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Abstract
We show that for any ε > 0 and � ∈N, there exists α > 0 such that for sufficiently large n, every n-vertex
graph G satisfying that δ(G)≥ εn and e(X, Y)> 0 for every pair of disjoint vertex sets X, Y ⊆V(G) of size
αn contains all spanning trees with maximum degree at most�. This strengthens a result of Böttcher, Han,
Kohayakawa, Montgomery, Parczyk, and Person.
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1. Introduction
Determining the minimum degree condition for the existence of spanning structures is a central
problem in extremal graph theory. The first result of this direction is Dirac’s theorem [7] in 1952
which states that for n≥ 3, every n-vertex graph G with δ(G)≥ n

2 contains a Hamiltonian cycle.
Komlós et al. [24] proved that an n-vertex graph G with δ(G)≥ ( 12 + o(1))n contains a copy of
every bounded-degree spanning tree, and in [25], the result is extended to trees with maximum
degree O( n

log n ). Another notable extension is the bandwidth theorem of Böttcher et al. [4], which
finds the (asymptotically) optimal minimum degree condition forcing spanning subgraphs with
bounded chromatic number and sublinear bandwidth and resolves a conjecture of Bollobás and
Komlós [23].

Note that the extremal graphs in the above results usually have large independent sets, which
makes them far from being typical. Hence a natural project is to study how the degree conditions
drop if we forbid large independent sets from the host graph. Balogh et al. [1] initiated this study
by proving if G is an n-vertex graph with δ(G)≥ ( 12 + o(1))n and α(G)= o(n), then G contains a
K3-factor. This result is asymptotically optimal and requires a weaker degree bound than δ(G)≥
2
3n from the Corrádi–Hajnal theorem [6]. Nenadov and Pehova [35] extended this result to the
case of Kr-factor and asked for the best possible minimum degree condition on G with α(G)=
o(n) that guarantees a Kr-factor. Knierim and Su [22] resolved this question for r ≥ 4 by showing
δ(G)≥ ( r−2

r + o(1))n is asymptotically best possible. Nenadov and Pehova [35] also generalised
α(G) into �-independence number and this inspires several recent works [5, 14, 15].
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However, just excluding large independent sets is not enough to guarantee the existence of large
connected subgraph. The union of two disjoint copies of Kn

2
has independence number two, but

it does not contain any connected subgraphs with more than n
2 vertices. Hence it is necessary to

impose stronger conditions to overcome this. The following notion of bipartite hole was intro-
duced by McDiarmid and Yolov [33] in the study of Hamilton cycles. Given two disjoint vertex
sets A and B in a graph G, we use EG(A, B) to denote the set of edges joining A and B, and let
eG(A, B)= |EG(A, B)|. An (s, t)-bipartite-hole in G consists of two disjoint sets S, T ⊆V(G) with
|S| = s and |T| = t such that eG(S, T)= 0. The bipartite-hole number α̃(G) refers to the maximum
integer r such that G contains an (s, t)-bipartite-hole for every pair of nonnegative integers s and
t with s+ t = r. In this paper, we adopt a slightly different notion of bipartite-hole number due to
Nenadov and Pehova [35].

Definition 1.1. The bipartite independence number α∗(G) is the maximum integer t such that G
contains a (t, t)-bipartite-hole.

It is clear from the definition that 2α∗(G)+ 1≥ α̃(G)≥ α∗(G)+ 1. McDiarmid and Yolov [33]
showed that δ(G)≥ α̃(G) is enough to force G to be Hamiltonian and the minimum degree condi-
tion is sharp. Moreover, this was recently strengthened by Draganić, Correia, and Sudakov to the
pancyclicity result [8]. Also, Kim et al. [21] studied the decomposition of an almost regular graph
G with α∗(G)= o(n) into almost spanning trees of bounded maximum degree.

The main result of this paper is the following. We denote by T (n,�) the family of all trees on
n vertices with maximum degree at most �.

Theorem 1.2. For each ε > 0 and � ∈N, there exists α = α(ε,�)> 0 such that the following holds
for sufficiently large n ∈N. Every n-vertex graph G with δ(G)≥ εn and α∗(G)< αn is T (n,�)-
universal, that is, G contains every T ∈ T (n,�) as a subgraph.

That is, for a graph G with sublinear α∗(G), the minimum degree condition forcing bounded-
degree spanning trees is almost sublinear. We remark that the maximum degree � of the tree
in Theorem 1.2 cannot be larger than C

√
n for some constant C = Cα > 0 (in contrast to, for

example, the result of [25], which holds for trees of maximum degree O( n
log n )) by the follow-

ing construction. Given any α > 0, choose positive integers n, k,�, d such that k,� are odd,
n= �k− k+ 2, � > (k+ 2)d and 1

d � α. It is easy to see that � >
√
dn. Let T be a caterpillar

which consists of a path P = v1v2 . . . vk with � − 1 leaves attached to vi for each i ∈ {1, k} and
� − 2 leaves attached to vj for each j ∈ [2, k− 1]. Now we are going to construct a graph G with
δ(G)= n

2 + d − 1 and α∗(G)≤ αn, but that does not contain T as a subgraph. Let G0 = (V , E) be
an (n2 , d, λ)-regular graph such that λ ≤ αd, whose existence is guaranteed by a result of Friedman
[11] on random d-regular graphs. Then we take two identical copies V1 and V2 of V , and join
u ∈V1 and v ∈V2 if uv ∈ E(G0). The resulting bipartite d-regular graph is denoted byG∗. Note that
by the well-known Expander Mixing Lemma (applied to G0), we have that for any A⊆V1, B⊆V2
each of size αn,

eG∗(A, B)= eG0 (A, B)≥
d

|G0| |A||B| − λ
√|A||B| ≥ 2d

n
(αn)2 − (αd)αn> 0.

We further add two disjoint copies of Kn/2 on V1, V2 and call the resulting graph G. Thus we
have α∗(G)≤ αn. Suppose G contains a copy of T and V1 has at least k+1

2 vertices of P since k
is odd. Indeed, whenever we embed a branch vertex vi ∈V(P) into V1, we have to embed at least
� − 2− d leaves, which are attached to vi, into V1 as well. Thus the order of V1 is at least

k+ 1
2

+ k+ 1
2

(� − 2− d)= n+ � − (k+ 1)d − 3
2

>
n
2

as � > (k+ 2)d, a contradiction.
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Another motivation of our result is its connection to the randomly perturbed graphs intro-
duced by Bohman et al. [2], where the host graph is obtained by adding random edges to a
deterministic graph with minimum degree conditions. Krivelevich et al. [28] showed that for any
ε > 0, � ∈N and T ∈ T (n,�), if G is an n-vertex graph with δ(G)≥ εn, then the randomly per-
turbed graphG∪G(n, Cn ) a.a.s. contains T as a subgraph, where C depends only on ε and�. They
suggested that such a result can be improved to a universality result, that is, G∪G(n, Cn ) a.a.s.
contains all members of T (n,�) simultaneously. This is confirmed by Böttcher et al. [3]. Indeed,
in their technical result which we state below, they replaced G(n, Cn ) by a deterministic sparse
expander graph, and thus get the universality part for free.

Theorem 1.3 ([3], Theorem 2). For any ε > 0 and integers C ≥ 2 and � > 1, there exist α > 0,
D0 and n0 such that the following holds for any D≥D0 and n≥ n0. Let G be an n-vertex graph
satisfying the following two conditions:

1. �(G)≤ CD,
2. e(U,W)≥ D

Cn |U||W| for all sets U,W ⊆V(G) with |U|, |W| ≥ αn.

Suppose Gε is an n-vertex graph on the same vertex set and δ(Gε)≥ εn. Then H := Gε ∪G is
T (n,�)-universal.

Note that the graphH in Theorem 1.3 satisfies α∗(H)≤ α∗(G)< αn and δ(H)≥ δ(Gε)≥ εn, so
H is T (n,�)-universal by Theorem 1.2. Hence Theorem 1.2 slightly improves upon Theorem 1.3,
where we do not need to distinguish two graphs (or equivalently the maximum degree condition
on the sparse graph G is no longer needed).

2. Proof strategy and preliminaries
2.1. Notation
For a graph G= (V , E), let v(G)= |V| and e(G)= |E|. Given a collection of subgraphs F =
{Fi : i ∈ I}, letV(F)= ∪i∈IV(Fi). Given two vertex-disjoint graphsG1,G2, letG1 ∪G2 be the union
of G1 and G2. For U ⊆V(G), let G[U] be the induced subgraph of G on U and let G−U be
the induced graph after removing U, that is G−U := G[V\U]. Given a vertex v ∈V(G) and
X, Y ⊆V(G), denoted by NX(v) the set of neighbours of v in X and let dX(v) := |NX(v)|. The
neighbourhood of X inG is denoted byNG(X)= (∪v∈X N(v))\X and letNY (X)=NG(X)∩ Y . We
omit the index G if the graph is clear from the context.

For a graph F on [k] := {
1, . . . , k

}
, we say that B is the n-blow-up of F if there exists a partition

V1, . . . ,Vk of V(B) such that |V1| = · · · = |Vk| = n and we have that {u, v} ∈ E(B) if and only if
u ∈Vi and v ∈Vj for some {i, j} ∈ E(F). Given a spanning subgraph G of B, we call the sequence
V1, . . . ,Vk the parts of G and we define δ̄(G) := min{i,j}∈E(F) δ(G[Vi,Vj]) where G[Vi,Vj] is the
bipartite subgraph ofG induced by the partsVi andVj. A subsetR ofV(G) is balanced if |R∩V1| =
· · · = |R∩Vk|. In particular, we say a subset of V(G) or a subgraph of G transversal if it intersects
each part in exactly one vertex.

For a path P, the length of P is the number of edges in P. Given two vertices x, y, an x, y-path is a
path with ends x and y. Let T be a tree and T′ be obtained from T by removing all leaves. A pendant
star is a maximal star centred at a leaf of T′, where the unique neighbour of the centre inside T′ is
called the root of the pendant star. A bare path in T is a path whose internal vertices have degree
exactly two in T. A caterpillar in T consists of a bare path in T′ as the central path with some
(possibly empty) leaves attached to the internal vertices of the central path, where branch vertices
are the internal vertices attached with at least one leaf. The length and ends of the caterpillar refer
to the length and ends of its central path.

For two graphs H and G, an embedding ϕ of H in G is an injective map ϕ :V(H)→V(G)
such that {v,w} ∈ E(H) implies {ϕ(v), ϕ(w)} ∈ E(G). For all integers a, b with a≤ b, let [a, b] :=
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{
i ∈Z : a≤ i≤ b

}
and [a] := {1, 2, . . . , a}. When we write α � β � γ , we always mean that

α, β , γ are constants in (0, 1), and β � γ means that there exists β0 = β0(γ ) such that the sub-
sequent arguments hold for all 0< β ≤ β0. Hierarchies of other lengths are defined analogously.
For the sake of clarity of presentation, we will sometimes omit floor and ceiling signs when they
are not crucial.

2.2. Graph expansion and trees
We will introduce some graph expansion properties to embed the trees.

Definition 2.1 ([18]). Let n ∈N and d > 0. A graph G is an (n, d)-expander if |G| = n and G
satisfies the following two conditions.

1. |NG(X)| ≥ d|X| for all sets X ⊆V(G) with 1≤ |X| < � n
2d�.

2. eG(X, Y)> 0 for all disjoint X, Y ⊆V(G) with |X| = |Y| = � n
2d�.

In [27], Krivelevich considered trees differently according to whether they contain many leaves
or many disjoint bare paths.

Lemma 2.2 ([27]). For any integers n, k> 2, a tree on n vertices either has at least n
4k leaves or a

collection of at least n
4k vertex-disjoint bare paths of length k.

We will use the following corollary to divide T (n,�) into trees with many pendant stars and
trees with many vertex-disjoint caterpillars.

Corollary 2.3. For any integer n, k> 2, a tree on n vertices with maximum degree � either has at
least n

4k� pendant stars or a collection of at least n
4k� vertex-disjoint caterpillars each of length k.

Suppose T is an n-vertex tree with maximum degree at most � and T′ is the subtree obtained
by removing all leaves. Then it holds that |T′| + |T′|(� − 1)≥ n. We can apply Lemma 2.2 on T′

to obtain at least |T′|
4k ≥ n

4k� pendant stars or a collection of at least n
4k� vertex-disjoint caterpillars

of length k in T.
In [16], Haxell extended a result of Friedman and Pippenger [12] and showed that one

can embed every almost spanning tree with bounded maximum degree in a graph with strong
expansion property. We will use the following result by Johannsen et al. [18].

Theorem 2.4 ([18]). Let n,� ∈N, d ∈R
+ with d ≥ 2� and G be an (n, d)-expander. Given any

T ∈ T (n− 4�� n
2d�,�), we can find a copy of T in G.

As shown by Johannsen et al. [18], the following lemma is useful for attaching leaves onto
certain vertices.

Definition 2.5 ([18]). Given a bipartite graph G= (A, B, E) with |A| ≤ |B| and a function f :A→
N with

∑
u∈A f (u)= |B|, an f -matching from A into B is a collection of vertex-disjoint stars

{Su : u ∈A} in G such that Su has u as the centre and exactly f (u) leaves inside B.

Lemma 2.6 ([18]). Let d,m ∈N and let G be a graph. Suppose that two disjoint sets U,W ⊆V(G)
satisfy the following three conditions:

1. |NG(X)∩W| ≥ d|X| for all sets X ⊆U with 1≤ |X| ≤m,
2. eG(X, Y)> 0 for all X ⊆U and Y ⊆W with |X| = |Y| ≥m,
3. dU(w)≥m for all w ∈W.

Then for every f :U → {1, . . . , d} with
∑

u∈U f (u)= |W|, there exists an f -matching from U
into W.
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2.3. Proof overview
We give a brief outline of our proof here. Similar to previous works [27, 28, 34], we classify the
trees and deal with them separately. Our classification is given in Corollary 2.3, which refines
Lemma 2.2. First, for the pendant star case, let T1 be a subtree obtained by deleting the centres
and leaves of pendant stars in T (but not the roots). We randomly partition V(G) into V1,V2 and
V3 and embed T1 into G[V1] by Theorem 2.4. Then we greedily embed most of the centres into
V2. The α∗ property guarantees that we are left with a small portion of centres and we shall embed
them by the degree condition into V3. Finally we use Lemma 2.6 to find a desired star-matching
and complete the embedding.

For the caterpillar case, we shall embed a suitable subset of branch vertices into a random set
with “good” expansion properties. In this way, we can greedily finish the last step of embedding
leaves of caterpillars by a star-matching. To embed this suitable branch vertex set, we control the
length of the caterpillars and let T2 be the subforest obtained by deleting these caterpillars except
the ends. First, we randomly partition V(G) into V1,V2, and V3, and embed T2 into V1 as the
above case. To embed central paths of these caterpillars, we randomly partition V2 set into k− 1
equal parts X1, . . . , Xk−1, where k is the length of the caterpillars. Then we define an auxiliary
graph H with V(H)= X′1 ∪ X′2 ∪ · · · ∪ X′

k−2 which is a spanning subgraph of the blow-up of
Ck−2 and X′i is roughly the same as Xi. In this way, we transform the problem of embedding
vertex-disjoint central paths into finding a transversal cycle-factor in H, as Lemma 2.7 below.
Once central paths have been embedded, we can greedily embed leaves of caterpillars by a star-
matching as mentioned above and complete the embedding. Now we state Lemma 2.7. Let G=
(V1, . . . ,Vk, E) be a spanning subgraph of the n-blow-up of Ck and let α∗

b(G) be the largest integer
s such that G= (V1, . . . ,Vk, E) contains an (s, s)-bipartite-hole (S, T) where S⊆Vi, T ⊆Vi+1 for
some i ∈ [k].

Lemma 2.7. Given a positive integer k ∈ 4N and a constant δ with δ > 2
k , there exists α > 0 such

that the following holds for sufficiently large n ∈N. Let G= (V1, . . . ,Vk, E) be a spanning subgraph
of the n-blow-up of Ck with δ̄(G)≥ δn and α∗

b (G)< αn. Then G has a transversal Ck-factor.

Although the minimum degree bound in Lemma 2.7 is not best possible and it only works for
k ∈ 4N, but it is enough for our purpose (indeed, we only need it work for large k). We suspect
that the (asymptotic) tight condition should be (1+ o(1))nk , given by the so-called space barrier.
Indeed, let G be a (complete) n-blow-up of Ck with parts labelled as V1, . . . ,Vk. One can specify a
set Ui of size n/k− 1 in each cluster Vi, i ∈ [k] and remove all edges not touching U := ⋃

i∈[k] Ui
from G. Then we add a k-partite Erdős graph (obtained from random graph) to V(G) \U so that
the resulting graph G′ satisfy α∗

b(G
′)= o(n) but G′ −U is Ck-free. Now every transversal copy

of Ck in G′ must contain a vertex in U and δ̄(G′)≥ n/k− 1. Since |U| < n, G′ does not have a
transversal Ck-factor.

If we remove the α∗
b condition in Lemma 2.7, then the minimum degree threshold for transver-

sal Ck-factor is asymptotically δ̄(G)≥ (1+ 1
k )

n
2 + o(n), as determined recently by Ergemlidze and

Molla in [9].
Our proof of Lemma 2.7 is based on the absorption method, which will be given in Section 4.4.

Finally, there are some other minimum degree-type results in blown-up graphs [9, 19] and in
multi-partite graphs [10, 20, 29, 31, 32], but not with any randomness condition.

3. Proof of the main theorem

Proof of Theorem 1.2. Given a positive integer � and a constant ε > 0, we set k= 48� 1
ε
�, γ =

1
4k�2 and η = 1

4k� . Choose
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1
n

� α � 1
d

� ε,
1
�

and let G be an n-vertex graph with δ(G)≥ εn and α∗(G)< αn. Given any tree T ∈ T (n,�), by
Corollary 2.3, we proceed the proof by considering the following two cases.
Case 1. T has at least ηn pendant stars.

We can easily pick a collection of γ n vertex-disjoint pendant stars in T and label it as D =
{D1, . . . ,Dγ n} for convenience. Write A := {

a1, . . . , aγ n
}
and B := {

b1, . . . , bγ n
}
where ai and

bi are the root and centre of Di, respectively. Let S = {
S1, . . . , Sγ n

}
where each Si is obtained

from Di by removing the root. Let T1 be a subtree of T obtained by deleting vertices of S . Note
that |T1| ≤ n− 2γ n. Moreover we claim that V(G) can be partitioned into V1,V2,V3 of sizes
n1, n2, n3, respectively, such that

dVi(v)≥
ε

2
|Vi| for all v ∈V(G), i ∈ [3] (1)

where

n1 = d|T1| + 4�d
d − 2�

, n2 = γ n, n3 = n− n1 − n2. (2)

Choose a partition {V1,V2,V3} ofV(G) uniformly at randomwhere |Vi| = ni. For every v ∈V(G),
let f iv = dVi(v) and note that μi

v := E[f iv]≥ εni. Let q be the probability that there exist v ∈V(G)
and i ∈ [3] which violates property (1). Then by the union bound and Chernoff’s inequality (see
e.g. [17], Theorem 2.1),

q≤ 3n exp
(−(μi

v/2)2

2μi
v

)
≤ 3n exp

(
−εni

8

)
= o(1)

for sufficiently large n. Therefore, with positive probability the randomly chosen partition
{V1,V2,V3} satisfies property (1). Then we have

n3 ≥ n− γ n− d(n− 2γ n)+ 4�d
d − 2�

= (d + 2�)γ n− 2�n− 4�d
d − 2�

≥ dγ n− 2�n
2d

≥ γ n
4

≥ 6�αn
ε

, (3)

where in the penultimate inequality we use dγ n− 2�n≥ dγ n
2 because 1

d � ε, 1
�

and the last
inequality follows since α � ε, 1

�
.

Claim 3.1. G[V1] is an (n1, d)-expander.

Proof. Let m1 = �|V1|
2d � and m2 = � ε|V1|

2d+2�. Since α∗(G)< αn≤m1, there is at least one edge
between any two vertex-disjoint sets of size m1 in G[V1]. For X ⊆V1 with 1≤ |X| ≤m2, by (1),
we have

|NV1 (X)| ≥
ε

2
|V1| − |X| ≥ d|X|. (4)

For X ⊆V1 with m2 < |X| <m1, since α � 1
d , ε, we can arbitrarily pick Z ⊆ X with |Z| = αn.

As there is no edge between Z and V1\(Z ∪NV1 (Z)), we have |V1\(Z ∪NV1 (Z))| < αn, then
|NV1 (Z)| > |V1| − 2αn. Thus

|NV1 (X)| ≥ |NV1 (Z)| − (|X| − |Z|)≥ |V1| − |X| − αn≥ d|X|. (5)

Together with (4), G[V1] is an (n1, d)-expander. �
Note that |T1| = n1 − 4�( n12d + 1)≤ n1 − 4�� n1

2d�, where the first equality follows since n1 =
d|T1|+4�d

d−2� . Then by Theorem 2.4, there exists an embedding f1 :V(T1)→V1. Let L0 =V1\f1(T1)
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and L1 = f1(A). Next, we will embed the centres of pendant stars into V2 ∪V3 and we do it in two
steps.

In the first step, we embed most of the vertices of B into V2. Consider the bipartite graph
H on vertex sets L1 and V2, where |L1| = |V2| = γ n. Let M be a maximum matching in H and
we claim that |E(M)| ≥ γ n− αn. Otherwise, since α∗(G)< αn, there is at least one edge in H −
V(M), contrary to the maximality of M. Let L2 =V(M)∩V2 and L3 =V2 \ L2. Without loss of
generality, suppose we have embedded B1 = {

b1, . . . , bt
}
into L2, where t ≥ γ n− αn.

In the second step, we shall embed the vertices of B \ B1 intoV3. For every u ∈V(G), by (1) and
(3), we have dV3 (u)≥ ε

2 |V3| ≥ �αn. Hence we can greedily embed St+1, . . . , Sγ n into G[V3]. Let
S1 = {S1, . . . , St}. It follows that there exists an embedding f2 :V(B1)∪V(S \ S1)→V2 ∪V3 such
that f2(B1)= L2 and f2(S \ S1)⊆V3. Let L4 =V3 \ f2(S \ S1) and we have |L4| ≥ |V3| − �αn.

Now it remains to embed the leaves attached to the vertices of B1. Consider the bipartite graph
Q on vertex sets L2 and L, where L= L0 ∪ L3 ∪ L4. Let m := 2αn and d := � − 1. Since α∗(G)<
αn<m, there is at least one edge between any two disjoint vertex set of sizem inQ. For all X ⊆ L2
with 1≤ |X| ≤m, by (1) and (3), we have |NQ(X)∩ L| ≥ |NQ(X)∩ L4| ≥ ε

2 |V3| − �αn≥ d|X|.
Moreover for each u ∈ L, we have dL2 (u)≥ ε

2 |V2| − αn≥m due to α � ε, 1
�
. Therefore by apply-

ing Lemma 2.6 onQ, we obtain an embedding f3 of S1 inQ such that f3(u)= f2(u) for every u ∈ B1.
In conclusion, it is clear that the map f :V(T)→V(G) defined by

f (u) :=

⎧⎪⎪⎨⎪⎪⎩
f1(u) if u ∈V(T1)

f2(u) if u ∈V(S) \V(S1)
f3(u) if u ∈V(S1)

is an embedding of T in G. The proof of Case 1 is complete.
Case 2. T has at least ηn vertex-disjoint caterpillars of length k.

A caterpillar in T consists of a bare path in T′ as the central path with some (possibly empty)
leaves attached to the internal vertices of the central path, where T′ is the subtree obtained by
deleting the leaves of T and we say that the internal vertices attached with leaves are branch ver-
tices. Observe that T either has a family of at least ηn

2 caterpillars of length k that have at least one
leaf or a family of at least ηn

2 bare paths of length k. Here, we will give a detailed proof for the first
subcase and the second subcase can be derived by the same argument.

Let n′ = ηn
2 and k′ be an integer from { k2 , k2 − 1, k2 − 2, k2 − 3} such that k′ = 2 (mod 4). It is

easy to pick a collection of n′ vertex-disjoint caterpillars of length k′ in T such that one end of
each caterpillar is adjacent to a branch vertex in T. Let F = {F1, . . . , Fn′ } be such a collection
and P = {P1, . . . , Pn′ }, where each Pi is the central path of Fi. Write S := {s1, . . . , sn′ } and W :=
{w1, . . . ,wn′ } where si and wi are the ends of Fi and assume that the neighbour of si in Pi is a
branch vertex, i ∈ [n′].

Let T2 be a subforest of T obtained by deleting the vertices of F except the ends of every cater-
pillar and note that |T2| ≤ n− n′k′. In a similar way as Case 1, there exists a partition {V1,V2,V3}
of V(G) such that

dVi(u)≥
ε

2
|Vi| for all u ∈V(G), i ∈ [3] (6)

where

|V1| = |T2| + 2�|T2| + 4�d
d − 2�

, |V2| = n′(k′ − 1)− 2�|T2| + 4�d
d − 2�

, |V3| = n− |V1| − |V2|. (7)

Then we have

|V3| ≥ n− (n− n′k′)− n′(k′ − 1)= n′ ≥ 2�αn
ε

, (8)
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where the first inequality follows since |T2| ≤ n− n′k′ and the last inequality follows since α �
ε, 1

�
.

Note that |T2| = |V1| − 4�( |V1|
2d + 1)≤ |V1| − 4�� |V1|

2d �, where the first equality follows since
|V1| = |T2| + 2�|T2|+4�d

d−2� . Then Theorem 2.4 implies that there exists an embedding g1 of T2 in
G[V1]. Let L1 =V1\g1(T2) and V ′

2 =V2 ∪ L1. It now remains to embed n′ caterpillars in F .
First, we shall embed the internal vertices of P into V ′

2. Randomly partition V ′
2 into

X1, . . . , Xk′−1 each of size n′. The union bound and Chernoff’s inequality imply that, if n is suf-
ficiently large, then there exists a partition such that for every u ∈V(G) and i ∈ [k′ − 1], we have
dXi(u)≥ εn′

4 . Since α∗(G)< αn≤ n′, there exists a matching M1 between g1(S) and X1 such that
t1 := |E(M1)| > n′ − αn. Similarly, there exists a matchingM2 between g1(W) andXk′−1 such that
t2 := |E(M2)| > n′ − αn. Let S1 = {s1, . . . , st1} ⊆ S and W1 = {w1, . . . ,wt2} ⊆W. Without loss of
generality, we assume that g1(S1)⊆V(M1) and g1(W1)⊆V(M2). By the choice of X1, . . . , Xk′−1,
for each u ∈ g1((S∪W)G′ −Us(S1 ∪W1))⊆V(G), we have

dX2 (u)≥
εn′

4
≥ 2αn≥ (n′ − t1)+ (n′ − t2).

Therefore we can greedily find a matchingM3 between g1(S \ S1) and X2 covering g1(S \ S1), and
a matching M4 between g1(W \W1) and X2 covering g1(W \W1), where V(M3)∩V(M4)= ∅.
LetX′

1 := (V(M1)∩ X1)∪ (V(M3)∩ X2),X′
k′−1 := (V(M2)∩ Xk′−1)∪ (V(M4)∩ X2),X′

2 := (X2 \
(V(M3)∪V(M4)))∪ (X1 \V(M1))∪ (Xk′−1 \V(M2)) and let X′

i := Xi for i ∈ [3, k′ − 2]. In this
way, we obtain a new partition

{
X′
1, . . . , X

′
k′−1

}
of V ′

2 such that there exist perfect match-
ings between X′

1 and g1(S) and between X′
k′−1 and g1(W). Let X′

1 = {x1, . . . , xn′ } and X′
k′−1 ={

y1, . . . , yn′
}
where for each i ∈ [n′], {xi, g1(si)} and {yi, g1(wi)} are edges of the above perfect

matchings.
Let X′

0 = {z1, . . . , zn′ } be a new set of vertices disjoint from V(G). Define an auxiliary graph H
with vertex set V(H)= X′

0 ∪ X′
2 ∪ · · · ∪ X′

k′−2. For 2≤ i≤ k′ − 3, the edges of H between X′
i and

X′
i+1 are identical to those of G. For v ∈ X′

2 and zj ∈ X′
0,
{
v, zj

}
is an edge of H if and only if

{
v, xj

}
is an edge of G. Similarly, for u ∈ X′

k′−2 and zj ∈ X′
0,
{
u, zj

}
is an edge of H if and only if

{
u, yj

}
is

an edge of G. Observe that if H has a transversal Ck′−2-factor, then G has n′ vertex-disjoint paths
of length k′ − 2 that connect xi and yi. Since we moved at most 2αn vertices when we constructed
the new partition, now we have that

δ̄(H)≥ εn′

4
− 2αn≥ εn′

8
>

2n′

k′ − 2
. (9)

Then Lemma 2.7 implies that H contains a transversal Ck′−2-factor. Together with the perfect
matchings, we find an embedding g2 ofV(P) toV ′

2 that connects g1(si) and g1(wi) for each i ∈ [n′].
Now it suffices to embed the leaves of caterpillars into V3.

Let I ⊆V ′
2 be the set of images of branch vertices in V(F). Since every vertex in S is adjacent

to a branch vertex in Fi, we have X′
1 ⊆ I. Letm := αn and d := �. For all X ⊆ I with 1≤ |X| ≤m,

by (6) and (8), we have |NG(X)∩V3| ≥ ε
2 |V3| ≥ d|X|. Moreover for each u ∈V3, by (9), we have

dI(u)≥ dX′
1
(u)≥ εn′

8 ≥m. Together with the assumption that α∗(G)<m, Lemma 2.6 implies that
there exists an embedding g3 of V(F)\V(P) to V3 that respects the edges between the branch
vertices and the leaves of caterpillars. It follows that the map g :V(T)→V(G) defined by

g(u) :=

⎧⎪⎪⎨⎪⎪⎩
g1(u) if u ∈V(T2)

g2(u) if u ∈V(P)

g3(u) if u ∈V(F)\V(P)

is an embedding of T in G. This concludes the proof of the first subcase.
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As for the second subcase, we adopt a similar argument and the main difference is that we split
V(G) into two parts because the caterpillars have no leaves and it suffices to find g1 and g2. �

4. Transversal Ck-factor
4.1. Proof of Lemma 2.7
Following the typical absorption method, the main tasks are to (i) establish an absorbing set R and
(ii) find an almost perfect transversal Ck-tiling in G− R. For (i), we will introduce some related
definitions.

Definition 4.1. Let G= (V1, . . . ,Vk, E) be a spanning subgraph of the n-blow-up of Ck and F be
a k-vertex graph.

1. We say that a balanced subset R⊆V(G) is a ξ -absorbing set for some ξ > 0 if for every
balanced subset U ⊆V(G)\R with |U| ≤ ξn, G[R∪U] contains an F-factor which consists
of transversal copies.

2. Given a subset S⊆V(G) of size k and an integer t, we say that a subset AS ⊆V(G)\S is an
(F, t)-absorber of S if |AS| ≤ kt and both G[AS] and G[AS ∪ S] contain an F-factor.

Now we state the first crucial lemma, whose proof can be found in Section 4.4.2.

Lemma 4.2. (Absorbing Lemma). Given k ∈N with k≥ 4 and positive constants δ, γ with δ > 2
k

and γ ≤ δ
2 , there exist α, ξ > 0 such that the following holds for sufficiently large n ∈N. Let G=

(V1, . . . ,Vk, E) be a spanning subgraph of the n-blow-up of Ck with δ̄(G)≥ δn and α∗
b(G)< αn.

Then there exists a ξ -absorbing set R⊆V(G) of size at most γ n.

For (ii), Lemma 4.3 provides an almost transversal Ck-tiling, whose proof will be given in
Section 4.3.

Lemma 4.3. (Almost perfect tiling). Given a positive integer k ∈ 4N and constants δ, ζ with δ > 2
k ,

there exists α > 0 such that the following holds for sufficiently large n ∈N. Let G= (V1, . . . ,Vk, E)
be a spanning subgraph of the n-blow-up of Ck with δ̄(G)≥ δn and α∗

b (G)< αn. Then G contains a
transversal Ck-tiling covering all but at most ζn vertices.

Now we are ready to prove Lemma 2.7 using Lemmas 4.2 and 4.3.

Proof of Lemma 2.7. Given k ∈ 4N and a constant δ with δ > 2
k , we set η := δ − 2

k and choose
1
n � α � ζ � ξ � γ � η, δ. Let G= (V1, . . . ,Vk, E) be a spanning subgraph of the n-blow-up of
Ck with δ̄(G)≥ ( 2k + η)n and α∗

b(G)< αn.
By Lemma 4.2 and the choice that γ � η, δ, there exists a ξ -absorbing set R⊆V(G) of size at

most γ n for some ξ > 0. Let G′ := G− R and note that G′ is an (n− |R|
k )-blow-up of Ck. Then we

have

δ̄(G′)≥
(
2
k

+ η

)
n− γ n

k
≥
(
2
k

+ η

2

)
n.

Therefore by applying Lemma 4.3 on G′, we obtain a transversal Ck-tilingM that covers all but a
set U of at most ζn vertices in G′. Since ζ � ξ , the absorbing property of R implies that G[R∪U]
contains a transversal Ck-factor, which together withM forms a transversal Ck-factor in G. �

4.2. Regularity
The proof of Lemma 4.3 is based on a standard application of the regularity method. We will
introduce some basic definitions and properties. Given a graph G and a pair (X, Y) of vertex-
disjoint subsets in V(G), the density of (X, Y) is defined as
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d(X, Y)= e(X, Y)
|X||Y| .

Given constants ε, d > 0, we say that (X, Y) is (ε, d)-regular if d(X, Y)≥ d and for all X′ ⊆ X,
Y ′ ⊆ Y with |X′| ≥ ε|X| and |Y ′| ≥ ε|Y|, we have

|d(X′, Y ′)− d(X, Y)| ≤ ε.

The following fact results from the definition.

Fact 4.4. Let (X, Y) be an (ε, d)-regular pair and B⊆ Y with |B| ≥ ε|Y|. Then all but at most ε|X|
vertices in X have at least (d − ε)|B| neighbours in B.

We now state a degree form of the regularity lemma (see [26], Theorem 1.10).

Lemma 4.5. (Degree form of Regularity Lemma [26]). For every ε > 0 there is an N =N(ε) such
that the following holds for any real number d ∈ (0, 1] and n ∈N. Let G= (V , E) be an n-vertex
graph. Then there exists a partition P =V0 ∪V1 ∪ · · · ∪Vk and a spanning subgraph G′ ⊆G with
the following properties:

(a) 1
ε

≤ k≤N;
(b) |V0| ≤ εn and |V1| = · · · = |Vk| =m≤ εn;
(c) dG′(v)≥ dG(v)− (d + ε)n for all v ∈V(G);
(d) every Vi is an independent set in G′ for i ∈ [k];
(e) every pair (Vi,Vj), 1≤ i< j≤ k is ε-regular in G′ with density 0 or at least d.

A widely used auxiliary graph accompanied with the regular partition is the reduced graph. The
reduced graph Rd of P is a graph defined on the vertex set {V1, . . . ,Vk} such that Vi is adjacent to
Vj in Rd if (Vi,Vj) has density at least d in G′. We use dR(Vi) to denote the degree of Vi in Rd for
each i ∈ [k].

Fact 4.6. Given positive constants d, ε and δ, fix an n-vertex graph G= (V , E) with δ(G)≥ δn and
let G′ and P be obtained by Lemma 4.5, and Rd be given as above. Then for every Vi ∈V(Rd), we
have dRd (Vi)≥ (δ − 2ε − d)k.

4.3. Almost perfect tilings
Here we shall make use of the following result which provides a sufficient condition for a
transversal path among given sets.

Proposition 4.7. Given an integer k≥ 2 and a positive constant α ≤ 1
2 , let G= (V1, . . . ,Vk, E)

be a spanning subgraph of the n-blow-up of Ck with α∗
b(G)< αn. For any integers i, j with 1≤

i< j≤ k and a collection of subsets Xs ⊆Vs with s ∈ [i, j], if |Xi|, |Xj| ≥ αn and |X�| ≥ 2αn for
� ∈ [i+ 1, j− 1] (possibly empty), then there exists a transversal path xixi+1 . . . xj−1xj where xs ∈ Xs
for s ∈ [i, j].

Proof of Proposition 4.7. Without loss of generality, we may take i= 1, j= k for instance. Let
Z1 := X1 and Z2 := N(Z1)∩ X2. By the fact that α∗

b(G)< αn≤ |Z1|, |X2|, it holds that |Z2| >
|X2| − αn≥ αn. If k= 2, then there exists an edge {x1, x2} between Z1 and Z2 and we are done. If
k> 2, then for each s ∈ [k− 1], there exist Zs ⊆ Xs of size larger than αn such that Zs is the set of
neighbours of Zs−1. Since |Zk−1|, |Xk| ≥ αn, there exists an edge

{
xk−1, xk

}
between Zk−1 and Xk.

Therefore, we can find a transversal path x1x2 . . . xk−1xk, where xs ∈ Xs for s ∈ [k]. �
Now we are ready to prove Lemma 4.3.
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Proof of Lemma 4.3. Given k ∈ 4N and δ, ζ with δ > 2
k , we set η := δ − 2

k and choose 1
n � α �

1
N0

� ε � ζ , δ, η. Let G= (V1, . . . ,Vk, E) be a spanning subgraph of the n-blow-up of Ck with
δ̄(G)≥ δn and α∗

b(G)< αn. By applying Lemma 4.5 on G with d := η
4 , we obtain a partition P =

{U0} ∪ {Ui,j ⊆Vi : i ∈ [k], j ∈ [N0]
}
that refines the partition {V1,V2, . . . ,Vk} of G and a spanning

subgraph G′ of G with properties (a)− (e), where we write m := |Ui,j| for all i ∈ [k], j ∈ [N0]. Let
Rd be the reduced graph defined on the vertex set

{
Ui,j : i ∈ [k], j ∈ [N0]

}
. For each i ∈ [k], let Vi ={

Ui,j : j ∈ [N0]
}
and note that {Vi : i ∈ [k]} is a partition of Rd. Then Fact 4.6 implies that δ̄(Rd)≥

(δ − η
2 )N0 = ( 2k + η

2 )N0.
To obtain an almost perfect transversal Ck-tiling in G, we define an auxiliary graph H with

k vertices and two disjoint edges and then use it for embedding copies of transversal Ck (see
Claim 4.9). Now we will show that there exist N0 vertex-disjoint copies of specific H in Rd.

Claim 4.8. For every i ∈ [k− 1], Rd[Vi, Vi+1] has a matching of sizemin{N0, 2δ̄(Rd)}.
Proof. Letm=min{N0, 2δ̄(Rd)} and without loss of generality, wemay take i= 1 for instance. Let
M be a maximummatching in Rd[V1, V2] and assume for the contrary that |E(M)| ≤m− 1. LetU
be the minimum vertex cover of Rd[V1, V2]. Then by König’s theorem ([30]), it holds that |U| =
|E(M)|. We write A=U ∩ V1 and B=U ∩ V2. By the pigeonhole principle, we get |A| ≤ �m−1

2 �
or |B| ≤ �m−1

2 �. Suppose |A| ≤ �m−1
2 �. Since m≤N0, we have |V2\B| �= 0. Arbitrarily choose u ∈

V2\B, then u has no neighbour in V1\A. Thus we have dV1 (u)= dA(u)≤ �m−1
2 � ≤ � 2δ̄(Rd)−1

2 � =
δ̄(Rd)− 1, a contradiction. �

By Claim 4.8, for each i ∈ [ k2 ], there exists a matching Mi of size min{N0, 2δ̄(Rd)} between
V2i−1 and V2i. Let Aj ⊆ Vj be the vertices uncovered by matchings for j ∈ [k]. We pick a fam-
ily H of N0 vertex-disjoint copies of H such that each copy contains two disjoint edges e1 and
e2 where e1 ∈M2i−1 and e2 ∈M2i for some i ∈ [ k4 ] and exactly one vertex inside each Aj for
j ∈ [k]\ {4i− 3, 4i− 2, 4i− 1, 4i}. Since

k
4∑

i=1
|M2i−1| = k

4
·min{N0, 2δ̄(Rd)} ≥N0,

and similarly
∑k/4

i=1 |M2i| ≥N0, we can greedily find N0 vertex-disjoint copies of H that together
cover all vertices in Rd.

Claim 4.9. For each copy of H inH, we can find a transversal Ck-tiling covering all but at most ζm
2

vertices in the union of its clusters in G.

Proof of Claim 4.9. Given a copy of H, without loss of generality, we may assume that V(H)={
U1,1,U2,2, . . . ,Uk,k

}
and

{
U1,1,U2,2

}
,
{
U3,3,U4,4

} ∈ E(H). Therefore (U1,1,U2,2) and (U3,3,U4,4)
are (ε, d)-regular in G′. Now it suffices to show that for any Zi ⊆Ui,i with i ∈ [k] each of size at
least ζm

2k , there exists a copy of Ck with exactly one vertex inside each Zi.
Since |Zi| ≥ ζm

2k ≥ εm for i ∈ [4], Fact 4.4 implies that there exists a subset Z′
2 ⊆ Z2 of size at least

|Z2| − εm such that every vertex in Z′
2 has at least (d − ε)|Z1| neighbours inside Z1 and a subset

Z′
3 ⊆ Z3 of size at least |Z3| − εm such that every vertex in Z′

3 has at least (d − ε)|Z4| neighbours
inside Z4 respectively.

By the assumption α∗
b(G)< αn and the fact that |Z′

2|, |Z′
3| ≥ ζm

2k − εm≥ αn, there is at least
one edge between Z′

2 and Z′
3. Arbitrarily choose one edge {u, v} with u ∈ Z2′ and v ∈ Z3′, and

let Q1 =N(u)∩ Z1 and Q2 =N(v)∩ Z4, respectively. Then we have |Q1|, |Q2| ≥ (d − ε) · ζm
2k ≥

αn and note that |Zi| ≥ ζm
2k ≥ 2αn for every i ∈ [k]. By applying Proposition 4.7 with Xi := Q1

and Xj := Q2, we can obtain a transversal path of length k− 3, where the ends in Q1 and Q2
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are denoted by u′ and v′, respectively. Together with three edges
{
u′, u

}
, {u, v}, {v, v′}, we can

construct a copy of transversal Ck in ∪k
i=1Zi. Thus we can obtain a transversal Ck-tiling covering

all but at most ζm
2 vertices in ∪k

i=1Ui,i in G. �
This would finish the proof as the union of these Ck-tilings taken over all copies of H in H

would leave at most

|U0| + |H| · ζm
2

≤ εn+ ζn
2

≤ ζn

vertices uncovered. �

4.4. Building an absorbing set
A typical step in the absorption method for F-factor is to show that every k := |V(F)|-set has
polynomially many absorbers (see [14]). However, it remains unclear whether this property holds
in our setting. Instead, a new approach due to Nenadov and Pehova [35] guarantees an absorbing
set provided that every k-set has linearly many vertex-disjoint absorbers. Since the host graph
in Lemma 4.2 is k-partite, we aim to show that every transversal k-set has linearly many vertex-
disjoint absorbers. For this, we shall make use of the lattice-based absorbing method developed by
Han [13].

4.4.1. Finding absorbers
To illustrate the lattice-based absorbing method, we introduce some definitions. Let G, F be given
as aforementioned and m, t be positive integers. Then we say that two vertices u, v ∈V(G) are
(F,m, t)-reachable (in G) if for any set W of m vertices, there is a set S⊆V(G)\W of size at
most kt − 1 such that both G[{u} ∪ S] and G[{v} ∪ S] have F-factors, where we call such S an
F-connector for u, v. Moreover, a set U ⊆V(G) is (F,m, t)-closed if every two vertices u, v in
U are (F,m, t)-reachable, where the corresponding F-connector for u, v may not be included
in U.

The following result builds a sufficient condition to ensure that every transversal k-set has
linearly many vertex-disjoint absorbers.

Lemma 4.10. Given k ∈N with k≥ 4 and a constant δ > 2
k , there exist α, β > 0 such that the fol-

lowing holds for sufficiently large n ∈N. Let G= (V1, . . . ,Vk, E) be a spanning subgraph of the
n-blow-up of Ck with δ̄(G)≥ δn and α∗

b(G)< αn. Then every transversal k-set in G has at least
βn−k
4k2 vertex-disjoint (Ck, 2k)-absorbers.

4.4.2. Proof of Lemma 4.2
In order to prove the existence of an absorbing set, we introduce a notion of F-fan.

Definition 4.11. ([15]) For a vertex v ∈V(G) and a k-vertex graph F, an F-fan Fv at v in V(G) is a
collection of pairwise disjoint sets S⊆V(G)\ {v} such that for each S ∈Fv we have that |S| = k− 1
and {v} ∪ S spans a copy of F.

To build an absorbing structure, we shall make use of bipartite templates as follows, which was
introduced by Montgomery [34].

Lemma 4.12. Let β > 0. There exists m0 such that the following holds for every m≥m0. There
exists a bipartite graph Bm with vertex classes Xm ∪ Ym and Zm and maximum degree 40, such that
|Xm| =m+ βm, |Ym| = 2m and |Zm| = 3m, and for every subset X′

m ⊆ Xm of size |X′
m| =m, the

induced graph B[X′
m ∪ Ym, Zm] contains a perfect matching.
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Proof of Lemma 4.2. Given k ∈N with k≥ 4 and positive constants δ > 2
k and γ ≤ δ

2 , we choose
1
n � α � ξ � β � δ, γ , 1k . Let G= (V1, . . . ,Vk, E) be a spanning subgraph of the n-blow-up of
Ck with δ̄(G)≥ δn and α∗

b(G)< αn. Lemma 4.10 implies that every transversal k-set in G has at
least βn−k

4k2 vertex-disjoint (Ck, 2k)-absorbers. Let τ := β

8k2 . Then for every v ∈V(G), there is a Ck-
fan Fv in V(G) of size at least βn−k

4k2 ≥ τn. Now it suffices to find a ξ -absorbing set R for some
ξ > 0 such that |R| ≤ τn≤ γ n.

Let q= τ
1000k3 and β ′ = qk−1τ

2k . For i ∈ [k], let Xi ⊆Vi be a set of size qn chosen uniformly at
random. For every v ∈V(G), let fv denote the number of the sets from Fv that lie inside ∪k

i=1Xi.
Note that μ := E[fv]= qk−1|Fv| ≥ qk−1τn. By the union bound and Chernoff’s inequality, we
have

P

[
there is v ∈V(G) with fv <

μ

2

]
≤ kn exp

(−(μ/2)2

2μ

)
≤ kn exp

(
−qk−1τ

8
n

)
= o(1).

Therefore, as n is sufficiently large, there exist Xi ⊆Vi with |Xi| = qn such that for each v ∈V(G),
there is a subfamily F ′

v of at least
qk−1τn

2 = kβ ′n sets from Fv contained in ∪k
i=1Xi.

Let m= |Xi|/(1+ β ′) and note that m is linear in n. Let {Ii}i∈[k] be a partition of [3km] with
each |Ii| = 3m. For i ∈ [k], arbitrarily choose k vertex-disjoint subsets Yi, Zi,j for j ∈ [k]\ {i} in
Vi\Xi with |Yi| = 2m and |Zi,j| = 3m. Let X = ∪k

i=1Xi, Y = ∪k
i=1Yi and Z = ∪Zi,j. Then we have

|X| = (1+ β ′)km, |Y| = 2km and |Z| = 3k(k− 1)m. For each j ∈ [k], we partition∪i∈[k]\{j}Zi,j into
a family Zj of 3m transversal (k− 1)-sets and take an arbitrary bijection φj :Zj → Ij. Moreover,
we define a function ϕ on [3km] such that ϕ(x) := φ−1

j (x) if x ∈ Ij. Let Ti be the bipartite graph
obtained by Lemma 4.12 with vertex classesXi ∪ Yi and Ii, and letT = ∪k

i=1Ti. ThenT is a bipartite
graph between X ∪ Y and [3km] with �(T)≤ 40.

We claim that there exists a family {Ae}e∈E(T) of pairwise vertex-disjoint subsets in V(G)\(X ∪
Y ∪ Z) such that for every e= {w1,w2} ∈ E(T) with w1 ∈ X ∪ Y and w2 ∈ [3km], the set Ae is a
(Ck, 2k)-absorber for the transversal k-set {w1} ∪ ϕ(w2). Indeed otherwise, there exists an edge
e′ ∈ E(T) without such a subset. Recall thatm= qn

1+β ′ and �(T)≤ 40, then we have

|X| + |Y| + |Z| +
∣∣∣∣∣∣

⋃
e∈E(T)\{e′}

Ae

∣∣∣∣∣∣≤ 4km+ 3km(k− 1)+ 2k2|E(T)| ≤ 4k2m+ 80k2 · 3km≤ τn
2
.

Since every transversal k-set has at least τn vertex-disjoint (Ck, 2k)-absorbers in G, we can choose
one in V(G)\(X ∪ Y ∪ Z ∪⋃e∈E(T)\{e′} Ae) as the subset Ae′ , a contradiction.

Let R= X ∪ Y ∪ Z ∪⋃e∈E(T) Ae. Then |R| ≤ τn and we claim that R is a ξ -absorbing set in G.
Indeed, for an arbitrary balanced subset U ⊆V(G)\R with |U| ≤ ξn, we shall verify that G[R∪U]
admits a Ck-factor. Note that if there exist Qi ⊆ Xi with |Qi| = β ′m for i ∈ [k] and a transversal
Ck-factor in G[

⋃k
i=1 Qi ∪U], then G[R∪U] contains a transversal Ck-factor. In fact by setting

X′
i = Xi\Qi, Lemma 4.12 implies that there is a perfect matchingM in T between

⋃k
i=1 X′

i ∪ Y and
[3km]. For each edge e= {w1,w2} ∈M take a transversal Ck-factor in G[{w1} ∪ ϕ(w2)∪Ae] and
for each e′ ∈ E(T)\M take a transversal Ck-factor in G[Ae′], which forms a transversal Ck-factor of
G[R\ ∪k

i=1 Qi]. Thus together with the above assumption, we can obtain a transversal Ck-factor in
G[R∪U].

Hence, it suffices to find the desired Qi as above. Recall that every v ∈V(G) has a subfam-
ily F ′

v of at least kβ ′n sets in ∪k
i=1Xi. By the choice that ξ � β , 1k and thus |U| ≤ ξn≤ β ′n,

one can greedily find a family C1 of vertex-disjoint copies of transversal Ck covering U with
vertices in ∪k

i=1Xi. Let Qi1 := Xi ∩V(C1). Then we have |Qi1| = k−1
k |U| and C1 is a transversal
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Ck-factor in G[
⋃k

i=1 Qi1 ∪U]. Moreover, one can greedily pick a family C2 of β ′m− k−1
k |U|

vertex-disjoint copies of transversal Ck in G[X\V(C1)]. This is possible since every vertex v has
at least kβ ′n− (k− 1)|U| ≥ k(β ′m− (k−1)

k |U|) sets from Fv that are disjoint from V(C1) . Let
Qi2 := Xi ∩V(C2) and Qi := Qi1 ∪Qi2. Then Qi is desired because C1 ∪ C2 is indeed a transversal
Ck-factor of G[

⋃k
i=1 Qi ∪U]. This completes the entire proof. �

4.4.3. Proof of Lemma 4.10

Proof of Lemma 4.10. Given k ∈N with k≥ 4 and δ > 2
k , we set η := δ − 2

k and choose
1
n � α �

β � δ, η. Let G= (V1, . . . ,Vk, E) be a spanning subgraph of the n-blow-up of Ck with δ̄(G)≥ δn
and α∗

b(G)< αn.

Claim 4.13. For each i ∈ [k], Vi is (Ck, βn, 2)-closed.

Proof of Claim 4.13. Without loss of generality, we may assume that i= 1. For any two vertices
u, v ∈V1, since δ̄(G)≥ δn, we can choose four vertex-disjoint sets D1, D2 ⊆V2 and D3,D4 ⊆Vk
each of size at least δn

2 such that D1 ⊆NV2 (u), D2 ⊆NV2 (v), D3 ⊆NVk(u), and D4 ⊆NVk(v),
respectively. Given any vertex set W ⊆V(G)\ {u, v} of size at most βn, let V ′

i =Vi\W and
D′
j =Dj\W for i ∈ [k] and j ∈ [4]. Note that |V ′

i | ≥ n− βn≥ 10αn and |D′
j| ≥ δn

2 − βn≥ αn.
Since α∗

b(G)< αn≤ |D′
j|, |V ′

1|, there exist subsets Sj ⊆V ′
1 of size at least |V ′

1| − αn such that
every vertex in Sj has at least one neighbour insideD′

j. By the fact that |Sj| ≥ |V ′
1| − αn> 3

4 |V ′
1|, we

have that S := ⋂4
j=1 Sj �= ∅. Arbitrarily choose x ∈ S, and therefore there exist vertices y1, y2, y3, y4

satisfying yi ∈ND′
i
(x) for i ∈ [k]. Note that |NV ′

3
(y1)|, |NV ′

k−1
(y3)| ≥ δn− βn≥ αn and |V ′

i | ≥ 10αn
for i ∈ [k]. When k> 4, by applying Proposition 4.7 with Xi := NV ′

3
(y1) and Xj := NV ′

k−1
(y3),

we can obtain a transversal cycle C1 passing through u, y1, y3. When k= 4, since |NV ′
3
(y1)|,

|NV ′
3
(y3)| ≥ δn− βn≥ ( 12 + η − β)n> n

2 , we can easily find a common neighbour of y1, y3 and
thus obtain a transversal cycle C1 passing through u, y1, y3. Similarly, we can obtain a transversal
cycle C2 in V(G)\(W ∪V(C1)) that passes through v, y2, y4. In fact, the set {x} ∪ (V(C1)\ {u}) ∪
(V(C2)\ {v}) is a Ck-connector for u, v. Therefore by definition, u is (Ck, βn, 2)-reachable
to v. �

For every transversal k-subset S⊆V(G), we greedily find as many pairwise disjoint (Ck, 2k)-
absorbers for S as possible. For convenience, we write S= {s1, s2, . . . , sk} where si ∈Vi for i ∈ [k].
Let A= {A1,A2, . . . ,A�} be a maximal family of such absorbers. Suppose to the contrary that
� <

βn−k
4k2 . Since each Aj has size at most 2k2, we have

∣∣∣⋃�
j=1 Aj

∣∣∣< βn−k
2 .

Since α � β � δ, we can easily find a copy T of transversal Ck in V(G)\(⋃�
j=1 Aj ∪ S) and

write T = {t1, t2, . . . , tk} where ti ∈Vi for i ∈ [k]. By the closedness of Vi, we can pick a collec-
tion {I1, I2, . . . , Ik} of vertex-disjoint subsets in V(G)\(⋃�

j=1 Aj ∪ S∪ T) such that each Ii is a
Ck-connector for si, ti with |Ii| ≤ 2k− 1. In fact, for any 1≤ k′ ≤ k, we have∣∣∣∣∣∣

�⋃
j=1

Aj ∪
⎛⎝ k′⋃

i=1
Ii

⎞⎠∪ S∪ T

∣∣∣∣∣∣≤ βn− k
2

+ k(2k− 1)+ 2k< βn.

Therefore, we can choose such Ii one by one because si and ti are (Ck, βn, 2)-reachable. At this
point, it is easy to verify that

⋃k
i=1 Ii ∪ T is actually a (Ck, 2k)-absorber for S, contrary to the

maximality of �. �
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