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Abstract This paper is an attempt to understand a phenomenon of maximal operators associated with
bases of three-dimensional rectangles of dimensions (t, 1/t, s) within a framework of more general Soria
bases. The Jessen–Marcinkiewicz–Zygmund Theorem implies that the maximal operator associated with
a Soria basis continuously maps L log2 L into L1,∞. We give a simple geometric condition that guarantees
that the L log2 L class cannot be enlarged. The proof develops the author’s methods applied previously
in the two-dimensional case and is related to theorems of Córdoba, Soria and Fefferman and Pipher.
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In this paper we will deal with translation-invariant collections consisting of certain multi-
dimensional rectangles (i.e. Cartesian products of one-dimensional intervals). We will call
them bases. The most important result concerning a basis consisting of all the possible
n-dimensional rectangles is the famous Jessen–Marcinkiewicz–Zygmund Theorem. The
quantitative version of this theorem is this weak-type-L(log+ L)n−1 estimate for the
strong maximal operator

Msf(x) = sup
all R

1
|R|

∫
R�x

|f(y)| dy : |{Msf > λ}| � C

∫ |f |
λ

(
1 + log+ |f |

λ

)n−1

. (1)

We say that a basis B is of weak type L(log+ L)j if condition (1) holds with n−1 replaced
by j and Msf replaced by

MBf(x) = sup
R∈B

1
|R|

∫
R�x

|f(y)| dy.

The estimate (1) was established by Fava [5] and, independently, by de Guzmán [3].
Testing the inequality on the characteristic function of the unit cube indicates that it is
sharp. One can view this as testing the corresponding maximal operator on the δ-function
(for more discussion, see the ‘final remarks’ on p. 3240 of [6]).
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This estimate gets worse by a logarithmic factor with each increment of the dimension.
On the other hand, Zygmund [9] demonstrated that the basis consisting of the Carte-
sian product of k-dimensional cubes and n − k one-dimensional intervals is of weak type
L(log+ L)n−k. It would thus be natural to expect the properties of the bases to become
worse with the addition of extra degrees of freedom. The converse could also be expected
to be true: that the properties of the bases would become better with a reduction in
the number of degrees of freedom. Zygmund has conjectured that if the basis consists of
the n-dimensional rectangles whose side lengths are functions of the same k independent
variables (k < n), then the basis should behave like the basis of all k-dimensional rect-
angles. For example, a basis of two-dimensional rectangles of side length (t, φ(t)) with
non-decreasing φ(t) is of weak type (1, 1). Córdoba [1] proved Zygmund’s conjecture for
an important particular case, establishing that the basis of three-dimensional rectangles
of dimensions (t, s, h(t, s)) continuously maps L log+ L into weak L when h(t, s) is a
function that is non-decreasing in each variable.

Despite the progress that has been made towards the proof of the conjecture, it turns
out that in stated generality it is false. Soria [7] has constructed a beautiful example
of a basis of three-dimensional rectangles of dimensions (t, tφ(s), tψ(s)) with the non-
decreasing functions φ(s) and ψ(s), which has the same property as the basis of all
possible three-dimensional rectangles.

Soria’s result sheds light on the complexity of the three-dimensional case, while the
two-dimensional case is now totally understood.

Let us be more specific. We call two rectangles R and R′ comparable and denote this by
R ∼ R′ if there exists a translation placing one of them inside the other. In the opposite
case we call them incomparable and write R �∼ R′.

Now, for every rectangle R ∈ B we denote by R∗ the concentric rectangle of minimal
measure containing R that has side lengths of the form 2k, k ∈ Z. Thus, to every basis B
we attach, in a natural way, another basis B∗ = {R∗ | R ∈ B}: a dyadic skeleton of the
basis B. It is clear that B and B∗ have the same weak-type estimates.

The property

∃k > 1 ∀R1, . . . , Rk ∈ B∗ ∃i �= j, Ri ∼ Rj (w)

(henceforth called the ‘w-property’), and an alternative one

∀k > 1 ∃R1, . . . , Rk ∈ B∗ ∀i �= j, Ri �∼ Rj (s)

(henceforth called the ‘s-property’), were introduced in [8].
It turns out that in the two-dimensional case having the s-property makes a basis ‘bad’:

any basis with this property behaves like the basis of all two-dimensional rectangles. On
the other hand, a basis with the w-property is ‘good’ in the sense that it behaves like
the basis of all squares (for more details see [8]).

A model two-dimensional basis with the s-property is provided by the basis of rectan-
gles of dimensions (t, 1/t). It is a weak-type-L log+ L basis and this is the best possible
estimate. The appearance of the logarithmic factor is a result of the integration of the
1/t function.
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Switching to three-dimensional space and considering the basis of three-dimensional
rectangles of dimensions (t, 1/t, s), one would expect the extra degree of freedom to
bring an extra logarithm into the weak-type estimate. Surprisingly, this is not the case.
Soria [7] noticed that this basis is a weak-type-L log+ L basis too. This is because any two
different rectangles from the (t, 1/t)-basis are incomparable! Thus, the three-dimensional
case turns out to be totally different from the two-dimensional case: both comparableness
and incomparableness can improve the properties of bases.

The problem of investigating the three-dimensional case lies in the lack of covering
methodology. The arsenal of available tools is very limited: there are only the standard
covering arguments of Vitali (see, for example, [4]), Cordoba and Fefferman [2], Cordoba
[1] and Fefferman and Pipher [6]. Further development of the general case seems quite
difficult. It would, therefore, be natural to study important specific bases. One such
example is a basis consisting of Cartesian products of the two-dimensional rectangles
forming a certain basis B in the XY -plane (we will call this a projection basis) and
arbitrary one-dimensional intervals in the Z-direction. We will call such bases Soria
bases, because the (t, 1/t, s)-basis is a model case. An understanding of the behaviour of
these relatively simple bases would be a significant step forward in the understanding of
the general situation.

There are examples of Soria bases of weak type (1, 1), of weak type L log+ L, and
of weak type L log2 L. The purpose of this paper is to introduce a simple geometric
condition on Soria bases that implies weak type L log2 L (as opposed to, say, L log+ L

for the typical (t, 1/t, s) Soria basis). Note that the projection basis for (t, 1/t, s) is the
(t, 1/t)-basis, which consists of only incomparable rectangles; an intersection of any two
such rectangles does not belong to the basis.

Behaviour opposite to this is specified by the following property:

∀k > 1 ∃R1, . . . , Rk ∈ B∗
0 ∀i �= j, (Ri �∼ Rj) & (Ri ∩ Rj ∈ B∗

0), (is)

which is henceforth referred to as the ‘is-property’. Here B∗
0 denotes rectangles from B∗

with the left lower vertices at the origin.

Theorem. Let B be a Soria basis with the is-property. Then for any 0 < λ < 1 there
exists a set E such that

|{MB(χE) > λ}| � C

∫
χE

λ
log2 χE

λ
dx

with some constant C independent of E and λ.

Proof. For a two-dimensional rectangle R let prx(R) and pry(R) denote the projec-
tions of R onto the X-axis and the Y -axis, respectively. The is-property implies that

∀k � 1 ∃Rj
q ∈ B∗ (1 � j � k, 1 � q � j),

Rk
q �∼ Rk

p , 1 � q �= p � k,

prx(Rj−1
q ) = prx(Rj

q), pry(Rj−1
q ) = pry(Rj

q+1), q = 1, . . . , j − 1.
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Figure 1. Projections X5, X4, X3, X2 and X1.

Geometrically, this means that the stair-shaped set

Xj =
⋃

1�q�j

Rj
q

contains contains a nested system of staircases, each of which is in turn a union of
rectangles from B∗ (see Figure 1).

The characteristic feature of the pictures in Figure 1 is that each picture is an entire
fragment of the previous one.

Now, for each rectangle Rj
i let Hj

i denote prx(Rj
i ) and V j

i denote pry(Rj
i ), i.e. Rj

i =
Hj

i × V j
i . Define the set Θ and the family of sets Y k. Set

Θ1 =
{

x1 ∈ Hk
k :

k−1∏
q=1

2mq−mk−1−1∑
s=0

χHk
q
(x1 − 2s|Hk

q |) = 1
}

,

Θ2 =
{

x2 ∈ V k
1 :

k∏
q=2

2nq−n1−1−1∑
s=0

χV k
q
(x2 − 2s|V k

q |) = 1
}

,

and Θ ≡ Θ1 × Θ2.
From geometric reasoning, it is clear that |Θ1| = 21−k|Hk

k | and |Θ2| = 21−k|V k
1 |, and

so |Θ| = 22−2k|Hk
k | |V k

1 |.
Next, for fixed 1 � i � j � k let Y 1,k

k = Hk
k , Y 2,k

1 = V k
1 ,

Y 1,j
i =

{
x1 ∈ Hk

k :
k−1∏
q=i

2mq−mk−1−1∑
s=0

χHk
q
(x1 − 2s|Hk

q |) = 1
}

,

Y 2,j
i =

{
x2 ∈ V k

1 :
k−j+i∏
q=2

2nq−n1−1−1∑
s=0

χV k
q
(x2 − 2s|V k

q |) = 1
}

and Y j
i ≡ Y 1,j

i × Y 2,j
i . From geometric reasoning again,

|Y 1,j
i | = 2−(k−i)|Hk

k |, |Y 2,j
i | = 2−(k−j+i−1)|V k

1 |,
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and hence
|Y j

i | = 2−2k+j+1|Hk
k | |V k

1 | (1 � i � j � k).

Furthermore, from the definition of the sets Y 1,j
i and Y 2,j

i it follows that Y 1,j
i is a union of

translates of the intervals Hk
i , while Y 2,j

i is a union of translates of the intervals V k
k−j+i.

By the assumptions of the theorem,

Hk
i = Hk−1

i = · · · = Hj+1
i = Hj

i

and

V k
q = V k−1

q−1 = · · · = V j
q−(k−j),

which upon substituting k − j + i for q yields

V k
k−j+i = V j

i .

Thus, Y 1,j
i consists of translated intervals Hj

i , and Y 2,j
i consists of translated intervals

V j
i . Consequently, Y j

i consists of translated rectangles Rj
i , i.e. for every (x1, x2) ∈ Y j

i

there is a translation τ such that τ(Rj
i ) � (x1, x2). Similarity considerations show that

|τ(Rj
i ) ∩ Θ|

|τ(Rj
i )|

=
|Rj

i ∩ Θ|
|Rj

i |
=

|Y j
i ∩ Θ|
|Y j

i |
.

Furthermore, the definitions of Θ1 and Θ2 imply that

Θ1 ⊂ Y 1,j
i , Θ2 ⊂ Y 2,j

i ,

and hence Θ ⊂ Y j
i and

|Y j
i ∩ Θ|
|Y j

i |
=

|Θ|
|Y j

i |
= 21−j (1 � i � j � k).

Now set

U ≡ Θ × [0, 1], Zj
i ≡ Y j

i × [0, 2k−j ], Ij
i ≡ Rj

i × [0, 2k−j ] (1 � i � j � k).

Obviously, the Ij
i are pairwise-incomparable three-dimensional rectangles with dyadic

side lengths, so if we set

W =
k⋃

j=1

j⋃
i=1

Zj
i ,

then

|W | ∼
k∑

j=1

j∑
i=1

|Zj
i | =

k∑
j=1

j∑
i=1

2k−j |Y j
i | =

k∑
j=1

j∑
i=1

2k−j2j−1|Θ| = 2k−2k(k + 1)|U |.
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By the above considerations, for every (x1, x2, x3) ∈ W there is a rectangle Ij
i and a

translation τ̄ such that (x1, x2, x3) ∈ τ̄(Ij
i ) and

τ̄(Ij
i ) = τ(Rj

i ) × [0, 2k−j ],

where τ is as defined above. Hence,

|τ̄(Ij
i ) ∩ U |

|τ̄(Ij
i )|

=
|τ(Rj

i ) ∩ Θ|
2k−j |τ(Rj

i )|
=

|Rj
i ∩ Θ|

2k−j |Rj
i |

=
21−j

2k−j
= 21−k.

These estimates show that

W ⊂ {x : MB∗(χU )(x) � 21−k},

|{x : MB∗(χU )(x) � 21−k}| � |W | � k22k−2|U | � 1
2

∫
χU

21−k
log2 χU

21−k
dx,

which can be seen as the reverse to the Jessen–Marcinkiewicz–Zygmund L log2 L estimate.
This completes the proof of the theorem. �
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2. A. Córdoba and R. Fefferman, A geometric proof of the strong maximal theorem,
Annals Math. 102 (1975), 95–100.

3. M. de Guzmán, An inequality for the Hardy–Littlewood maximal operator with respect
to a product of differentiation bases, Studia Math. 49 (1973), 185–194.

4. M. de Guzmán, Differentiation of integrals in Rn, Lecture Notes in Mathematics, Vol-
ume 481 (Springer, 1975).

5. N. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271–288.
6. R. Fefferman and J. Pipher, A covering lemma for rectangles in R

n, Proc. Am. Math.
Soc. 133 (2005), 3235–3241.

7. F. Soria, Examples and counterexamples to a conjecture in the theory of differentiation
of integrals, Annals Math. 123 (1986), 1–9.

8. A. M. Stokolos, Zygmund’s program—some partial solutions, Annales Inst. Fourier 55
(2005), 1439–1453.

9. A. Zygmund, A note on the differentiability of multiple integrals, Colloq. Math. 16 (1967),
199–204.

https://doi.org/10.1017/S0013091506001180 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001180

