A REGULAR QUATERNION POLYGON
Donald W, Crowe
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Repeated application of the unitary reflections

R=1+1 (1 'l\andS=(1 0)

2 11/ 0 i

to the point (1,0) and line x + iy =1 yields 24 points and 24 lines.
These are the vertices and edges of the regular complex polygon
4 {3} 4 whose group has the abstract definition R¥= I, RSR =
SRS [1]. The purpose of this note is to introduce the notion of
regular quaternion polygon and give an example analogous to the
preceding one.

We consider a two-dimensional ""quaternion unitary'" space,

Q>. This is the space whose points are pairs (x,y) of quaternions,
with the distance between two points (x j,y]) and (x5,y;) defined
by .

[(x1- =) GT=52) + (1 - v2) GT = 7212
A quaternion unitary (or simply unitary) transformation is one
which preserves distance. A line is the set of points satisfying
some quaternion equation ax + by =c. A reflection is a unitary
transformation of finite period ( >1) which leaves a line point-
wise fixed. A regular quaternion polygon is a configuration of
points and lines (''vertices'" and "edges'') in Q; which is trans-

formed into itself by a group generated by two unitary reflections,
one which cyclically permutes the vertices on one edge and an-
other which cyclically permutes the edges through one of these
vertices,

The following example of a polygon with 80 vertices and
80 edges is an obvious analogue of the 4{3} 4 described above.
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The unitary reflection

cyclically permutes the points

(1,0),( (1 +i)/2, (-1-id/2), (0,-1), and ( [1-i]/2, [1-i]/2)

on the line x + iy =1. The unitary reflection

(3 3

permutes cyclically the lines x+ iy =1, x+ ky =1, x - iy = 1,
and x - ky =1 each containing the point (1,0). Let the four

quaternions + a, +aj be denoted by 4a. Then repeated application
of R and T to (1,0) yields the 80 points

(4110))(0:41):(4i: 0):(0:4i):
(4[1+i] /2.4 (1431/2),(4[1-11/2.4 [1-1]7/2),

(4143 /2,4 (1-k1/2),(4(1-k1/2,4 ( 14k 1/2).

These lie by fours on the 80 images of the line x + iy =1. To-
gether these are the vertices and edges of our regular quater-
nion polygon.

The group {R,T} generated by R and T has at least 320
elements, for any one of the 320 figures consisting of an edge
and a vertex on it can be transformed into any other by an ele-
ment of the group. But the group also has at most 320 elements,
for R and T satisfy the relations

R% =I, RTRTR =TRTRT, (RT%)%(T%R)2, (RTP=(RT2)%.
Any group whose generators satisfy these relations can be shown
by enumeration of cosets [2; PP- 12-17] to have order at most

320. Consequently these relations constitute an abstract defini-
tion of the group {R,T} .

The 80 vertices of the polygon lie by eights on the 10 dia-
gonals x =0, y =0, y = 4%, and y = 4ix. The "slopes' of these
diagonals are o« O, ny 4'1‘ These slopes correspond to points
®, (0,0,0,0), (£1,0,0,0), (0,*1,0,0), (0,0,%+1,0), and
(0,0,0,£1) of a four dimensional Euclidean space E4. More con-
veniently, let this E4 be the equatorial hyperplane of a unit sphere
in Eg, and project the 10 points stereographically onto this sphere.
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The only points which are moved by this projection are « and
(0,0,0,0); the 10 points on the sphere are readily seen to be the
vertices of the five dimensional cross polytope, 35. Further-
more, each of the diagonals can itself be considered to be an
E4. The eight points of the polygon lying in a diagonal are then
the eight vertices of a f34.
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