfi, i ∈ {1, ..., N} (12)

where τ fi ∈ �m is the torque applied to each actuator, Mri

(
qfi

) ∈ �m×m is the symmetric, positive def-
inite mass matrix, Cri

(
q̇fi, qfi

) ∈ �m×m is the Coriolis/centrifugal matrix, Gri

(
qfi

) ∈ �m represents the
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gravitational forces and hfi ∈ �m denotes the forces exerted by the environment on the end effector.
The dynamic model of the robot, in terms of task space coordinates, is described by:

Mfi

(
qfi

)
v̇fi + Cfi

(
q̇fi, qfi

)
vfi + Gfi

(
qfi

) = ufi + hfi (13)

where

Mfi

(
qfi

)
� J−T

fi
Mri

(
qfi

)
J−1

fi

Cfi

(
q̇fi, qfi

)
� J−T

fi
(Cri

(
q̇fi, qfi

)
J−1

fi
+ Mri

(
qfi

)
J̇fi J

−1
fi

)

Gfi

(
qfi

)
� J−T

fi
Gri

(
qfi

)
and ufi denotes the task space input wrench. The relation between the joint torques τ fi and the task

space wrench is given by τ fi = J
T
fi ufi +

(
I − JT

fi J
T
fi

)
τ ini , where Jfi is the generalized inverse that is

consistent with the equations of motion of the manipulator and its end effector.15 The vector τ ini does
not contribute to the end effector’s wrench and can be regulated independently to achieve secondary
goals (e.g., manipulability increase or collision avoidance for the links). Additionally, invoking the
kinematic relations (6)-(11), we may express the aforementioned dynamic model (13) with respect
to the object’s coordinates as follows:

Mofi

(
qfi

)
v̇o + Cofi

(
q̇fi, qfi

)
vo + Gofi

(
qf

) = JT
ofi ufi + JT

ofi hfi (14)

where

Mofi

(
qfi

)
� JT

ofi Mfi

(
qfi

)
Jofi

Cofi

(
q̇fi, qfi

)
� JT

ofi(Cfi

(
q̇fi, qfi

)
Jofi + Mfi

(
qfi

)
J̇ofi)

Gofi

(
qfi

)
� JT

ofi Gfi

(
qfi

)
Finally, notice that the overall dynamics can be formulated in compact form as follows:

MOFV̇o + COFVo + GOF = JT
OF(U + Hf ) (15)

where

MOF � blockdiag{Mof1, . . . , MofN }
COF � blockdiag{Cof1, . . . , CofN }
JOF � blockdiag{Jof1, . . . , JofN }
GOF � [GT

of1, . . . , GT
ofN ]T

Hf � [hT
f1, . . . , hT

fN ]T

U � [uT
f1, . . . , uT

fN ]T

Vo � [vT
o , . . . , vT

o ]T

2.3. Human limb dynamics
A generic model that describes an approximation on the dynamics of a human limb motion involves a
mass-damper-spring property, as in ref. [16]. However, our approach does not require any knowledge
on the dynamical model of the human limb; thus, the following expression is given only to clarifythe
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notation. Similarly to the robot’s case, we may express the aforementioned dynamical model with
respect to the object’s coordinates, invoking the kinematic relations (6)–(11), as follows:

g(�v̇o
dlo, �vo

dlo, �xo
dlo) = ho

lo (16)

where g(.) represents human arm dynamics. The quantities pdl
∈ �3, Rdl ∈ SO(3), Qdl = {ηdl, εdl},

vdl = [ṗT
dl
, ωT

dl
]T ∈ �6 describe the desired trajectory planned by the central nervous system of

the human leader with respect to the base frame. The dynamical model depends on the errors
�v̇o

dlo = v̇o
dl

− v̇o
o, �vo

dlo
= vo

dl
− vo

o, �xo
dlo

= [(po
dl

− po
o)

T , εoT
dlo

]T between the human’s desired trajec-
tory and the actual trajectory of the object, where εo

dlo
denotes the vector part of the quaternion

Qdlo = {ηdlo, εdlo} that derives from their relative orientation. Finally, ho
lo = [f oT

lo , μoT
lo ]T = JT

olh
o
l rep-

resents the forces and torques exerted on the human from the interaction with the object, and Jol is
the Jacobian from the human’s hand to the end of the virtual stick.

2.4. Object dynamics
Under the hypothesis that the commonly grasped object is rigid (i.e., no deformations take place
under the action of the applied forces by the human and the robots) and the grasp is rigid too (i.e., no
relative motion between the grippers and the object takes place during the interaction), the following
rigid body dynamics hold:

Mov̇o
o + Co(vo

o)v
o
o + Go = −ho

fo − ho
lo (17)

where

Mo �
[

moI3×3 03×3

03×3 Io

]
, Co �

[
moS(ωo

o) 03×3

03×3 S(ωo
o)Io

]
, Go �

[
mogo

03

]
(18)

model inertial, Coriolis/centrifugal and gravitational effects, respectively, 03×3 ∈ �3×3 and I3×3 are
the zero and identity matrices and mo, Io stand for the mass and inertia tensor of the object. The
right hand side of the equation denotes the generalized force exerted on the object by the human
and the manipulators with ho

fo ∈ �6 denoting the wrench exerted by the manipulators on frame �o,
such that

ho
fo = GHo

f (19)

with

G = [
JT

of1 JT
of2 · · · JT

ofN

]
(20)

denoting the grasp matrix of the N robots and

Ho
f � [ho

f1
T
, . . . , ho

fN
T ]T (21)

Under the assumption that the system is in a configuration that G is full row rank, from the inverse
solution of (19), we obtain:

Ho
f = Gho

fo + Vho
I = GGHo

f + Vho
I (22)

where G is a pseudoinverse of G (for more details refer to ref. [17]) and V is the full column rank
matrix that spans the null space of G. Notice that hI ∈ �6 which is also referred as internal force can
be any vector that lies in the null-space of G, and thus results in zero wrench on the object. Hence,
the vector Gho

fo represents the wrenches that contribute to the object motion, while the vector Vho
I

represents the internal forces that contribute to pure mechanical stresses.
Finally, considering the case where no information about the object’s dynamics and consequently

its center of mass is provided, �o can be set to an arbitrary point on the object, to which all the virtual
links of the robotic agents end up. Then, we can express the object dynamics in linear parameterizable
form as in ref. [18] with respect to �o as:

Y(vo
o, v̇o

o)θ = −ho
fo − ho

lo (23)
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Fig. 2. Control diagram of the proposed method.

where

Y(vo
o, v̇o

o) = [Yp(vo
o, v̇o

o)
T , Yr(vo

o, v̇o
o)

T ]T ∈ �6×10

with Yp, Yr ∈ �3×10 and θ ∈ �10 the parameter vector.

3. Problem Statement and Control Methodology
In a human–robot collaboration task, the human should lead by simply applying forces/torques to
the object and the robot should “actively" follow by undertaking the object’s load, thus reducing the
required human effort. In contrast with a conventional robot task, where the desired trajectory is a
priori known, in a collaborative task, the desired trajectory is exclusively determined by the human
and thus cannot be considered in the robot control design. Hence, the design objectives mainly consist
of building a motion intention estimation law and subsequently an impedance scheme, to which the
estimation serves as a reference. Specifically, the control scheme architecture can be interpreted
as follows. In time step i, the human leader exerts an external wrench on the object. The external
wrench changes the object’s position/orientation from po

oi−1
, Ro

oi−1
to po

oi
, Ro

oi
, similarly for velocity

and acceleration. The wrench exerted on the human leader by the object is then defined by the desired
impedance, whose setpoint is set in time step i-1 by the estimation law as po

di−1
, Ro

di−1
, ṗo

di−1
, ωo

di−1
, p̈o

di−1

and ω̇o
di−1

. At the same time, the position/orientation, velocity measurements form the errors that are
employed to estimate po

di
, Ro

di
, ṗo

di
, ωo

di
, p̈o

di
and ω̇o

di
(initially, in i = 0, the desired and actual frames

are considered identical). Thus, if the estimation is valid, then we will be able to keep the stiffness of
the desired impedance to a minimum, impose low damped behavior on the system and estimate the
leader’s wrench from the f/t measurement in order to reduce human effort during the transportation
task. An abstraction of the proposed methodology is depicted in Fig. 2.

3.1. Motion intention estimation law
In order to achieve the desired impedance behavior, the estimation law should not only estimate
the object’s desired trajectory profile po

d, Ro
d, vo

d, ωo
d but also compensate for acceleration residu-

als, since acceleration measurements are not available. In this respect, we relax the specification
on asymptotic estimation by adopting a robust prescribed performance estimator that guarantees
ultimate boundedness of the estimation errors ep(t) = �po

do = po
d(t) − po

o(t), er(t) = εo
do for position

and orientation, respectively2. The mathematical representation of prescribed performance for each
element of e (t)�

[
eT

p (t) , eT
r (t)

]T = [e1(t), . . . , e6(t)]T is given by the following inequalities:

− ρj (t) < ej (t) < ρj (t) , ∀t ≥ 0, j ∈ {1, ..., 6} (24)

where ρj (t) denotes the corresponding performance function that encapsulates the desired transient
and steady-state performance specifications (e.g., convergence rate, maximum steady-state error). A
candidate exponential performance function may be defined as:

ρj(t) = (ρj,0 − ρj,∞)e−sjt + ρj,∞ (25)

2Notice that the i subscript used to discriminate between followers is dropped in this paragraph for simplicity.
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where the constant sj dictates the exponential convergence rate, ρj,∞ denotes the ultimate bound at the
steady state and ρj,0 is chosen to satisfy ρjo >

∣∣ej (0)
∣∣. Hence, following the prescribed performance

control methodology,19 the estimation law is designed as follows:

ṗo
d � [l1, l2, l3]T (26)

ωo
d � 2E−1(ηdo, εo

do)[l4, l5, l6]T (27)

with

lj �−kj ln

⎛
⎝1 + ej(t)

ρj(t)

1 − ej(t)
ρj(t)

⎞
⎠ + ej(t)

ρj(t)
ρ̇j(t), j = {1, . . . , 6} (28)

and kj positive constants, from which the follower’s estimates for position and orientation pd, Ro
d are

calculated by integrating (26) and (27) using the expressions (2)–(3). Particularly, the integration of
(27) will give the orientation in quaternions, which can be used to construct the rotation matrix Ro

d.
Moreover, we may calculate the desired acceleration signal by:

p̈o
d � [l̇1, l̇2, l̇3]T (29)

ω̇o
d = 2Ė

−1
(ηdo, εo

do)[l4, l5, l6]T + 2E−1(ηdo, εo
do)[l̇4, l̇5, l̇6]T (30)

where

l̇j =
⎛
⎜⎝ρ̇j(t) − 2kj

1 −
(

ej(t)
ρj(t)

)2

⎞
⎟⎠ ėj (t) ρj (t) − ej (t) ρ̇j (t)

ρ2
j (t)

+ ej(t)

ρj(t)
ρ̈j(t) (31)

by simply differentiating (26), (27) with respect to time.

Theorem 1. Given a smooth and bounded desired trajectory po
dl

(t) , Ro
dl

(t) with bounded
derivatives as well as the appropriately selected performance functions ρj (t) for each element
of e (t) = [e1 (t) , e2 (t) , . . . ]T that satisfy

∣∣ej (0)
∣∣ < ρj (0) and incorporate the desired transient

and steady-state performance specifications, the estimation laws (29) and (30) guarantee that∣∣ej (t)
∣∣ < ρj (t) , ∀t ≥ 0.

Proof. Let us define the positive definite matrix P(t) = blockdiag{Pp(t), Pr(t)}, where Pp(t) =
diag{ 1

ρ1(t)
, . . . 1

ρ3(t)
}, Pr(t) = diag{ 1

ρ4(t)
, . . . 1

ρ6(t)
}; similarly we define the positive definite matrix

K = blockdiag{Kp, Kr} where Kp = diag{k1, . . . k3}, Kr = diag{k4, . . . k6} . Let us also define the
normalized error:

ξ(t)� [ξ p(t)
T , ξ r(t)

T ]T = [ξ1(t), . . . , ξ6(t)]T (32)

where

ξ p(t) = Pp(t)ep(t) (33)

ξ r(t) = Pr(t)er(t). (34)

Differentiating ξ with respect to time and substituting (26)–(27) expressed in terms of the normalized

error, we obtain ξ̇ = h(t, ξ) = [ξ̇T
p , ξ̇

T
o ]T , with

ξ̇ p(t)�−Pp(t)Kpεp(t) − Pp(t)ṗo
o(t) (35)

ξ̇ r(t)�−Pr(t)Krεr(t) − 1

2
Pr(t)E(ηdo, εo

do)ω
o
o(t) (36)

where εp(t) = [ε1(t), ε2(t), ε3(t)]T and εo(t) = [ε4(t), ε5(t), ε6(t)]T represent the transformed error
signals for position and orientation, respectively, with

εj(t) = ln

(
1 + ξj(t)

1 − ξj(t)

)
, j ∈ {1, . . . 6} (37)
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We also define the non-empty and open set

	ξj = (−1, 1) × · · · × (−1, 1)︸ ︷︷ ︸
6 times

In the sequel, we shall prove that ξ (t) never escapes a compact subset of 	ξ and thus the performance
bounds (24) are met. The following analysis is divided into two phases. First, we show that a maximal
solution exists, such that ξ (t) ∈ 	ξ ∀t ∈ [0, τmax), and subsequently we prove by contradiction that
τmax is extended to ∞.

Phase A: Since
∣∣ej (0)

∣∣ < ρj (0), we conclude that ξ (0) ∈ 	ξ . Additionally, owing to the smooth-
ness of: (a) the object’s trajectory and (b) the proposed estimation scheme (26), (27) over 	ξ , the
function h (t, ξ) is continuous on t ≥ 0 for all ξ ∈ 	ξ . Therefore, the hypotheses of Theorem 54
(pp. 476 in ref. [20]) hold and the existence of a maximal solution ξ (t) of (35), (36) on a time
interval [0, τmax) such that ξ (t) ∈ 	ξ , ∀t ∈ [0, τmax) is ensured.

Phase B: We have proven in Phase A that ξ (t) ∈ 	ξ . Therefore, the error signals εp(t), εo(t)
are well defined for all t ∈ [0, τmax). Hence, consider the positive definite and radially unbounded
functions Vp = 1

2εT
p (t)εp(t), Vr = 1

2εT
r (t)εr(t). Differentiating with respect to time and substituting

(35) and (36), we obtain:

V̇p(t) = εT
p (t)�p(t)(−KpPp(t)εp(t) − Pp(t)ṗo

o(t)) (38)

V̇r(t) = εT
r (t)�r(t)(−KrPr(t)εr(t) − 1

2
PrE(ηdo, εo

do)ω
o
o(t)) (39)

where �p = diag{ 1
1−ξ 2

jp

}, jp = {1, 2, 3} and �r = diag{ 1
1−ξ 2

jr

}, jr = {4, 5, 6}. Owing to the fact that:

(i) 1
1−ξ 2

j
> 1, ∀ξj ∈ 	ξj and thus �p, �o are positive definite, (ii) ρj (t) > 0, ∀t ≥ 0, (iii) E(ηdo, εo

do)

is bounded by construction and (iv)
∣∣ṗo

o(t)
∣∣, ∣∣ωo

o(t)
∣∣ are assumed bounded by an unknown positive

constant Ū, we conclude that V̇p < 0, V̇r < 0 when
∣∣εj (t)

∣∣ > Ū
λmin[K] and consequently that:

∣∣εj (t)
∣∣ ≤ ε̄j = max

{∣∣εj (0)
∣∣ , Ū

λmin[K]
}

, ∀t ∈ [0, τmax) . (40)

Thus, invoking the inverse of (37), we get:

− 1 <
e−ε̄j − 1

e−ε̄j + 1
= ξ

j
≤ ξj (t) ≤ ξ j = eε̄j − 1

eε̄j + 1
< 1. (41)

Therefore, ξj(t) ∈ 	
′
ξj

=
[
ξ

j
, ξ j

]
, ∀t ∈ [0, τmax), which is a nonempty and compact subset of 	ξj .

Hence, assuming τmax < ∞ and since 	
′
ξj

⊂ 	ξj , Proposition C.3.6 (pp. 481 in ref. [20]) dictates

the existence of a time instance t
′ ∈ [0, τmax) such that ξj

(
t
′)

/∈ 	
′
ξj

, which is a clear contradiction.
Therefore, τmax is extended to ∞. As a result, all closed loop signals remain bounded and moreover
ξj (t) ∈ 	

′
ξj

⊂ 	ξj , ∀t ≥ 0. Finally, from (33), (34) and (41), we conclude that:

−ρj (t) < ξ
j
ρj (t) ≤ ej (t) ≤ ξ jρj (t) < ρj (t)

for all t ≥ 0, which completes the proof.

Remark 1. The proposed estimation scheme is more robust against desired trajectory profiles
with non-zero acceleration than previous works presented in refs. [21–23]. The only necessary con-
dition concerns the smoothness and boundedness of the desired trajectory. In this sense, our method
guarantees bounded closed-loop signals and practical asymptotic stabilization of the estimation
errors.
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3.2. Single manipulator impedance control
An impedance control scheme will be employed based on the desired trajectory estimation presented
in Section 3.1. The desired impedance model is selected as:

Mdp�p̈o
do + Kdp�ṗo

do + Kpp�po
do = −f o

lo (42)

Mdr�ω̇o
do + Kdr�ωo

do + K
′
pr
εo

do = −μo
lo (43)

with

K
′
pr

= 2E(ηdo, εo
do)

TKpr (44)

where Mdp , Mdr , Kdp , Kdr , Kpp and K
′
pr

are appropriate gain matrices corresponding to inertia, damp-
ing and stiffness according to ref. [24]. Although it is omitted for simplicity, it is advisable to follow
the geometrical consistent active stiffness contribution25 for the choice of the stiffness matrix of the
desired impedance.

Since the measurement of ho
l is not available, an estimation ĥ

o

l should be provided. Hence, we
exploit: (a) the ultimate boundedness of the human motion intention estimation error e(t), (b) the
inertial and geometric parameters of the object, which are assumed known, as well as (c) the dynamic
equation of the object (17), to estimate it by:

− ĥ
o

lo = −JT
olĥ

o

l = Mov̇o
d + Co(vo

o)v
o
o + Go + GHo

f (45)

Equivalently, invoking (17), we obtain:

−JT
olh

o
l = Mov̇o

o + Co(vo
o)v

o
o + Go + GHo

f

= Mov̇o
d + Co(vo

o)v̇
o
o + Go + GHo

f + Mo�v̇o
do

= −JT
olĥ

o

l + Mo�v̇o
do

−ho
lo = −ĥ

o

lo + Mo�v̇o
do

(46)

Thus, selecting Mdp and Mdr such that blockdiag{M∗
dp

, M∗
dr
} = blockdiag{Mdp, Mdr} −

blockdiag{Mop, Mor} is positive definite, the desired impedance can be expressed as

M∗
dp

�p̈o
do + Kdp�ṗo

do + Kpp�po
do = −f̂

o

lo (47)

M∗
dr
�ω̇o

do + Kdr�ωo
do + Kprε

o
do = −μ̂

o
lo (48)

Let us also express for later convenience the Eqs. (47) and (48) in compact matrix form:

M∗
d�v̈o

do + Kd�v̇o
do + Kp�xo

dlo = −ĥ
o

lo (49)

Notice that in case of a single manipulator G = JT
of , thus the grasp matrix is full rank. Notice also

that in case of unknown or varying leader’s grasping point, Jol can be interpreted as a (6 × 6) identity
matrix. This can be justified by the fact that the provided f/t measurement can be transformed to
�o and thus the actual grasping point does not matter as long as large internal forces and singular
configurations due to rigid grasping constraint are avoided by the human during the interaction.
Finally, we design the inverse dynamics control law:

uf = J−T
of (Mof

(
qf

)
α + Cof

(
q̇f , qf

)
vo + Gof

(
qf

) − JT
of hf ) (50)

to enforce the desired impedance behavior, where α = [αT
p , αT

r ] refers to the resolved acceleration.
By differentiating po = Ropo

o twice and ωo = Roω
o
o we get

v̇o =
[

Rop̈o
o + 2Ṡ(ωo)Roṗo

o + S(ω̇o)po + S(ωo)S(ωo)po

Roω̇
o
o + S(ωo)ωo

]
(51)
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Hence, choosing

α =
[
αp

αr

]
=

[
Roα

o
p + 2Ṡ(ωo)Roṗo

o + S(ω̇o)po + S(ωo)S(ωo)po

Roα
o
r + S(ωo)ωo

]
(52)

with

αo
p = p̈o

d + M∗
dp

−1
(Kdp�ṗo

do + Kpp�po
do + f̂

o

lo) (53)

αo
r = ω̇o

d + M∗
dr

−1
(Kdr�ωo

do + K
′
pr
εo

do + μ̂
o
lo) (54)

we achieve the desired impedance. To proceed with the stability analysis of the aforementioned
resolved acceleration laws, we define first the energy-based Lyapunov function:

V = 1

2
�ṗoT

do M∗
dp

�ṗo
do + 1

2
�ω̇oT

do M∗
dr
�ωo

do + 1

2
poT

do Kpp po
do + 2εoT

do Kprε
o
do (55)

Differentiating with respect to time and substituting the control law (50), we get:

V̇ = −�ṗoT
do Kdp�ṗo

do − �ωoT
do Kdr�ωo

do − �ṗdof̂
o

lo − �ωoT
do μ̂

o
lo (56)

which in the absence of external wrenches is negative semidefinite. Hence, we conclude (see ref.
[26] for detailed proof) that in the absence of human wrenches, the system is asymptotically stable
and tracking of the desired trajectory is achieved. In the presence of human wrenches, the term
−�ṗo

dof̂
o

lo − �ωoT
do μ̂

o
lo denotes the power exerted by the human on the system, which shapes the

energy of the system and defines new stable trajectories. Hence, the lower the human wrench exerted
on the object, the smaller the deviations from the desired trajectories will be.

3.3. Unknown object dynamics
Object identification is, in general, a difficult and time-consuming task; thus, only a rough estimate of
the dynamical model of the manipulated object is available. In this subsection, we design an adaptive
scheme to deal with the unavoidable uncertainties and thus increase the robustness of the closed-loop
system. Hence, assuming unknown object dynamics, the impedance reference model (47) and (48)
can be written as:

M∗
dp

�p̈o
do + Kdp�ṗo

do + Kpp�po
do = −f̃

o
lo (57)

M∗
dr
�ω̇o

d + Kdr�ωo
d + Kprε

o
do = −μ̃o

lo (58)

where f̃ l
o
, μ̃o

l denotes the estimated human wrench due to the uncertainty in both the desired tra-
jectory and the object’s parameters. Invoking (23) and using the estimated acceleration v̇o

d, we
obtain:

Y(vo
o, v̇o

d)θ = −ho
fo − ĥ

o

lo (59)

In the presence of parametric uncertainty, the above equation is modified to

Y(vo
o, v̇o

d)θ̂ = −ho
fo − h̃

o
lo (60)

Thus, the impedance reference model becomes

M∗
dp

�p̈o
do + Kdp�ṗo

do + Kpp�po
do = Yp(vo

o, v̇o
d)θ̂ + f o

fo (61)

M∗
dr
�ω̇o

do + Kdr�ωo
do + Kprε

o
do = Yr(vo

o, v̇o
d)θ̂ + μo

fo (62)

Following the same control strategy presented in (50)–(54) with the parameters of the object
updated by

˙̂
θ = −
−T(YT

p �ṗo
do + YT

o �ωo
do), 
>0. (63)
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and by adopting the Lyapunov function candidate:

V = 1

2
�ṗoT

do M∗
dp

�ṗo
do + 1

2
�ω̇oT

do M∗
dr
�ωo

do + 1

2
poT

do Kpp po
do + 2εoT

do Kprε
o
do + 1

2
θ̃

T

θ̃ (64)

with θ̃ = θ − θ̂ , we arrive at (56). Thus, the same stability analysis holds.

3.4. Multiple manipulators impedance control
The control methodology for a single manipulator can be extended for multiple robots at the cost
of inter-robot communication for the measurements of each f/t sensor3. Moreover, as the system
is dynamically constrained by the rigid grasp property, any inconsistencies between the manipu-
lators’ trajectories may yield internal forces which should be avoided. Thus, based on ref. [28], a
stabilization scheme was adopted. Substituting Eqs. (19) and (22) into (15), we obtain

MOFV̇o + COFVo + GOF = JT
OF (U) + JT

OF

(
GGHo

f + VhI

)
(65)

Under the assumption of full row rank grasp matrix, it is shown that the following control law

U = J−T
OF

(
MOFJT

S α + COFVo + GOF − JT
of GGHo

f

)
− JT

OFV
(

hId + Kf

∫
(hId − hI) dt

)
(66)

with JS = [
I I · · · I

]
and α as defined in (52)–(54) establishes the desired impedance and guarantees

that hI converges to the desired internal force hId. In particular, substituting Eq. (66) into (15) we
obtain:

MOFJT
S

(
v̇o

do + M∗−1
d

(
Kd�v̇o

do + Kp�xo
do − ĥ

o

l

))
+ JT

OFV
(

(hI − hId) + Kf

∫
(hI − hId) dt

)
= 0. (67)

Pre-multiplying (67) by GJ−T
OF and invoking the fact that the range space of V is the null space of G

(i.e., GV = 0), we obtain:

GJ−T
OFMOFJT

S

(
�v̇o

do + M∗−1
d

(
Kd�vo

do + Kp�xo
do − ĥ

o

l

))
= 0. (68)

Moreover, GJ−T
OFMOFJT

S is non-singular. Hence, the resulting system is given by:

M∗
d�v̈o

do + Kd�vo
do + Kp�xo

do = ĥ
o

lo (69)

which is the stable system with the desired impedance, for which the analysis of Section 3.2 holds.
Substituting Eq. (67) into (49) under the assumption that JOF is non-singular and that V is always
full rank, we obtain:

(hI − hId) + Kf

∫
(hI − hId)dt = 0 (70)

which implies that hI converges to hId.

4. Experimental Results
The experimental evaluation of the proposed method was performed using a Kinova Mico2 6DoF
robotic manipulator. An interface was developed to allow high-frequency communication, using
Kinova’s low-level API. The interface was then wrapped using the ros-control package. The pro-
posed control law was implemented as a new ros-controller, running on a Linux system at 220 Hz.
The manipulator’s sensor suite provides measurements of position, velocity and torque at each joint.
From the torque measurements, we estimated the wrenches acting at the end effector by employ-
ing the robot model and the acceleration estimation from our controller. The calculated wrench was

3A force consensus strategy as in ref. [27] could be employed to relax the inter-robot communication requirement.
A purely decentralized method for the N-robots scenario is left open for future work.
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Fig. 3. (a) Cooperative transportation setup, (b) example of a task as described in the experiment of Section 4.1,
the subject had to place the object inside every blue box starting from an arbitrary position, (c) the setup used
for the experiments described in Section 4.2.

remarkably close to the wrench estimation obtained by Kinova’s built-in software, which is not avail-
able when operating with the low-level API. Both APIs provide functionality that allows to directly
send torque commands (Nm) to the motors. Therefore, the control commands are directly passed to
the motors. Finally, it should be noted that the purpose of the experimental evaluation of this work is
twofold. Hence, two different experiments have been designed and implemented. The first is related
to the verification of the cooperative transportation concept, while the second attempts to quantify
the human effort reduction.

4.1. Cooperative transportation verification
This experiment examines if the proposed method results in a smooth, intuitive interaction with the
human leader and does not compromise the manipulation ability that is, the human leader should be
able to implement the same tasks he can accomplish by operating the manipulator in gravity com-
pensation mode using the same level of mental effort. Toward this direction, a set of experiments that
were carried out by 10 subjects, all adults between 24 and 35 years old was designed. The experi-
mental setup is presented in Fig. 3(a) and (b), where an object grasped by the manipulator had to be
transported collaboratively by the robot and a human leader to perform 6D-trajectories via certain
checkpoints in the form of a task. Such tasks may involve simple assignments commonly met in
collaborative transportation such as peg-in-hole, pick-and-place and obstacle avoidance. The same
tasks were also performed holding the robot arm (and the object) in gravity compensation mode just
for comparison purposes. Apparently, our setup does not allow quantifiable results for 6DoF trajec-
tory tracking as the ones presented in ref. [29]4 for 1DoF due to the lack of means to create a 6DoF
reference trajectory (i.e., augmented reality). In that sense, the results of this experimental study are
qualitative. Before starting the experiments, the subjects needed some time to familiarize themselves
with the setup, that is, implement random trajectories. The time required for this procedure spanned
from seconds to a few minutes. After this step, each subject was able to complete the given tasks
without any obvious difficulty. Finally, the subjects were asked to rate the experience of the interac-
tion in terms of convenience, cooperation and mental effort, as compared to the interaction during
the execution of the same tasks in gravity compensation mode. In gravity compensation operation,

4Regarding ref. [29], although the proposed estimator remains the same, the impedance control formulation is different
for consistency with the extended experimental verification that was carried out in this work. Moreover, an adaptive
law that compensates for uncertainties in object modeling and a multi-robot scenario have been further considered in
this work.
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Table I. Cooperative transportation qualitative outcome.

Familiarization Successful Interaction
time (min) attempts rating

Subject 1 1.5 5/5 9/10
Subject 2 3.0 5/5 10/10
Subject 3 4.5 5/5 8/10
Subject 4 2.0 5/5 9/10
Subject 5 2.0 5/5 7/10
Subject 6 1.0 5/5 9/10
Subject 7 1.5 5/5 7/10
Subject 8 1.0 5/5 8/10
Subject 9 3.0 4/5 8/10
Subject 10 1.5 5/5 9/10

the subjects had no difficulty in completing any given task and no familiarization time was required.
The results are presented in Table I, while relevant demonstrations can be found at https://vimeo.
com/283025257 alongside the rest of the experimental study.

Notice that as long as our setup is equipped with torque measurements in each joint, the human
leader can interact with any part of the robot or the object with the same results. Moreover, Jol is not
utilized in the control law since ho

lo can be directly computed by ref. [45]. Notice that it is convenient
to compute all wrenches to the object’s center of mass to avoid the uncertainty in the case of varying
contact points, by-passing completely Jol. Therefore, the human can use multiple grasping points
or deliberately lose contact with the robot (or the object) and reconfigure his/her arm to avoid joint
limits (as long as the contact points allow f/t measurement).

The results of Table I reveal that no significant training is required for the human leader to com-
plete a variety of common tasks (mean value: 126 s, standard deviation: 66 s). Hence, the subjects
were able to impose their desired trajectory, which indicates a successful application of the estima-
tion law. Moreover, the rating on the interaction experience is high (mean value: 8.4/10, standard
deviation: 0.96) which means that the quality of interaction perceived from the convenience and
intuitive behavior points of view is comparable to gravity compensation. However, to our view, the
explanation to this mainly lies in reasons related to noisy torque measurements, imperfect modeling
of the manipulator (which in turn hinders the end effector wrench estimation) and the unusual expe-
rience of interacting with an underdamped articulated body, rather than on the estimation procedure.
To elaborate on the above statement, we mention that when we imposed a more conservative tuning
to the impedance controller (less leader wrench augmentation, less damping), there was -as expected-
no effect on the estimation, although the interaction was obviously more convenient and very close
to gravity compensation. On the other hand, the effort reduction was suppressed and, as a result, the
tuning was a trade-off between effort reduction and the desired interaction.

Figure 4 presents the performance of the estimation law. Human intention estimation is considered
the key ingredient of the proposed approach and its integration with the impedance controller consti-
tutes the main contribution of this work. As shown, the estimation of the desired human motion tracks
the actual motion of the robot, without violating the performance bounds, which can be interpreted as
a successful application of the estimation law. Velocity estimation is also close to the actual one and
significantly smoother. Notice that the actual acceleration signal in Fig. 4 is not used in the proposed
methodology, and it is presented here for comparison. Moreover, as there is no acceleration measure-
ment available, the actual velocity signal was numerically differentiated and then smoothed, using
zero-phase filtering, for illustration purposes. From the acceleration signals in Fig. 4, it is derived
that the estimation is adequately close to the “actual” acceleration and although it is not depicted, it
is obvious that the estimated acceleration is substantially smoother than a simple differentiation of
the actual velocity would have been. From ref. (46), it follows that the accuracy of estimating human
wrench ĥlo actually depends on the inertial model’s accuracy of the object and the accuracy of the
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Fig. 4. Example of estimation in position, velocity and acceleration where desired is referring to the estimated
signal and actual to the measured one.

acceleration estimation which is depicted in Fig. 4. As shown in Fig. 5 concerning similar trajecto-
ries, the force attributed to the object’s motion does not differ noticeably in both methods. However,
the interaction force is significantly reduced.

4.2. Human effort reduction
After the successful assessment of the first results, the second set of experiments aims to quantita-
tively elaborate on the concept of human effort reduction during a collaborative transportation task.
To this end, the setup depicted in Fig. 3(c) was introduced. Multiple 2D trajectories of a reference
point at different speed profiles were generated and projected on a vertical surface. The carried object
had a laser attached to it, the dynamic parameters of both the object and the laser, as a single object,
were identified and are presented in Table II. It is worth noting that the same object was used in the
first experiments. The human leader should collaboratively transport an object with the manipulator
such that the laser beam tracks the projected reference point. The subjects ran the same experiments
for both the proposed approach and gravity compensation by performing a set of 7 to 10 trajecto-
ries for each method. The parameters of the proposed scheme in both experiments were chosen as
shown in Table III. M∗

d, Kd, and Kp are components of a simple impedance controller and thus are
tuned accordingly. Specifically, M∗

d affects mostly the amplification of the estimated human wrench.
Although it is favorable for the effort reduction to set M∗

d to small values, it cannot be set too low as
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Table II. Inertial parameters of the carried object.

m (kg) 1.14

Ix (kgm2) 0.0035
Ixy (kgm2) 0.0
Ixz (kgm2) 0.0
Iy (kgm2) 0.0004
Iyz (kgm2) 0.0
Iz (kgm2) 0.0038

Table III. Control parameters.

M∗
d blockdiag{9.0I3×3, 0.4I3×3}

Kd blockdiag{530.0I3×3, 96.0I3×3}
Kp blockdiag{150.0I3×3, 25.0I3×3}

 diag{0.425, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01}
ρj,∞ {0.03, 0.03, 0.03, 0.005, 0.005, 0.005}
ρj {1, 1, 1, 0.1, 0.1, 0.1}
sj {5, 5, 5, 5, 5, 5}
kj = {1, 1, 1, 1, 1, 1}
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Fig. 5. Force owned to the object’s motion and interaction force in x direction for gravity compensation (grv)
and the proposed approach (prp).
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Fig. 6. (a) Accepted trajectories, (b) rejected trajectories and (c) 3D visualization of the estimation law.

sensor noise would be as well amplified. The term M∗−1
d Kd affects damping, and it has been tuned

to a rather underdamped behavior that reduces the human effort despite undermining the interaction
quality. The stiffness matrix M∗−1

d Kp is tuned high enough to provide stability to the system and low
enough to allow sufficient effort reduction. The parameters kj, sj, ρj involved in ref. [25] are chosen
to provide a fast convergence to ρj,∞. On the other hand, ρj,∞ is set to values that allow sufficient
estimation without the appearance of high-frequency terms in the estimated signal.

As stated above, these experiments aim primarily to quantify the effort reduction of the leader
and compare the results with those obtained from gravity compensation operation. For the compari-
son part, it is instantly indicated that valid data for comparison should be generated, meaning that the
compared trajectories should be the same. Thus, the reference tracking operation is employed for this
exact reason, that is, as an assistive reference that facilitates the implementation of similar robot tra-
jectories to some extent. However, considering that the reference trajectory imposes a 2D constraint
on the 6DoF manipulator, it is obvious that there are redundancies on the manipulator configurations
that can track the reference. These redundancies are undesired as they lead to different trajecto-
ries and hinder the comparison. Hence, the subjects were advised to keep the configuration changes
between the two methods limited. The experiments that differed significantly based on an empir-
ical inspection were discarded during the procedure. Figure 6 gives an example of valid/accepted
and invalid/rejected trajectories. Notice that, although the accepted trajectories are relatively close
to each other, they are not identical. In that sense, a suitable index to distinguish those trajectories
should be based on the power required by the object to follow this trajectory. Therefore, the RMS
value of the power Po = −(hfo + hlo)

Tvo, that is, RMS(Po) is introduced. Similarly, RMS(Pfo) and
RMS(Plo) are denoted for the follower and leader case, respectively, where Plo = hT

lovo, Pfo = hT
fovo.

Moreover, we are denoting the RMS value of the L2 norm of force vector as RMS(||f k||2), and
similarly for the torque RMS(||μk||2), where k ∈ {lo, fo, o} and [f T

o , μT
o ]T = −(hfo + hlo). The afore-

mentioned norms are the main components used on the results of the second set of experiments, and
they will be referred to as power, force and torque norms, respectively. The results are presented in
Figs. 7 and 8, with rows referring to the subjects. The box plots depict the median and variance of the
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Fig. 7. Box plots of subjects 1–5 regarding the experiment described in Section 4.2.

trajectories that each subject performed for both methods. The first three columns refer to the power-
related norms introduced above. Notice that in RMS(Po) column, the differences between the two
methods are comparable, namely the factor

RMS(Poprp )

RMS(Pogrv )
where “prp" stands for proposed approach and

“grv" for gravity compensation has a mean value of 0.989 over all subjects with a standard deviation
of 0.151, indicating that the two sets of trajectories are similar also in terms of power. Comparing
the two methods, the reduction in RMS(Pf ) is significant, while the reduction in the RMS value
of the estimated human power is even higher. As expected, the combination of a successful pre-
diction with an impedance controller limits the interaction forces currently governed by the desired
impedance imposed on the system. Notice that unmodeled static friction and damping, which exist in
both methods, play a noticeable role in reducing the required human power. The experimental results
demonstrate that the proposed controller has shown robustness to the nonlinear terms that derive
from the aforementioned unmodeled dynamics. However, in gravity compensation, the human leader
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Fig. 8. Box plots of subjects 6–10 regarding the experiment described in Section 4.2.

is responsible for counteracting these forces that is, the human carries both the object and the robot
in a zero-gravity environment. Consequently, the increased power requirements on human behalf,
compared to RMS(Po), are completely justifiable when both quantities refer to gravity compensa-
tion. In the same spirit, regarding the proposed approach, the required human power is reduced as
compared to RMS(Po). Namely, the human can transport the object along a trajectory by providing
significantly less power than the required one when the object tracks the exact trajectory on its own.
The above result verifies that the manipulator indeed contributes actively to the transportation task,
which constitutes the most valuable outcome of this work. In Figs. 7 and 8, the rest of the columns
depict the box plots of the force norms, in the same sense as with the power norms described above.
These norms may lack physical meaning compared to power, but they are included as a trustworthy
indicator. As expected, the force norms support the arguments discussed above. Similar conclusions
may be drawn for the corresponding torque norms.
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Fig. 9. Box plots of α, β, γ regarding the experiment described in Section 4.2.

Finally, an attempt to quantify the effort reduction over all subjects has been made. To this end,
three new indices will be introduced. Let us denote

RMS(Pkm) =
∑N

n=1 RMS(Pkmn
)

N

where k ∈ {fo, lo, o}, m ∈ {grv, prp} stands for the gravity compensation and the proposed approach
correspondingly and n indicates a single trajectory of a subject. The three indices are

α = 1 − RMS(Plprp)

RMS(Poprp)

β = 1 − RMS(Plprp)

RMS(Plgrv)

γ = 1 − RMS(Pfprp)

RMS(Pfgrv)

Notice that before computing the indices, the values RMS(Plgrv) and RMS(Pfgrv) were scaled by the

factor
RMS(Poprp )

RMS(Pogrv )
in order to convey a fair comparison. The box plots for the above indices over the

subjects are presented in Fig. 9. A mean reduction of 35.67% with a standard deviation of 0.13 is
revealed in the required human power during the transportation task. Moreover, the mean reduction
of the required human power in our approach as compared to the required human power in gravity
compensation is 69.78% with a standard deviation of 0.13. Finally, the mean reduction of power
owned to the interaction forces in our approach compared to the corresponding power in gravity
compensation is 47.58% with a standard deviation of 0.14.

4.3. Unknown object dynamics
A similar set of experiments with the second set presented in Section 4.2 was designed to show the
efficacy of the adaptive law. In this set, we used the same object (and laser) but we modeled it as
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Fig. 10. Box plots of subjects 1–5 regarding the experiment described in Section 4.3.

a point mass in both methods. Moreover, the point mass is just a fraction of the object’s real mass.
This fraction spanned from 0.5% to 0.7% (with mean 0.58%). Only subjects 1–5 participated in this
experiment. Each subject performed 9 trials for each method for only one reference trajectory. To
enhance excitation, the trajectory was chosen to be substantially richer in content than the previous
trajectories. Every other part of the experiment was the same as the previous experiment. The results
are depicted in Fig. 10, where the same analysis with Section 4.2 holds. The indices introduced in
Section 4.2 have been employed here as well. The results in Fig. 10 reveal a mean reduction of 49.4%
with a standard deviation of 0.16 on index α. For indices β, γ , the mean reduction is 59.72% and
27.28% with standard deviations of 0.08 and 0.11, respectively. Although β, γ reductions verify the
concept of this experiment, a comparison with the results of Fig. 11 is discouraged due to the high
bias that comes from using the same trajectory over all experiments. However, the results on α make
a more valid point as they are less affected by the choice of the trajectory. It should be noted that
fine-tuning of the gains took place initially, but on the other hand, the adaptive law combined with a
σ -modification term dealt with a rough initial estimation of object parameters and added robustness
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Fig. 11. Box plots of α, β, γ regarding the experiment described in Section 4.3.

Desired trajectory
Actual trajectory

Desired trajectory
Actual trajectory

Fig. 12. Simulation results indicating the desired trajectory tracking during (a) human (blue circle with red
center) moving the object (green) alone and (b) the proposed cooperative scheme (red and yellow robots). In
both cases, the tracking is satisfactory (i.e., (a) RMS(

∥∥ep

∥∥
2) = 0.0085 m, RMS(θ ) = 0.011 rad, (b) RMS(

∥∥ep

∥∥
2) =

0.0089 m, RMS(θ ) = 0.012 rad, where θ is the orientation.)
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Fig. 13. Simulation results depicting (a) forces/torque exerted on the object’s center by the robots, (b) the human
effort both when human operates alone and when cooperates with the robots.
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to the system. Nonetheless, even though it may assist in the collaboration tasks, there is no guarantee
of convergence to the actual parametric values owing to poor excitation (Chapter 4 in ref. [30]).

5. Simulation Results
To verify the proposed algorithm for multiple robotic agents, simulations for a planar and oriented
motion were developed. Specifically, two holonomic mobile robots rigidly grasped an object along
with the human user to fulfill a complex trajectory in a confined workspace. In the simulation, a
collision-free trajectory was given as reference to the human leader, which was modeled as another
robotic manipulator operating under a PID control law, while the wrench exerted from each robot’s
end effector to the object was considered globally known. The force and torque measurements actu-
ally involved gaussian noise with zero mean value and 5% deviation of the actual value as well as
delay of 1 ms. For comparison purposes, the same desired trajectory was used to simulate the trans-
portation task, implemented exclusively by the human, in order to quantify the collaborative gain
when the robots are employed. The parameters used in the simulation were mo = 10 kg, Io = 6 kg m2,
Mf1,2 = blockdiag{20I2×2, 1}, Md = I3×3, Kd = 2I3×3, Kp = I3×3, ρj,∞ = 0.1, ρj = 1, sj = 0.5, kj = 4.
As shown in Fig. 12 the tracking ability of the overall collaborative scheme is comparable to the
tracking with the human alone. Moreover, contrasting the human interaction forces/torque in Fig. 13,
a large reduction (about 20 times on forces and 10 times on torque) is deduced. Notice that the figure
is suitably scaled for viewing purposes. The behavior of the first 3 seconds occurs due to the con-
vergence of the estimation law. Even with a bad initial estimation though, the forces/torques do not
exceed the ones produced in the human-only case. Although, the simulation results validate the pro-
posed algorithm, the corresponding reduction in a real application would be lower due to hardware
limitations and especially the f/t sensor’s characteristics. Specifically, noisy and inaccurate measure-
ments would deteriorate the overall performance and would lead to a more conservative tuning policy
that would penalize the effort reduction.

6. Conclusion
In this work, an efficient framework was developed to deal with the emerging field of cooperative
object manipulation through pHRI. A prescribed performance estimator was successfully employed
to robustly estimate complex trajectories determined by the human leader. The impedance charac-
teristics combined with the motion intention estimation led to significant human effort reduction.
Moreover, the robot’s position, velocity and force/torque measurements at its end effector were
the only online sensing needed to implement the control scheme. Furthermore, the exact knowl-
edge of the object dynamics was relaxed via an appropriately designed adaptive scheme. Multiple
robotic coworkers were considered in order to cover transportation tasks involving heavy and bulky
objects. Integration of collision avoidance in the proposed approach along with human wrench esti-
mation without explicit communication in the multiple robotic coworkers case are left open for future
research.
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