
Can. J. Math., Vol. XL, No. 3, 1988, pp. 546-588 

THE ADDITIVE CHARACTERS OF THE WITT RING 
OF AN ALGEBRAIC NUMBER FIELD 

P. E. CONNER AND NORIKO YUI 

1. Introduction. For an algebraic number field K there is a similarity 
between the additive characters defined on the Witt ring W(K), [20], [11], 
[17], [14, p. 131], and the local root numbers associated to a real 
orthogonal representation of the absolute Galois group of K, [18], [5]. 
Using results of Deligne and of Serre, [16], we shall derive in (5.3) a 
formula expressing the value, at a prime in K, of the additive character on 
a Witt class in terms of the rank modulo 2, the stable Hasse-Witt invariant 
and the local root number associated to the real quadratic character 
defined by the square class of the discriminant. Thus we are able to 
separate out the contributions made to the value of the additive character 
by each of the standard Witt class invariants. 

Upon a re-examination of the results of Deligne on local root numbers 
and those of Serre on trace forms, we can see that if E/K is a relative 
extension of number fields, then it is possible to express in a simple 
formula (6.2) the relation between the values of Weil's additive character 
yp(E), where (E) e W(K) is the Witt class of the relative trace form from 
the extension and p is a prime divisor of K, and the local root number 
Wp(K, p(E)), where p(E) is the real orthogonal representation of 
Ga\(K/K) induced by the trivial representation of the subgroup 
Gal(K/E). This shows us explicitly how the local root numbers for 
p(E) depend only on the Witt class (E) <E W(K) and the degree of 
E/K modulo 8. 

In all of these considerations, it is to be expected that the prime 2 would 
have special features. It is natural to express this in terms of van der Blij's 
invariant, [1], [14, p. 25], and we carry out this in Sections 7 and 8 showing 
this invariant's connection with both additive characters and local root 
numbers. 

We have included a section of examples (Section 10) to illustrate what 
these additive characters, and local root numbers, really look like in the 
Witt ring formalism. In fact, these examples may be regarded as one of 
the main points of this paper. 

Langlands has introduced local root numbers for all complex represen­
tations of the absolute Galois group. Here we only treat certain real 
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orthogonal representations which occur naturally in connection with 
innerproduct spaces. 

Frôhlich [7] has considered orthogonal representations of Galois 
groups, and the relation between the Hasse-Witt invariants of trace forms 
and the second Stiefel-Whitney classes associated with orthogonal repre­
sentations, generalizing the results of Deligne [5] and of Serre [16]. There 
is no overlap with the present paper, as our discussions are centered 
around the additive characters of the Witt ring of an algebraic number 
field. 

During the preparation of this paper, the first author was a visiting 
professor at the University of Geneva and the University of Regensburg, 
and the second author was a member of the Mathematical Sciences 
Research Institute, Berkeley, and was affiliated with the University of 
Toronto. Our thanks are due to Olga Taussky-Todd for her interest in this 
work and for her valuable comments, and to Robert Perlis for his 
continual interest and criticism for this work. 

2. A local formula. We assume that K/Ql is an extension of finite degree 
of the /-adic completion of the rationals at some finite prime / in Q. If 
K/K is an algebraic closure of K then the finite extensions F/K c K/K 
are in one-to-one correspondence with the closed subgroups of finite index 
in the compact, profinite Galois group GdX{K/K). Thus we may write 

G(F) = Gai(K/F) c GaA(K/K). 

In particular, we write Gal(K/K) = G(K). 
In his expository paper on local constants, [18], Tate shows that to every 

pair (G(F), p), where p is a continuous finite-dimensional real orthogonal 
representation of G(F), there is associated a root number, W(F, p) e C*, 
which is a fourth root of unity. For a second such pair, (G(F), pj), the 
direct sum may be formed and 

W(F9 p 4- P l ) = W(F, p)W(F, P l ) . 

Hence we may assume that W(F, p) is defined for virtual real orthogonal 
representations of G(F). 

Now G(F) c G(K) = Gal(K/K) is a closed subgroup of finite index 
equal to the degree of F/K and so each virtual representation p of G(F) 
will induce a virtual representation (G(K), Ind(p) ). If deg(p) = 0 then 

W(K, Ind(p) ) = W(F, p). 

Deligne [5], [18, Section 3], made the following analysis of root numbers 
of real orthogonal representations. Associated to the virtual representa­
tion (G(F), p) there is the determinant homomorphism 

det(p):G(F) -> Z* = Z/2Z. 
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Since this is a degree 1 orthogonal representation (possibly trivial) it too 
has a root number, W(F, det(p) ). Then 

W(F, p)/W(F, det(p)) = ± 1 

and, under the isomorphism in Galois cohomology 

H2(G(F); Z/2Z) ^ Br2(F) = Z*, 

Deligne identifies this ratio with the ordinary second Stiefel-Whitney class 
of the virtual representation, 

s2(p) e H2(G(F); Z/2Z). 

Next observe that through the identification 

F*/F** = Hl(G(F); Z/2Z) = Hom(G(F); Z/2Z) 

= Hom(G(F), Z*) 

we may canonically assign to each square class o <E F*/F** a correspond­
ing degree 1 representation 

p(o):G(F) -* 0(\) 

defined by 

P(tf)(g) = g(V^)/V^ G Z* for all g e G(F). 

As a corollary there will be assigned to o e F*/F** a root number 
W(F, p(o) ). However, we can also define a real quadratic character 

X(o):F* -^ Z* 

by x(°)(x) = (*> °)p> where the Hilbert symbol is taken at the prime P in 
F. Then, as described in [18, p. 94], there is the root number W(F, x(°) ) of 
the real quadratic character. Naturally 

W(F,x(o)) = W(F,p(o)), 

and therefore we shall rephrase [18, Corollary 2, p. 126] as 

(2.1) LEMMA. For square classes a, ox in F*/F** 

W(F, pica,) ) = (a, ox)PW(F9 p(o) )W(F9 fax) ). 

We shall now introduce Witt theory considerations. The Witt class of 
the trace form of the extension F/K will be denoted by (F) e W(K), the 
Witt ring of the local field K. If a square class a e F*/F** is used to scale 
the trace form of F/K then the resulting Witt class will be denoted by 
(F(o) > <= W(K). We wish to prove 

(2.2) THEOREM. For o e F*/F** 

W(F, fa) ) = cp( (F(a) > - (F) )W{K9 p(NF/K(a) ) ). 
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By cp( (F(o) ) — (F) ) G Z* we denote the stable Hasse-Witt invariant 
[4, p. 14-15], at the prime p in K of the difference element (F(o) ) — (F) 
which lies in the fundamental ideal of the Witt ring W(K). 

The proof of (2.2) combines Deligne's analysis with the results of Serre 
on trace forms, [16], and will be completed after we prove Lemma (2.8). 

To begin with there is the trivial degree 1 representation 

\F:G(F) -+ O(l). 

If deg(F/K) = n then this will induce a transitive permutation 
representation 

piF):G(F) ->Sn<z 0(n) 

with degree n. This extension has a square class discriminant d e K*/K** 
and Serre noted that 

det(p(iO ) = p(d). 

That is, under 

K*/K** = Hl(G(K), Z/2Z) ^ Hom(G(K), Z*) 

we may identify d with both the first Stiefel-Whitney class sx(p(F) ) and 
with det(p(F) ). Therefore by Deligne's theorem we can write 

W{K, p(d) )s2(p(F) ) = W(K, p(F) ). 

The main point now is that Serre proved that under the isomorphism 

H2(G(K); Z/2Z) = Br2(K) S Z* 

s2(p(F) ) is identified with the product (2, d)php(F/K) where hp(F/K) e 
Z* is the classical Hasse symbol at the prime p in K of the trace form 
of F/K. Thus far, by Deligne and Serre, we have 

(2.3) LEMMA. For a finite extension F/K 

W{K, p(F) ) = (2, d)php(F/K)W(K, p(d) ). 

To bring in scaled trace forms we now introduce 

p(F, a) = Ind(p(a) ):G(K) -> 0(n) 

for any square class o e F*/F**. This time Serre found that 

det(p(F, a ) ) = p(N(o)d), 

that is, 

sx(p(F, o) ) = N(o)d G K*/K**, 

while 

s2(p(F,o)) = (2,d)php(a,F/K) 
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where h (o, F IK) e Z* is now the classical Hasse symbol of the trace 
form of F/K scaled by a. The factor (2, d)p is correct. 

(2.4) LEMMA. For o e F*/F** 

W(K, p(F, a) ) = (2, d)php(o, F/K)W(K, p(N(a)d) ). 

Next we note that 

W(F,p(o) - 1) = W(F,p(a)). 

But deg(p(a) - 1) = 0 so that 

W(F, p(o) - 1) = W(£, Ind(p(a) - 1) ) = W(X, p(F, a) - p(F) ). 

Consequently we may add the relation 

(2.5) LEMMA. For o e F*/F** 

W(K9 p(F, a) ) = W(F, p(o) )W(K, p(F) ). 

We now combine (2.1), (2.3), (2.4) and (2.5) into 

(2.6) LEMMA. For o e F*IF** 

W(F, p(a) ) = (N(o\ d)php(o, FIK)hp(FIK)W(K, p(N(o) ) ). 

The reader will note that (2.6) involves the classical Hasse symbols of 
two different innerproduct spaces over K, while (2.2) states a formula 
which is in terms of the stable Hasse-Witt invariant of a difference 
element in the Witt ring of K. Clearly we need a conversion table be­
tween c and h . We denote by (V, b) an innerproduct space over K and by 
(V, b) G W(K) the resulting Witt class. 

(2.7) LEMMA. For an innerproduct space (V, b) over K 

fhp(V, b) = cp(V, b) if dim V = 0, 1 (mod 8) 

hp(V, b) = ( - 1 , dis(F, b) )pcp(V9 b) if dim V EEE 2, 3 (mod 8) 

J y F, 6) = ( - 1, - l)pcp(V, b) if dim V ss 4, 5 (mod 8) 

U,(K, 6) = ( - 1 , - d i s ( F , Z>> )pcp(V, b) if dim F = 6, 7 (mod 8). 

We are now interested in the Scharlau transfer homomorphism [4, 
p. 35] and specifically in 

W < « > - < ! > ) = (F(o)) - (F) 

in the fundamental ideal / c W(K). We note that 

dis(F(a) > = N(o) dis(F) e K*/K** 

dis( (F(o) ) - (F)) = N(o) e K*/K**. 

Then from a direct computation, following the rules in [4, 1.2.4], we 
find that 
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cp( (F(o) > - < / • > ) = (N(o), dis(F) )pcp(F(o) )cp(F). 

Thus (2.2) will be an immediate corollary of (2.6) and 

(2.8) LEMMA. 

(N(o\ dis(F) )pcp(F(a) )cp(F) = (7V(a), d)php(o, F/K)hp(F/K). 

Proof. If deg(F/K) = 0 or 1 (mod 4) then 

dis(F) = d GE K*/K** 

and from the conversion formula in (2.7) it follows immediately that 

cp(F(o) )cp(F) = hp(o, F/K)hp(F/K). 

Suppose that deg(F/K) = 2 or 3 (mod 4). Then 

dis<F> = -d and dis(F(a) > = -N(o)d. 

Now from (2.7) 

A,(a, F/tf) = cp(F(o) > ( - 1 , JV(o) dis(F> )p 

= cp((F(a)))(-l, -N(a)d)p 

hp{F/K) = cp(F)(-\, dis(F))p = cp(F)(-\, ~d)p. 

Hence 

hp(o, F/K)hp(F/K) = cp(F(a) )cp(F){-\, N(a) )p 

and 

(N(o), d)php(o, F/K)hp(F/K) = cp(F(o) )cp(F)(-d, N(o) )p 

= cp(F(a) )cp(F)(dis(F), N(a) )p. 

The case dQg(F/K) = 6 or 7 (mod 8) is similar and is left to the reader. 
This completes the proof of (2.2). 

We close this section by pointing out 

(2.9) COROLLARY. For o G K*/K** 

W(K, p(F, a) ) = cp( (F(a) > - <F> )W(K, p(F) )W(K, p(NF/K(a) ) ). 

Proof. In (2.5) we noted that 

W(K P(F, a) ) = W(K, p(F) )W(F, p(o) ) 

so we simply apply (2.2). 

3. Algebraic number fields. In this section we shall assume that K is an 
algebraic number field. If K/K is an algebraic closure of K then again we 
have a profinite absolute Galois group GSLI(K/K) and the extensions of 
finite degree E/K c K/K are in one-to-one correspondence with the 
closed subgroups of finite index in Gal(K/K): 
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G(E) = G<il(K/E) c Gal(K/K) = G(K). 

To a virtual real orthogonal representation (G(E), p) there is associated 
a collection of local root numbers WP{W, p), one for each prime P in E. 
These satisfy 

1. WP(E, p) is a fourth root of unity, 
2. ^ ( i s , p) = 1 for almost all primes, 
3. WP(E, p) = 1 for all complex infinite primes, 
4. WP(E, p) = =tl for all primes at which —1 is a local square in the 

completion of E, and 
5. Up WP(E, p) = 1. 
This last, a reciprocity law for root numbers of real orthogonal 

representations, is the Frôhlich-Queyrut theorem which asserts that the 
global root number for a real orthogonal representation is always 1. If 
(G(F), p) has deg(p) = 0, then 

W(K,lnd(p)) = HWP(E,P) 
P\P 

at each prime p in K. Furthermore, Deligne's analysis still applies. 
That is, 

WP(E, p)/WP(E, det(p)) = ± 1 

and these ratios can be regarded as a single element in Br2(E). Then this 
element is identified with 

s2(p) <= H2(G(E); Z/2Z) = Br2(E). 

For a global square class o e £ * / P * we have at each completion of E, 
denoted by E(P), the real quadratic character 

X(o):E(P)* -» Z* 

defined by x(<*)(*) = (x9 o)P (the Hilbert symbol) and we have naturally 

WP(E,p(o)) = W(E(P\X(o)). 

The global version of (2.2) is 

(3.1) THEOREM. For o e E*/^**, and p a prime in K, 

cp( (E(o) > - (E) )Wp(K, P(NE/K(a) )) = U WP(E, p(o) ). 
P\P 

The proof will be facilitated by the following device. 

(3.2) Definition. Let L be an algebraic number field, or a completion of 
an algebraic number field. For a Witt class X in the fundamental ideal / 
of W(L) and for a prime P in L, introduce 

Vp(X) = cP(X)Wp(L, p(dis(X))) G C*. 
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We note in particular that for X, Y both in the fundamental ideal / of 
W(L) 

vP(X + Y) = vP(X)vP(Y). 

This follows from the identities 

dis(X + Y) = dis(X) dis(Y) 

cP(X + Y) = (disC*), dis(y))pCp(Z)cp(y) 

and by (2.1) 

WP(L, p(dis(X)dis(Y))) 

= (dis(X), dis(7) )PWP(L, p(dis(X) ) )WJ>(L, P(dis(7) ) ). 

We now return to (3.1). A prime p in K has extensions Pl9 . . . , Pr to E. 
These produce local extensions E(P)/K(p) (K(p) denotes the comple­
tion of K at p) together with local norms and local traces. We consider 
the image of (a) — (1) in W(E(Pj)) and we apply the local Scharlau 
transfer: 

TEiPj)/K(P)( <*> - <1> ) = A) e / c W(K(p) ). 

But the image of 

W < ° > -<1>) = <£(*)>-<£> 
in the fundamental ideal of W(K(p) ) is equal to the sum 2][ ^ - Ac­
cording to (2.2) 

^ ( £ , p ( a ) ) = ^ ( £ ( ^ ) , x ( a ) ) 

= cp(XJW(K(p),x(NJ(o))) 

= cp(XJ)W(K(p),p(NJ(o))). 

Note here that Nj(a) is a local norm. But this can also be written as 

WPiE, p(a) ) = vp{Xj). 

Then 

r r 

v ( <£(a) > - < £ > ) = I I v (A)-) = I I WP(E, p(a) ). 
I 1 y 

Now 

dis( (E(a) )-(£)) = NE/K{p) 

so that 

v„( <£(o) > - < £ > ) = c,( <£(a) > - <£> )^(Jf, p(Ar£/Jf(a) ) ) 

by definition. Thus (3.1) follows. 
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To formulate (2.9) globally we recall the relation 

Wp(K9 Ind(p(a) - 1) ) = Wp(K9 p(E9 a) - p(E) ) 

= n WP(E, p(o) - 1 ) = n WP(E9 P(o) ). 
p\p p\p 

Hence we find 

(3.3) COROLLARY. For o e E*/E** 

Wp(K9 p(E9 a) ) = cp( (E(a) > - (E) )Wp(K9 p(E) )Wp(K9 p(NE/K(o) ) ) 

at each prime p in K. 

Next we wish to show 

(3.4) COROLLARY. For a square class a e K*/K** and a prime p in K 

I ! WP(E9 Res(p(a) ) ) = (a, dis<E> )WJK, p(o) ) 
P\P 

if deg(E/K) is odd, while if deg(E/K) is even then 

I T WP(E9 Res(p(a) ) ) = (a, dis<£> ) 
P\P 

Proof The square class a e K*/K** corresponds to p(o):G(K) —> 0(1). 
Then 

Res(p(a)):G(£)-> O(l) 

simply means that we consider a as a square class in E*/E**. But then 
[4, 1.6.1] asserts that 

W <a> - <1£> ) = ( <a> - <1^> )<£> 

in the fundamental ideal / c JF(A~). By a simple calculation 

c , ( W < a > - < l £ > ) ) = (a ,dis<£>) / , 

while 

NE/K(o) = odeg(E/K) G K*/K**. 

Finally we would like to connect (3.1) and (3.2) with the Scharlau 
transfer homomorphism T: W(E) —> W(K). 

(3.5) COROLLARY. For X <= / c ÏF(£) 

v,(W*)) = IIv^JQ 
p\P 

at every prime p in K. 
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Proof. Since cp{ (a) — (1) ) = 1 for all primes in E we can begin by 
restating (3.1) in the form 

vp(T((o) - ( l ) ) ) = r i v / ? ( ( a > - ( l > ) . 
P\P 

Then for a general Witt class I G / C W(E) we choose a representative 
innerproduct space (V, h) over E with 

dim^ V = m = 0 (mod 8). 

We assume that (F, Z>) is diagonalized with diagonal entries ol9 . . . , om. 
Then we write 

(V, b) - m(lE) = X - m<l£> 

= (<»!> " <l £>) + --- + ( < 0 - < ! £ > ) • 
But 

vP(Z - m(\E) ) = vP(X)(vP(2<l£> ) Tml1 

and since m = 0 (mod 8) we get 

( v P ( 2 < l £ > ) ) - ' " / 2 = 1. 

Thus we obtain 

vP(X - m{\E) ) = vP(X> 

and by a similar argument, 

vp(T(X) -m(E)) = vp(T(X)). 

So now 

X - m{\E) = ( <o,> - <1£> ) + . . . + ( (am> - <1£> ) 

W 

Vp(JQ = I I VP( (a,) - <1£>) 
1 

while 

m 

v/,(r(X)) = IIv/)(r(<a/.> - <i£>)>. 

Then for each index j we have from (3.1) 

V,( W (or) - (\E) ) ) = I I VP( (or-) - (\E) ). 
P\P 

Thus (3.5) is established. 

To be complete we return to the local field K/Ql and a finite extension 
F IK. Then from (2.2) we obtain 
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(3.6) COROLLARY. For X <= I C W(F) 

vp(TF/K(X)) = vP(X). 

In Section 5 we shall show that the invariant introduced in (3.2) is 
simply the additive character [14, p. 131] 

yP:W(L)->C*. 

4. Examples of local root numbers. In this section we shall recall some 
known examples of local root numbers associated with real quadratic 
characters and then in the following sections we shall refer to these 
computations. We take the algebraic number field to be Q and for 
o e Q*/Q** we are interested in Wj(Q, p(o) ). First of all, we can write 

JW>,p(a) ) = W(QhX(o)) 

where the real quadratic character x o n Qf is given by the Hilbert 
symbol 

X(o):Qf -> Z*, x - > ( x , a ) 7 . 

Thus we can refer to the description of W(Qi9 x(°) ) in [18, p. 94]. We 
should keep in mind then that 

(1 i f a > 0 
» S O ( Q , P ( O ) ) = 

[—i if a < 0. 

We can also say 

(4.1) LEMMA. If the rational prime I is unramified in Q( V<x)/Q men 

WftQ, p(a)) = 1. 

Proof. The infinite prime is unramified in this quadratic extension if and 
only if o > 0. If / is a finite rational prime unramified in Q(^/o)/Q then 
x(a):Qf —> Z* is an unramified character. Since the absolute different of 
Q//Qi is the unit ideal, it will follow that 

WftQ, p(a)) = W(QhX(o)) = 1. 

Next we represent a by a square-free rational integer n. 

(4.2) LEMMA. If I is an odd rational prime that divides n, then 

(mod 4) 

3 (mod 4). 

Proof Since / is an odd rational prime dividing n the (local) conductor 
for the real quadratic character x(n) a t / is just /Z7 and the different of 
Q / Q / is the unit ideal. So following [18, p. 94] we put I = d and thus 

U-n/l, /)/ if I = 1 

l ( - / i / / , / V i / / s 3 
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/ - i 

WftQ, p(«) ) = W(Q„ X(«) ) = -^( 2 (*//, B ) / * * " ) . 

Now 

<*//, w)7 = (JC/, (*//)/), = (/, (*//)/)/(*, («//)/)/ 

= ( - ( / I / / ) , /)/(*, /!//),(*, / ) , = ("/I / / , /),(*, I), 

We have used the fact that (JC, n/l)l = 1 because nil and x are both local 
units at the odd prime /. Therefore 

/ / - l 

WKQ. P(«)) = L j ^ P ( 2 (*. O/^'1). 

The lemma now follows from the well known value of the Galois-Gauss 
sum. 

(4.3) LEMMA. Let q be a fixed rational prime. 
\. If q = 1 (mod 4), then JJ/(Q, p(q) ) = 1 for all primes I in Q. 
2.1fq = 3 (mod 4), then W2(Q, p(q)) = i, Wq(Q, p(q)) = -i and 

Wf(Q, p(#) ) = 1 otherwise 
3.1fq = 2, then Wf(Q, p(2) ) = I for all primes I in Q. 

Proof According to (4.1) we have JJ/(Q, p(#) ) = 1 for all unramified 
primes in Q(V#)/Q. Thus if # = 2 or q = 1 (mod 4) we see that 

Wj(Q, p(q) ) = 1 for all primes I ¥= q. 

But we have the reciprocity 

/ 

Now if # = 3 (mod 4) we use (4.2) to see that 

Wq(Q,p(q)) = (-l9q)qi= - i. 

Then 

W2(Q, p(q) ) = i and W,(Q, p(q) ) = 1 

otherwise. 

We add the following 

(4.4) LEMMA. If I is an odd rational prime then 

WftQ, p ( - l ) ) = 1 while 

W£o(Q, P ( - l ) ) = - ' ™d W2(Q, p ( - l ) ) = /. 

With (2.1), it is in principle possible to determine W/(Q, p(n)) from 
(4.3) and (4.4) for any square-free integer n. 
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5. Gauss sums associated to a Witt class. To complete the formalism we 
shall now take up the additive characters 

These appeared first in [20] and were involved in Weil's reciprocity 
formula. Their relation to the Witt ring was explored in [11] and in [17]. 
These additive characters were included in the discussion of Milgram's 
theorem in [14, p. 131]. We shall sketch a viewpoint suitable to our 
purposes. 

For / a finite rational prime, we want to describe a Witt group 
WiQi/Tjj) of finite innerproduct spaces together with quadratic refine­
ments. We therefore consider all pairs {A, q) where 

1. A is a finite Z rmodule (finite abelian /-group) 
2. q:A —» Q//Z ; is a quadratic map, that is, 

q(Xa) = X2q(a) for all X e Zb a ë A 

3. B(ax, a2) = q(ax + a2) — q(ax) — q(a2) ^ Q//Z/ is a Z rbilinear and 
symmetric finite innerproduct space structure on A with values in Q//Z/. 

Such a pair (A, q) is Witt trivial if and only if there is a subgroup TV c A 
for which N1- = N and q\N:N —» Q//Z7 is trivial. In the usual way we ob­
tain a group, Wq(Ql/Zl)9 of Witt classes with 

(A, q) + (AX9qx) = (A ® Al9 q B qx) 

~(A,q) = (A,-q). 

First we note that if / is an odd prime then the embedding 

Z / /Z , -> Q/Z; ; X -> X/l 

induces an isomorphism 

^(Z/ZZ;) = WqiQ/Zj). 

The point is that for / odd, 2 G Zf and therefore every finite innerproduct 
space structure with values in Q//Zz has a unique quadratic refinement. 

Now to the pair (A, q) we assign 

^•9 )-^f(,S e x p ( 2" i* ( f l ) ))-
This is a Witt class invariant and defines a homomorphism 

y1:Wq(Ql/Zl)->C*. 

Next we can introduce a boundary homomorphism 

dfiWiQu ^> WqiQ/Z,). 

Let (F, b) be an innerproduct space over Qz. We choose a Zl-lattice L c F 
such that 
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b(v, w) G Z7 for all v, w in L 

6(v, v) G 2Z7 for all v in L. 

Introduce 

L # = {x if x G F, b(x9 L) c Z7}. 

Then L a L and on the quotient group L* /L the quadratic refinement is 
defined by 

q(a) = b(x9 x)/2 G Q7/Z7 

where a denotes a coset of L in L # and i G L # is any representative of 
that coset. We then define 

37<K, ft) = <L#/L, <?> G J^(Q7 /Z7) . 

Now from the composition 

^ ( Q / ) -» ^ ( Q / / z 7 ) -> C* 

we obtain 

y 7 : ^ ( Q 7 ) ^ C * . 

This is an additive character in the sense that 

y,(X +Y) = y,iX)y,{Y). 

In particular, if X G W(Q) then y7(X) is defined for all finite primes in 
Q. Clearly y7(X) = 1 for almost all finite primes. Then by Milgram's 
theorem 

I I Y/W = exp(27T/ sgn(X)/8). 
/ finite 

Thus if we define, for X G W(Q), 

Yoo(X) = exp(-2iri sgn(X)/8) 

the desired reciprocity is produced. This is Weil Reciprocity. 
For any algebraic number field E we can, at each prime P in E, 

define 

yP:W(E)->C*. 

Introduce the local extension E(P)/Ql and the local Scharlau transfer 

TE(P)/Q;.W(E(P))^W(Ql). 

Then yp: W(E) —» C* is the composition 

W(E) -> W(E(P) ) -» J^(Q7) ^ C*. 

Now we refer back to the definition (3.2) as we now wish to prove 
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(5.1) THEOREM. Let X e / c W(Q) be any element in the fundamental 
ideal of the Witt ring of the rationals. Then 

y,(X) = (-2,dis(X))lVl(X) 

at every prime I in Q. 

Proof We shall first consider the case / = oo. For X e / c W(Q), we 
have, by the definition, 

yoo(X) = ( - , T W 2 

Now 

V o o W = C o o W ^ o o C Q , P ( d i s ( X ) ) ) . 

However we know the following [4, 1.2.3] 

fCcJtX) = 1 and dis(X) > 0 if and only if sgn(X) = 0 (mod 8) 

o(X) = - 1 and dis(X) < 0 if and only if sgn(X) = 2 (mod 8) 

o(X) = - 1 and dis(Z) > 0 if and only if sgn(X) = 4 (mod 8) 

\Coo(X) = 1 and dis(JJf) < 0 if and only if sgn(X) = 6 (mod 8). 

Furthermore, 

dis(^) > 0 H if dis 

\—i if dis 
^ 0 0(Q,p(dis(X))) = B 

dis(X) < 0. 

The above discussions culminate in the formula 

Voo(X) = ay***)" 
and consequently 

y0o(X) = (-\)sgD(X)/2v00(X). 

Now we only need to point out that 

sgn(X)/2 = 0 (mod 2) if and only if dis(X) > 0 

if and only if ( - 2 , dis(X) ^ = 1 

and that 

sgn(X)/2 = 1 (mod 2) if and only if dis(X) < 0 

if and only if ( - 2 , dis(X) ^ = - 1 . 

Thus we have disposed of the infinite prime / = oo. 
Next we must specialize to X = (n) — (1) where n is a square-free 

rational integer. Then 

ct(X) = 1 and dis(X) = n e Q*/Q**. 

Let us comment on Y/(X). If / is an odd rational prime which does not 
divide n then d^X) = 0 in WqiQ^Zf) so that y7(J0 = 1. However, by (4.1) 
we also have 
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Wj(Q, p(n)) = v,(X) = 1 

and certainly 

( - 2 , *) , = ( - 2 , disC*)), = 1. 

Thus we find for X = (ri) — (1) 

1 = Y/(J0 = ( -2,dis(J0)/V /W 

for all odd rational primes which do not divide n. 
But now suppose that / is an odd rational prime which does divide n. 

Since 87( (n) — (1) ) = 9/(«) it is enough to compute Y/(H). The aniso­
tropic representative of 9/(4«) = 9/(«) is A = Z///Z/ with 

, ^ 2(«//)X2 ^ ^ 
*(X) = ^ e Q/Z, . 

ThusT/(<"> — <1> ) is 

"V( 2 exp(27T/(2(«//)X2) )// 
y/\x<EZ,//z/ 

The Gauss sum is evaluated in [12, p. 85]. The answer is 

(mod 4) l(2(n/l\ /), if / s 1 

l(2(«//), /),/ if / = 3 
Y / ( < " > - <1>) ,. _ . „ , , , ^ 

3 (mod 4). 

If we recall (4.2) it is natural to write 

(2(n/l), I), = ( - 2 , / ) / ( - " / / , /)/• 

Clearly 

( - 2 , / ) 7 = ( - 2 . i l ) , = ( - 2 , ^ 8 ( ^ 0 ) , , 

Thus for X = («) — (1) we have shown that 

7l(X) = (-2,dis(X))lvl(X) 

for / = oo and / any odd rational prime. Then / = 2 is simply included by 
reciprocity. Thus (5.1) has actually been established for (a) — (1) where 
a e Q*/Q** is any square class. 

So next suppose that X e / c W(Q) is a general Witt class in the 
fundamental ideal of W(Q). As before we choose a representative 
innerproduct space (V, b) over Q with dimg V = m = 0 (mod 8). 
Assuming that (V, b) is diagonalized we can write 

(V, b) - m(\) = X - m{\) 

= ( < a 1 ) - < l > ) 4 - . . . + ( ( a w > - ( l > ) 

for suitable square classes a . But m = 0 (mod 8), so m ( l ) e / . Hence 
we find 
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yi(X-m(\)) =y,(X) 

dis(X - m(l> ) = dis(X) 

vl(X-m(\)) = v,(X). 

Thus we have 

Y/W = I I Y K ^ ) - <1>) 

/ 

and 
( - 2 , dis(X) ), v,(X) = I I ( - 2 , oj), v,( (or) - <1> ). 

This completes the proof of (5.1). 

Even though we used reciprocity in the proof of (5.1), if we note that 
W(Q) —> W(Qi) —> 0 is an epimorphism that preserves the rank modulo 2, 
then we can add 

(5.2) COROLLARY. For X e I c W(Qt) 

y,(X) = (-2,dis(X))lvI(X). 

We would like to see (5.1) remains valid for any algebraic number field 
E and we can use (5.2) to do this. For E(P)/Ql let us just write 

T:W(E(P))-^W(Ql) 

rather than TE(PyQ. For X e / c W(E) then by definition yp(X) = 
yiTiX) ), while by (3.6) vp(JSQ = vt(T(X) ). Now 

dis{T(X) ) = NE(P)/Qj(dis(X) ) e Qf/Qf* 

so 

( - 2 , dis(X) ) P = ( - 2 , dis(r(X) ) ) , 

We then apply (5.1) to find 

yP(X) = (-2,dis(X))PvP(X). 

Actually we shall find it more useful to have 

(5.3) COROLLARY. For any prime P in the algebraic number field E and 
any Witt class X e W(E), 

1. If rk(X) = 0 (mod 2) then 

yP(X) = ( - 2 , dis(X) )PcP(X)WP(E, p(dis(X) ) ). 

2. If rk(X) = 1 (mod 2) then 

yP(X) = ( - 2 , d i s (X)) P c P ( JO^ P (^ p(dis(X)))yP(l^>. 

https://doi.org/10.4153/CJM-1988-024-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-024-x


ADDITIVE CHARACTERS 563 

Proof. Only the second assertion needs a comment. If rk(X) = 1 
(mod 2) we write 

X=(X- (lE)) + (lE) 

SO 

yP(X) = yP(X- (lE))yP(lE). 

Then using the rules in [4, 1.2.4] we calculate 

dis(JT) = dis(X - <1£>) 

cP(X) = cP{X - <1£> ) 

and apply part 1 to X — (\E). 

We have made extensive use of Deligne's analysis of local root numbers 
of real orthogonal representations [5], [18, Section 3]. An analogous result 
for the additive characters follows immediately from (5.3). 

(5.4) Exercise. Show that if rk(X) = 1 (mod 2) then 

yP(X) = cP(X)yP( (dis(X) > ) 

while if rk(X) = 0 (mod 2) then 

yP(X)yP(\E) = cP{X)yP{ <dis(Z) > ). 

We shall close this section by disposing of the invariant introduced 
in (3.2). 

(5.5) COROLLARY. For X e / c W(E) 

yP((-2)X) = vP(X). 

Proof. Again from [4, 1.2.4], since rk(X) = 0 (mod 2) we find 

d i s (<-2>J0 = dis(X) 

cP( (-2)X) = (-2, dis(X)V>(X). 

Then by (5.3) 

yP( (~2)X) = ( - 2 , dis(X) )P{-2, dis(Jf) )PcP(X)WP(E, p(dis(X) ) ) 

= cP(X)WP(E,p(<lis(X))) 

= vP(X). 

6. Local root numbers and additive characters. We shall need a small 
computation. 

(6.1) LEMMA. For any algebraic number field E, 

(yp<W f = WP(E> P ( - i ) X (yP(h) )4 = ( - 1 , -1)/> 
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yp(0E)f = ( " I , -l)pWP(E,(K-l)). 

Proof. We write 

yp((h))2 = yP(2(h))-

Then 2(1£> is represented by [Ô ?], so by direct calculation 

d i s2( l £ > = - l e E*/E** 

cP(2(\E)) = (-1, -l)P. 

Thus by (5.4) 

yp((h))2 = ( - 2 , - i M - i , -i)PwP(E,p(-i)) 

= (2, -l)PWP(E,p(-\)) 

= WP{E,p(-\)). 

But then 

(yp(h))4 = WP{EM-V? = ( - 1 , - I V 

Thus we have used (2.1) again. Finally 

yp(0E))6 = ( T X I £ > ) 4 ( Y K I £ > ) 2 -

Suppose now that ^ is an algebraic number field and that E/K is a 
relative extension of degree n. Then we have the transitive permutation 
representation 

p(E):GK^S„ C 0(n) 

which is induced from the trivial degree 1 representation of the subgroup 
GE = Gal(K/E) c Gai(K/K) = GK. There is also the Witt class of the 
relative trace form of E/K, (E) €E W(K). 

(6.2) THEOREM. If E/K is a relative extension of degree n then at every 
prime p in K 

yp(E)Wp(K,p(E)) = (yp(lK)T. 

Proof If we combine the results of Deligne with those of Serre we may 
begin by writing 

Wp(K, p(E)) = (2, d)php(E/K)Wp(K, p(d)) 

where d = T>is(E/K) e K*/K**. Then from (5.4) we also have 

( - 2 , dis<£> )pcp(E)Wp{K, p(dis(E) ) ) 
n = 0 (mod 2) 

(-2,dis(E) )pcp(E)Wp(K, p(dis(E)))yp(lK) 
n = 1 (mod 2) 

yP{E) = 
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where 

dis<£> = (-\)n(n~l)/2d G K*/K**. 

Let us first note that, since (2, — 1) = 1, 

(2, d\ = (2, dis<£> % 

and therefore 

( - 2 , dis<£> )p(2, d)p = ( - 1 , dis<£> )p. 

Next we turn to the product Wp(K, p(dis(E) ))Wp(K, p(d) ). For « = 0, 
1 (mod 4), dis<£> = d, while for « = 2, 3 (mod 4), dis<£> = -d. We 
simply apply (2.1) to find 

Wp(K, p(dis(E)))Wp(K, p(d)) 

_ ((-I, dis(E) )p n = 0, 1 (mod 4) 

~ \ Wp(K, p ( - 1 ) ) n = 2, 3 (mod 4). 

Finally we must refer back to the conversion formulas in (2.7). Using 
these, we find 

cp(E)hp(E/K) 

' l « = 0,1 (mod 8) 

| ( - l , d i s<£>) , , « = 2,3 (mod 8) 

[ ( - 1 , - 1 ) , « = 4,5 (mod 8) 

[ ( - 1 , -dis<£> )p = ( - 1 , - 1 ) , ( - 1 , dis<£> )p « = 6, 7 (mod 8). 

We can now read off the product y {E)W{K, p(E)) with the aid of 
(6.1). The result is 

1 = ( Y / 1 * > ) " i f« = 0 ( m o d 8 ) 

Y/l*> = ( * / ! * > ) " if » ss 1 (mod 8) 

Wp(K, p ( - 1 ) ) = (yp(\K) f if « = 2 (mod 8) 

Wp(K, p ( - 1 ) )yp(\K) = {yp(\K) y if « = 3 (mod 8) 

« ( - 1 , - 1 ) , = ( Y / 1 * > )" if « = 4 (mod 8) 

( - 1 , - 1 V r / l * ) = (yp(\K) )" if « = 5 (mod 8) 

( - 1 , - \)pWp{K, p ( - 1 ) ) = (yp(lK) )" if « = 6 (mod 8) 

( - 1 , - l)pWp(K, p ( - 1 ) fr/l*) = (y /1*) )" if « = 7 (mod 8). 

This completes the proof of (6.2). 

Associated with p(E):GK —> 0(n) there is an extended Artin L-function. 
This is the Dedekind zeta-function of E with T-factors. Thus when we 

https://doi.org/10.4153/CJM-1988-024-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-024-x


566 P. E. CONNER AND N. YUI 

consider W(K, p(E)) we have the local root numbers associated to the 
Dedekind zeta-function considered as the Artin L-series of the real 
orthogonal representation p(E). We have shown explicitly how the local 
root numbers W(K9 p(E)) depend only on the Witt class (E) of the 
relative trace form of E/K and the degree modulo 8 of this relative 
extension. 

For example suppose that E/Khàs (E) = 0 e W(K). Then deg E/K = n 
is even and at every prime p in K, 

Wp(K,p{E)) = {yp(\K))n. 

In fact, for any integer n = 0 (mod 2), there are many extensions E/K of 
degree n with (E) = 0 e W(K). 

The factor ^ ( 1 ^ ) is not generally easy to determine. For each rational 
prime / we can say 

yKK) = I I yp(\K). 
P\I 

For K = Q the formula is given as follows: 

Y2(1Q> = £ = exp(27T//8), 

YOOOQ) = è~\ and 

Y / O Q ) = 1 otherwise. 

For a e E*/E** we also have the scaled Witt class (E(o) > e W(K) 
and Wp(K, p(E, a ) ) . We can deal with this case as follows. Using (3.3) 
we write 

Wp(K, p(E, a) ) = cp( (E{o) > - (E) )Wp(K, p(N(a) ) )Wp(K, p(E) ). 

Then 

Y,( (E(a) > ") = yp( (E(a) > - (E) )yp(E) 

and applying (5.4) to (E(a) > - (E) e / c W ^ ) , we have 

Y,( <£(") > ) 

= ( - 2 , iV(a) y , ( (E(a) > - <£> )H£(tf, p(N(a) ) )y/i?>. 

Now note from (2.1) that 

Wp(K,p(N(o)))2 = (-\,N(0))p 

and then 

( - 2 , JV(o) ) „ ( - 1 , JV(a) )p = (2, JV(a) ),. 

Thus we find 
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(6.3) COROLLARY. If E/Kis a relative extension of degree n, then for any 
square class o in E*/E** 

yp( (E(a) ) )Wp(K, p{E, a) ) = (2, NE/K(o) )p(yp(\K) )". 

As an example take a = — 1 e E*/E**. Now 

( 2 . J W - 1 ) ) , - 1 and <£( - l )> = -(E), ' 

so we find 

Wp{K, p(E, - 1 ) ) = (yp(E) )2Wp{K, p(£) ). 

If — 1 is a square in E it is easy to see that 2(E) = 0 e W(K). 

7. Van der Blij's invariant. We denote by Z ^ c Q, the localization, 
without completion, of the ring of rational integers at 2. There is then the 
Witt ring W(Z^) of innerproduct spaces over the local ring Z^2y There is a 
Knebusch short exact sequence 

0 -> W(Z(2)) -* W(Q) -* Z/2Z -> 0. 

The (spht) epimorphism 

d2:W(Q) -> Z/2Z -> 0 

is given by 

82(X) = ord2(dis(X) ) (mod 2) 

for all X €E J^(Q). 
A natural ring homomorphism 

£ : J T ( Z ( 2 ) ) - ^ Z / 8 Z ^ 0 

was introduced by van der Blij [1], [14, p. 25]. We shall briefly recall the 
definition. Let (V, b) be an innerproduct space over Z(2). Then there is an 
element u e V, called a characteristic class, which is unique modulo 2V 
and for which 

b(x, x) == b(u, x) (mod 2Z^2)) 

for all J C G K NOW b(u, u) is well defined in Z(2)/8Z(2) = Z/8Z. That is, if 
u is replaced by u + 2v then 

*(n + 2v, w + 2v) = b(u, u) + 4Z>(t/, v) + 4Z>(v, v). 

But Z>(«, v) + b(v, v) = 0 (mod 2Z(2)) so that 

b(u + 2v, w + 2v) = è(w, u) (mod 8Z^) . 

Then Z>(w, u) e Z/8Z is a Witt class invariant and defines a ring 
homomorphism 

£ : W ( Z ( 2 ) ) - ^ Z / 8 Z - > 0 . 
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We also point out that the van der Blij invariant can be defined on the 
Witt ring W(Z2) of the ring Z2 c Q2 of 2-adic integers. For X G W{Z), 
the Witt ring of innerproduct spaces over the ring Z, there is a well known 
congruence 

P(X) = sgn(X) (mod 8). 

However for X G W(Z,2\) we can only say that 

0(X) = sgn(X) = rk(X) (mod 2). 

We have the additive character 

y2:W(Q2)-* C* 

and for X G W(Z2) we shall give a direct proof of the relation between 
/3(X) and y2(X) [1] from the definition of /?. 

(7.1) LEMMA. For a Witt class X G W(Z2) 

y2(X) = *«*> 

where £ = exp(27n/8) is a primitive S-th root of unity. 

Proof. We represent X by an innerproduct space (K, b) over Z2. In 
particular, Kis a free Z2-module of finite rank. Then d2(X) G Wq(Q2/Z2) 
is represented as follows. Put A = P74Fand denote the quotient homo-
morphism by v: V —> A. Then the quadratic map q\A —> Q 2 /Z 2 is defined 
by 

$(I<JC)) = 6(x, JC)/8 G Q2 /Z2 . 

This refines the innerproduct space structure on A with values in Q 2 /Z 2 

given by 

B(v(x\ p(y) ) = b(x, y)/4 G Q2 /Z2 . 

We denote b y J f c F the kernel of 

x -> 6(JC, w) = è(jc, x) G Z2/2Z2. 

Then JT = F if and only if w G 2F, if and only if b(x, x) G 2Z2 for all 
x G K I n that case fi(X) = 0 G Z/8Z and (K, 6) already has a quadratic 
refinement, JC —> b(x, x)/2. Thus 32(X) = 0 G JF#(Q2/Z2) and hence 

y2(X) = 1 = f ° = ^ W . 

Thus we now assume that w £ 2V. Then Jf* c F has index 2 and there is 
an element, x0 G F, unique modulo JÇ for which 

b(x09 x0) = b(u, x0) = 1 (mod 2Z2). 

We now embed V/2V into A by x —> v(2x) = 2v(x). We denote the 
image by TV c A, thus N = 2A. Clearly 2V c J T S O we denote by K c TV 
the image of J f under x —» P(2X) = 2P(X). 

https://doi.org/10.4153/CJM-1988-024-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-024-x


ADDITIVE CHARACTERS 569 

Now clearly #(N)2 = #(A) and 

B(v(2x\ v(2y)) = 4b(x, y)/4 = 0 <= Q2/Z2 . 

Thus N = N-1. We also note q\K'.K —> Q2 /Z2 is trivial, since 

b(v(2x), v(2x) )/8 = b(x, x)/2 = 0 

in Q 2 /Z 2 for all i G X 
In addition v(u) £ N but K") e ^ ± - Then K2x0) G N but K2*0) * ^-

The index of AT in TV is 2, #(K)#(K±) = #(A) = #(N)2. Thus K c 
N a K and #(AT /AT) = 4. Since g ^ is trivial on ĴT there is naturally in­
duced a quadratic map q:K /K —> Q2 /Z2 and 

82(X) = <^, <?> = ( ^ / Â , ?> G P^(Q2 /Z2) . 

Now P(2*O)
 n a s a non-trivial image in K /K as does v(u). Hence to 

compute y2(K
±/K, q)y we write 

y2(K
±/K, q) = -^-{\ + cxp(2mq(v(2x0) ) ) + exp(2mq(v(u) ) ) 

+ exp(2mq(i>(u + 2x0) ) ) }. 

Then 

<7(K2x0)) = 46(x0, *0)/8 = b(x0, x0)/2 = 1/2 e Q 2 /Z 2 

and hence 

exp(29ri^(i<2x0) ) ) = - 1 . 

Now q(v(u) ) = Z>(w, w)/8 e Q2 /Z2 so that 

exp(2mq(p(u) ) ) = ^ w . 

Finally 

q(p(u) + I<2JC0) ) = b(u + 2JC0, w 4- 2x0)/8 = b(u, w)/8 e Q2 /Z2 

and hence #(*<«) + v(2x0) ) = ^{X) also. 
Thus 

y2(X) =y2(K
±/K,q) = 4*» 

as required. 

As an immediate consequence of a Knebusch exact sequence, we have 

(7.2) LEMMA. For a Witt class X e W(Q) the following statements are 
equivalent 

1. X e W(Z(2)l 
2. 82(X) - ord2(dis(X) ) = 0 (mod 2), 
3. //z£re is an odd rational integer N for which dis(X) = N Œ. Q*/Q**. 
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It is important to recognize here that TV is unique up to sign and residue 
class mod 8. 

We shall also need 

(7.3) LEMMA. If N is an odd rational integer then 

( - 2 , N)2W2(Q, p(N)) = iN~l = exp(2,n(JV - l)/8). 

Proof. We need only be concerned with the values of N modulo 8; that 
is, N = 1, 3, 5 and 7. We know 

( - 2 , 1)2 = ( - 2 , 3)2 = 1, and ( - 2 , 5)2 = ( - 2 , 7)2 = - 1 . 

Then from (4.3) 

W2(Q,p(l)) = W2(Q,p(5))= 1 

W2(Q,p(3)) = W2(Q,p(l)) = i. 

Thus 

( - 2 , A02^2(Q, P(N)) = i(N~xvl = i"-1. 

We shall use the lemmas to derive Satz 2 of [3] in a Witt ring 
formulation. 

(7.4) THEOREM. Suppose X e W(Z,2\) and N is any odd rational integer 
for which dis(X) = N e= Q*/Q**. 

1. / / rk(X) = 1 (mod 2), ffa?/i £(X) = TV (mod 4) and 

(-lfm-W4 = Cj!iX) e Z * . 

2. / / rk(X) = 0 (mod 2), //ie/i /3(X) = N - I (mod 4) W 

(-ifm-»+w = c2vo Œ z*. 
Proof. We use (5.3) to write 

f ( - 2 , W)2c2(X)W2(Q, p(JV) )£ if rk(X) = 1 (mod 2) 

(( - 2, N)2c2(X) W2(Q, p(N) ) if rk(*) = 0 (mod 2). 

By (7.1) y2(Z) = ^ w , while by (7.3) 

( - 2 , Ar)2W2(Q,p(A0 ) = £"-». 

Thus for rk(X) = 1 (mod 2) 

$ « * ) - " = c2(X) e Z* 

and for rk(X) = 0 (mod 2) 

£«*) -*+! = Ci(x) G z * 

Since c2(X) = zb 1 and £4 = — 1 the exponents of £ must be divisible 
by 4. 
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Thus for X G JT(Z(2)), or W(Z2\ we have a determination of the van 
der Blij invariant fi(X) G Z/8Z in terms of the other Witt class invariants: 
rank (mod 2), discriminant (mod squares) and the value of the stable 
Hasse-Witt invariant c2(X) G Z*. In dealing with trace forms it is not 
uncommon to encounter examples where the van der Blij invariant is 
obviously defined, but where its direct determination would be inefficient. 
Then (7.4) can be quite useful in such cases. 

Here is an elementary illustration. Let — N be any square free rational 
integer which is odd and take the quadratic extension E = Q(\/—7V)/Q. 
We have the Witt class (E) G W(Q) of the trace form, but dis(E) = 
N G Q*/Q** so that p(E) G Z/8Z is defined. Fortunately we know 
Cl(E) = ( - 2, 7V)7 at all primes / in Q. Thus /3(E) = TV - 1 (mod 4) and 

( - l ) ^ > - ^ + 1 > / 4 = ( -2 , iV) 2 . 

Thus we find 

r. 
Z/8Z if N = 3 (mod 4) 

' " - Z/8Z if N = 1 (mod 4). 

We noted that for X e WCL^ we could only say that 

P(X) = sgn(X) (mod 2). 

However, if we bring in the other Witt invariants we can produce the more 
precise [13] 

(7.5) COROLLARY. Suppose X e WÇL,2\) end N is an odd rational integer 
for which dis(X) = N <= Q*/Q**. 

1. IfN > 0 then p(X) - sgn(JT) = N - 1 (mod 4) and 

( ^ O W - s g n W - t f + D M = C2(X)Coo(X). 

2.IfN<0 then fi(X) - sgn(Z) = N + 1 (mod 4) and 

( - ^ W - s g n W - t f - D M = C2(X)Coo(X). 

Proof. We observe first that if TV > 0 then 

( - 2 , N^W^iQ, p(N)) = (1)(1) = 1 

while if TV < 0, 

( - 2 , N^W^iQ, p(TV)) = ( - l ) ( - 0 = i = £2. 

From 

Yoo(jr> = r s g n W 

ft-2, #)«/:«,(*) »So(Q, P W ) if r k W = 0 (mod 2) 

~ l ( - 2 , #)«/:«,(*) W^Q, p(N) ) r ' if rk(JT) s 1 (mod 2) 
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we derive four relations 

«-sgnW = C o o (x) i f N > 0 a n d lk(X) s o (mod 2) 

I ^i-sgn(J0 = C o o W if 7v > o and rk(X) = 1 (mod 2) 

j $-2-*"<*> = Coo(x) if N < 0 and rk(X) = 0 (mod 2) 

^-l-sgiKJQ = C o o ( x ) if iv < 0 and rk(X) = 1 (mod 2). 

Using (7.4) we see that if rk(X) = 0 (mod 2) then 

so that 

t^(X)-ssn(X)-N+\ i f N > Q 
c2(X)Cca{X) = | ^ 8 w _ s g n W _ w _ 1 i i N < Q 

If rk(X) = 1 (mod 2) 

{«*>-" = c2(X) 

and 

| ^ ( J O - s g n ( J O - A ^ + l i f 7 V > 0 

C 2 ( X ) C o o ( J 0 = \^(X)sgn(X)-N-\ i f ^ < o. 

Since c2(X)cOQ(X) = zb 1 the exponents of £ are divisible by 4. 

8. The invariants W2(Q, p(E)) and P(E). In this section we shall 
consider algebraic number fields E/Q for which 

ord2(Dis(£/Q) ) = 0 (mod 2). 

Thus fi(E) G Z/8Z is defined and we shall relate van der Blij's in­
variant of the absolute trace form of E/Q to the local root number 
W2(Q,p(En 

(8.1) PROPOSITION. If E/Q is an extension of degree n with 

ord2(Dis(£/Q) ) = 0 (mod 2) 

then 

W2(Q,p(E)) = ( | ) ( » - /K*» /2 B 

Proof From (6.2) we have 

y2(E)W2(Q, p(E)) = e 

while (7.1) asserts that y2(E) = ^(E\ Since n = fi(E) (mod 2) we may 
conclude 
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Thus we have an expression for W2(Q, p(E) ) in terms of van der Blij's 
invariant and deg(2sVQ) when ord2(Dis(jEVQ) ) is even. 

Next we shall specialize further to extensions in which the rational 
prime 2 is no more than tamely ramified. We first prove a local result. 

(8.2) LEMMA. Suppose F/Q2 is a local extension of the 2-adic rationals 
which is no more than tamely ramified. Then ft(F) e Z/8Z is well-
defined and 

P(F) = deg(i7Q2) (mod 8). 

Proof First there is a Knebusch short exact sequence 

h 
0 -> W(Z2) -> W(Q2) -> W(Z/2Z) S Z/2Z -> 0. 

Since F/Q2 is no more than tamely ramified we have 

d2(F) = ord2(dis<F> ) = 0 (mod 2) 

and therefore (F) e W(Z2), so we can refer to ft(F). We then split F 
into two extensions, K/Q2 which is unramified of degree / = 0 and F/K 
which is a totally ramified extension of odd degree e ^ 1. Then 
e • f = dcg(F/Q2). 

Since F/K is totally and tamely ramified so it must be given by a 
polynomial f — m for some local uniformizer IT G €)K, where €)K denotes 
the ring of integers of K. But e is odd and hence by [4, III.4.1] the relative 
trace form of F/K represents (e) = (e)(lK) G W{K). However, we 
already have the Witt class (e) G W(Q2). Thus 

W 1 ^ = W (e)(lK) ) = <e><*> = (F) e W(Q2). 

Of course (e) and (K) both He in W(Z2) and hence 

p(F) = (p(e) XP(K) ) G Z/8Z. 

From the definition of van der Blij's invariant we see 

(3(e) ;= <? (mod 8) 

while it was noted in [4, III.8.1] that 

p(K) SE deg(i^/Q2) = / ( m o d 8) 

for unramified local extensions. Thus we have 

p(F) =e-f= deg(F/Q2) (mod 8). 

We add the following 

(8.3) LEMMA. If E/Q is an algebraic number field in which 2 is at most 
tamely ramified, then 

p(E) = deg(£/Q) (mod 8). 
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If 2 is at most tamely ramified in E/Q then we can write Dis(£VQ) = 
4J • M for some j = 0 and some odd rational integer M. Observe that 
M = 1 (mod 4). 

(8.4) COROLLARY. If 2 is no more than tamely ramified in E/Q then 

W2(Q, p(E)) = l and (2, Dis(£/Q) )2 = h2(E/Q). 

Proof As (3(E) = deg(£/Q) (mod 8), it follows from (8.1) that 

W2(QME)) = 1. 

Then Dis(2i/Q) = M G Q*/Q** for some rational integer M = 1 or 5 
(mod 8). Thus by (4.3), 

W2(Q,p(M)) = W2(Q,p(d))= 1 

and the second assertion follows from the identity 

1 = W2(Q9 f>(E)) = (2, d)2h2(E/Q)W2(Q, p(d)) 

where Dis(£/Q) = J G Q*/Q**. 

Recall that Hasse [8, p. 502] showed that if 2 is unramified in E/Q, 
then 

(2 ,Dis (£ /Q)) 2 = ( - l / 

where s ^ 0 is the number of distinct prime factors of 2€)E which have 
even inertia degree. To include the possibility of tame ramification of 2 we 
now define an integer t ^ 0 to be the number of distinct prime factors of 
2 0 ^ which have odd inertia degree and for which the ramification index is 
congruent to ± 5 (mod 8). Now we can state 

(8.5) Hasse. If E/Q is an algebraic number field in which 2 is no more 
than tamely ramified, then 

(2, Dis(£ /Q)) 2 = ( - 1 / + ' = h2(E/Q) 

where s = 0 (resp. t = 0) denotes the number of distinct prime factors of 
2€)E with even inertia degree (resp. odd inertia degree and with ramification 
index = d=5 (mod 8) ). 

Now the problem with (8.5) lies in the fact that while 2 is unramified in 
E/Q if and only if Dis(£VQ) is odd, we are unable to recognize the tame 
ramification of 2 from the value of Dis(£VQ) alone. In other words, we 
may have Dis(is/Q) = 47 • M, j: ^ 0 and M = 1 (mod 4) but even so 2 is 
wildly ramified. We shall take up some examples of this kind in Section 
10. We now refer back to (7.4) and close this section by restating (8.4) in 
terms of Witt class invariants. 
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(8.6) COROLLARY. Suppose that E/Q is an extension of degree n in which 
2 is at most tamely ramified. Let 

( - I f {n~X)/1 Dis(£/Q) = 4J • N 

for some j = 0 and some odd rational integer N. 
1. If n is odd then n = N (mod 4) and 

2. If n is even then n = N — 1 (mod 4) and 

(-l)(»-JV+')/4 = C 2 < £ ) -

(Note that the modulo 4 congruence conditions on N are equivalent to 
(_Xyi(n-\)/2N = M _ x ( m o d 4 ) ) 

9. Values of the additive characters. Let K be any algebraic number 
field. Upon examination of (5.3) we can think of yp(X) as a function 
f(p) e C* which to every prime p in K assigns a complex value 
satisfying 

1- f(p) = 1 f° r almost all primes, 
2- f(p) = 1 for all complex infinite primes, 
3-f(p)2 = 1 for all primes where — 1 is a local square in the completion 

K(p) 

4. Uf(p) = 1, and 
p 

5. either f(p)4 = 1 for all primes of K or 

( / ( / ^ Y / l * ) - 1 ) 4 = 1 for all primes in K. 

In 5 the two alternatives are not mutually exclusive. It could happen 
tha t ( Y / ,< l^>) 4 = 1. 

(9.1) PROPOSITION. Iff(p) e C* is a function which satisfies 1-5, then 
there is a Witt class X G W(K) with yp(X) = f(p) for all primes p in K. 

Proof We offer the following argument based on (5.3). Suppose first 
that f(p)4 = 1. We need a square class d G K*/K** such that 

f(p)/Wp(K,p(d)) = ±\ 

for all primes p in K. If we have f(p)2 = 1 already then we just take 
d = 1. Otherwise there is a finite set of primes, having even cardi­
nality, Pi,.. . ,p2k> where f(Pj) = ± / . This set is finite by property 1 
and is of even cardinality by the reciprocity property 4. In addition, by 
3, none of the primes pl9. . . ,p2k split in the quadratic extension 
K(y/—\)/K. We appeal to the realization of Hilbert symbols as stated 
in [15, 71:19a, p. 203] to guarantee the existence of d G K*/K** with 
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(d, - 1 ) , = - 1 f o r j = I,...,2k 

(d, — \)p = 1 for all other primes. 

Since Wp{K, p(d) f = ( - 1 , d)p e Z* we can be certain that 

f(p)/Wp(K, p(d) ) = ± 1 for all primes p in K. 

Now we must specify a Witt class X G / c W ÂT) as follows. 

rk(X) = Q (mod 2) 

dis(JT) = d e ^ / i i : * * 

cp(X) = ( - 2 , d)pf(p)/Wp(K, p(d)) G Z*. 

If AT has orderings, then with respect to the order corresponding to a 
real infinite prime p^ we specify 

t 0 if and only if d > 0, c„ (*) = 1 
I -' .Poo 

2 if and only if d < 0, c^JX) = - 1 

4 if and only if d > 0, cn (X) = - 1 

\ - 2 if and only if d < 0, c„ (X) = 1. 
.TOO ' 

Such a Witt class exists uniquely and clearly by (5.3) yp(X) = f(p) for all 
primes p in K. 

If ( / ( / O Y / 1 * ) " 1 ) 4 = 1 we apply the foregoing to find X e / c fF(iT) 
with 

s g n - m = 

^ W = / ( ^ < l j r > _ 1 . 

then 

yJX + (\K))=f(p) tor all p in K. 

But then 

Now we comment on the ambiguous situation (yp(\K) )4 = 1. In that 
case we may take our realizing Witt class to have rank 0 or 1 mod 2. We 
note, however, 

(9.2) LEMMA. If K is an algebraic number field then 

<Y/1*> )4 = 1 

if and only if K is totally complex and for every prime ideal p |2 the degree of 
the local extension K(p)/Q2 is even. 

For example in K = Q( \ /—3)/Q we have a single dyadic prime and 
at that prime "^(1^) = /. By contrast there are two dyadic primes in 
K = Q(V~"7)/Q and the values of yp{\^) at each of these primes is 
£ = exp(27r//8). Of course we could have yp(\K) = 1. The simplest 
example of this is K = Q( \ /—1)/Q. 
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We shall consider two viewpoints in giving a brief summary of the 
relation between additive characters and local root numbers of real 
orthogonal representations. First we may turn to the integral group ring 
Z{K*/K**]. From the embedding K*/K** -> W(K)* there results a 
ring homomorphism 

Z[K*/K**] -> W(K) -> 0. 

On the other hand 

K*/K** = Hom(G(K% 0 (1 ) ) 

will produce 

Z[K*/K**]-*R0(G(K)) 

where R0(G(K) ) is the representation ring of the continuous, finite 
dimensional real orthogonal representations of G(K). 

For an element a e Z[K*/K**] let X(pt) e W(K\ p(a) <= R0(G(K) ) 
denote the associated Witt class and the associated virtual representation 
respectively. If e(a) e Z is the argumentation of a then 

e(a) = deg(p(a) ) while e(a) = rk(X(a) ) (mod 2). 

Then from (6.3) with K = E, we can derive the identity 

(9.3) COROLLARY. For a e Z[tf*/A**], 

Y/7(X(a) ) ^ ( ^ , p(a) ) = (2, dis(Z(a) ) ^ ( y / 1 ^ ) )degp(a ) . 

For the second point of view we consider the Burnside ring, 
Bum(G(K) ), of continuous representations of G(K) as a finite group of 
permutations. Since a continuous homomorphism p:G(K) —> Sn with 
image a transitive subgroup corresponds to a relative extension E/K 
with degree « we can define Burn(G(K) ) —» W(AT) by p —> (is) e 
W(K), the Witt class of the trace form from £/AT. It is not difficult to 
see that in fact 

Burn(G(iQ ) -> W(K) -> 0 

is a ring epimorphism. Of course there is a ring homomorphism 

Burn (G(^ ) )^ i^ 0 (G( i^ ) ) . 

For p e Burn(G(ii:) ) let X(p) e W(iT) be the corresponding Witt class of 
the virtual trace form. Then from (6.2) we have 

(9.4) COROLLARY. For p e Burn(G(iQ ) 

yp(X(p))Wp(K, p) = (y /1^ ) )deg(p). 

10. Examples. We shall take up a few examples involving the absolute 
trace form of an algebraic number field. If / ( / ) G Z[t] is a monic ir-
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reducible polynomial then there is a simple extension E of Q defined by 
/ ( / ) , i.e., 

E = Q[t]/(f(t)). 

While all of the Witt invariants of the absolute trace form of E/Q and 
hence the local root numbers Wf(Q, p(E) ) of a real orthogonal re­
presentation p(E) of the absolute Galois group Gal(Q/Q) and ultimately 
the additive characters Y/(£), can, in theory, be computed from the co­
efficients of / ( / ) , we can only present a few examples where these 
computations are carried out, in practice, with reasonable success. We 
state our results in the Witt ring formalism. The additive characters J/(E) 
are then determined by (5.3). The explicitly determined Witt invariants 
give some basic information on ramification properties of (rational) 
primes in E, and also on the possibilities of the Galois group of / ( / ) 
over Q. 

We first fix the notation. For an irreducible polynomial / ( / ) e Q[/], 
Dj and Gal( / ) denote the discriminant of / ( / ) and the Galois group 
of f(t) over Q, respectively. For the associated simple extension E = 
QWifiO ), N stands for its normal closure and Gal(7V7Q) = Gal( / ) . 
Note that the field discriminant Dis(£7Q) differs from Df by a square 
factor, that is, 

Df/Dis(E/Q) e Q**. 

We shall begin with some extensions of degree 4 over Q. Choose a 
square-free rational integer m and set F = Q(\/m)/Q. If a, b are rational 
numbers for which o = a -\- b y/m is not a square in F, then we introduce 
the degree 4 extension 

E/Q = F(y/o)/F = Q(Va + b^)/Q. 

The results are collected in the following 

(10.1) PROPOSITION. Let E/Q be the simple extension of degree 4 defined 
by the irreducible quartic 

f(t) = t4 - lat1 + {a2 - b2m) G Q[t] 

where m is a fixed square-free rational integer and a, b are rational numbers 
such that a + by/m is not a square in Q(yfm). Then 

1. dis<£> = a2 - b2m G Q*/Q**. 

f ( - l , -m)7(û, -m(a2 - b2m) \ if a * 0 

l ( - l , -m)l ifa = Q 

for every prime I in Q, including the infinite prime. 
In particular, 

https://doi.org/10.4153/CJM-1988-024-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-024-x


ADDITIVE CHARACTERS 579 

/ r A [ ( - 1 , - 1 ) ^ - 1 , 0 ) / ifa^O and Gal( /) = Q 
1 - 1 ) ^ - 1 , ^ ( / n , - a ) / z / a ^ O aw/ Gal(/) = F4 

0 / / [a < 0, m > 0 ] or a ^ 0, m < 0] 

3. sgn(£> = {2 if [a > 0, m ^ 0 a«d a2 - /32m < 0] 

4 / / [a > 0, m > 0 a«d a2 - b2m > 0] 

( - 2 a , a2 - b ^ i - a , - m ) 7 ^ ( Q , p(a2 - b2m) ) / /a ^ 0 
4. y,(E) = , 

[ ( 2 , - m ^ Q ^ - m ) ) i/£i = 0 

for every prime I in Q, including the infinite prime. 
Furthermore, if 2 is unramified in E/Q, then 

5. m = 1 (mod 4), a ^ 0, a2 - /32m = M e Q*/Q** w//A 

M = 1 (mod 4) and h2(E/Q) = (a, -mM)2 = (2, M)2. 

Now we shall consider a monic irreducible trinomial of the form 

/ ( / ) = /" + atk 4- b G Z[/] with « ^ 2 and 1 ^ A: ^ /? - 1. 

We confine ourselves to the discussions on the following cases: 
1. k = l , n ^ 2 arbitrary, 
2. /c- = 2, /i ^ 5 odd, and 
3. k = 3, « = 7. 
In the case & = 1, all of the Witt invariants of (E) can be computed 

effectively from/(/) . In fact, these computations have been carried out by 
[4, VI] for n odd, and by [16, Appx. II] for n arbitrary. The results are 
formulated in the Witt ring formalism as follows. 

(10.2) PROPOSITION. Let f(t) = tn 4- at + b e Z[t] be an irreducible 
trinomial of degree n ~ 2. Then the following are valid. 

l .d i s (E) = (-\)<n-x^/2Df 

(nnbn~x + (/i - I f " V ifn = 1 (mod 2) 
" [n%n-\ _ (/J _ xy-\an ifn _ 0 ( m o d 2). 

f(dis<£>, 1 - n\ ifn s 1 (mod 2) 

\(dis<£>, -n\ ifn = 0 (mod 2) 

/or ev^ry prime I in Q, including the infinite prime. 

{0 if dis(E) > 0 and n = 0 (mod 2) 

I 1 if dis<£> > 0 oW /i = l (mod 2) 
3. sgn(ls) = \ 

^ w 12 i / dis<£> < 0 and n = 0 (mod 2) 
\3 if dis(E) < 0 flftd « = 1 (mod 2). 
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Combining (10.2) with (8.6), we obtain 

(10.3) COROLLARY. Under the same hypotheses as in (10.2), assume that 2 
is at most tamely ramified in E/Q. Then the following hold. 

1. dis<£> = (-\)n(n~l)/2Df = 4j - N 

for some integer j §̂  0 and some odd integer N. In particular, N = dis(is) G 
Q*/Q**. 

2. If n is odd, then n = N (mod 4) and 

(-l)0-")/4 = ( A U _ „ ) 2 = C 2 < £ > . 

3. If n is even, then n = N — 1 (mod 4) and 

(_!)(*-*+D/4 = (7V? _ „ ) 2 = C2^m 

Note that properties listed in (10.3) are necessary conditions for 2 to be 
at most tamely ramified in E. Thus, if any one of the conditions is not 
satisfied then 2 will be wildly ramified in E. 

For irreducible trinomials 

f(t) = tn + atk + b G Z[t] with n ^ 5 odd and k ^ 2 

the computations of the Witt invariants of (E) become increasingly 
involved. We state our results for these cases without proofs. 

(10.4) PROPOSITION. Let f(t) = tn + at2 + b G Z[t] be an irreducible 
trinomial of odd degree n = 5. Then the following are valid. 

1. dis<£> = {-\f^-^/2Df = 4(n - 2)n~~2anb + nnbn~\ 

2. Cl(E) = (n dis<£>, -2(n - 2) )7 

for every prime I in Q, including the infinite prime. 

'1 z/dis<£> > 0 

13 if 
3. sgn<£) 

1 ~ if dis<£> < 0. 

Furthermore, assume that 2 is at most tamely ramified in E/Q. Then 
4. Dis(is/Q) = 4J • N for some integer j ^ 0 and an odd integer N such 

that N = dis<£> G Q*/Q**, N = n (mod 4) and 

( _ 1 } ( « - A 0 / 4 = Ci{E) = (n dis(E^ _2(n _ 2 ) ) 2 > 

Now we consider a septimic trinomial of the form 

f(t) = t1 + a? + b G Z[t]. 

(10.5) PROPOSITION. Let f(t) = t1 + a? + b <^ Z[t] be an irreducible 
septimic trinomial over Q. Then the following assertions hold: 

1. dis<£> = (-l)n(»-lV2Df = fb6 + 3 3 4 W . 
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2.c,(E) = (-3,dis<£>), 

for every prime I in Q, including the infinite prime. 

[1 //dis<£> > 0 

13 if 
3. sgn<£> 

l~ if dis(E) < 0. 

Furthermore, assume that 2 is no more than tamely ramified in E/Q. 
Then 

4. dis(E) = —Df = 4J- N for some integer j ^ 0 and an odd integer 
N = 1 (mod 8). 

Proof Only statement 4 needs an explanation. To show that N = 1 
(mod 8), we only need the observation that N = 1 = 3 (mod 4) and 
therefore c2(E) = ( — 3, N)2 = 1. Since 

(-l)<7-")/4 = C2<£> 

it now follows that N = 1 (mod 8). 

Continuing along in the same vein, it seems reasonable to call for the 
determination of the invariants of the Witt class of the absolute trace 
form of the algebraic number field E defined by an irreducible trinomial 
/ ( / ) = tn -¥ atk + b e Z[t] in general. In particular, for n = p an odd 
prime, the most subtle invariant of (E) is the stable Hasse-Witt invariant 
Cj(E) at a rational prime /, and should take a reasonably simple form. We 
should state this as 

(10.6) QUESTION. Let f(t) = tp + atk + b e Z[t] be an irreducible 
trinomial of prime degree p = 5 and 1 ^ k ^ p — 1. Then is 

c,(E) =(/,dis<E>, * ( * - / > ) ) / 

for every prime I in Q, including the infinite prime! 

(This is true for k = 1, 2 and if p = 7 also for k = 3.) 

The absolute trace form of the algebraic number field E defined by a 
polynomial of the type 

f(t) = tn + atk + . . . + b e Z[f] 

where «, & are positive integers such that k = (n + l ) /3 , was studied in 
[19]. The stable Hasse-invariants ct(E) and the additive characters y/(E) 
could be determined explicitly incorporating the results in [19]. 

For irreducible polynomials of odd prime degree f(t) e Z[t], explicitly 
determined Witt invariants would produce the first screening test in 
deciding the solvability of the Galois group Gal(/) . For the possibilities of 
Gal( /) , we have 
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(10.7) LEMMA ( [6] and [2] ). Letf(t) e Z[t] be an irreducible polynomial 
of prime degree p = 5. Then the possible Galois groups, Gal( /) , are the 
following: 

1. Gal( / ) is solvable (so Gal( / ) is a Frobenius group F of degree p with 
r\p - 1). 

2. Gal( / ) = Ap or Sp. 
3. Gal( / ) = PSL(29 7) if p = 1. 
4. Gal( / ) = PSL(2, 11) or Mn if p = 11. 
5. PSL(2, p - 1) Q Gal( / ) Ç /TZ,(2, /> - 1) if p = 1 + 2* > 5 w a 

Fermât prime. 
In particular, if p ¥= 1, 11 or a Fermât prime > 5 , then Gal( / ) is either 

solvable or A or Sp. 

Now we add some trace form considerations. The knowledge of the 
stable Hasse-Witt invariants of the Witt class of the absolute trace form of 
the simple extension E = Q [ / ] / ( / ( 0 ) contains significant information 
about the Galois group of f(t). In fact, we have 

(10.8) THEOREM. Let f(t) e Z[t] be any irreducible polynomial of prime 
degree p ™ 5. 

1. If p == 3 (mod 4) and if there is a rational prime 1=1 (mod 8) with 
Ci(E) = — 1, then Gal( / ) is not solvable. 

2. If p = 5 (mod 8) and if there is a rational prime I = 1 (mod 4) 
with Ct(E) — — 1, then Gal( / ) is not solvable. 

3. Ifp = 1 (mod 8) and if there is any rational prime I with C}(E) = — 1, 
then Gal( / ) is not solvable. 

Proof. We examine the argument of [4, VI.3] carefully. Let N be the 
normal closure of E over Q. If Gal( / ) is solvable then Gal( / ) is a 
Frobenius group F with r\p — 1. Let 2 /||r and let L be the unique 
subfield of L of degree 2* over Q. Then by [4, VI.3.7], we have 

(E) = < ! > + ( ( ; , - \)/2')(L), sgn(E) = 1 or p 

and 

dis<£> ¥* 1 in Q*/Q** if (p - X)/2l = 1 (mod 2) 

dis<£> = 1 in Q*/Q** if (p - l ) /2 / = 0 (mod 2). 

1. Assume that p = 3 (mod 4). Then r could be odd, in which case 
(E) = p(\) and c^E) = 1 for every prime / = 1 (mod 8). If / = 1 then 
L/Q is quadratic and we find 

dis<L> = -Df = dis(E) ¥= 1 in Q*/Q** 

and we easily compute 

f ( - 2 , -Df\ if/7 ^ 3 (mod 8) 
ci(E) = { 

((2, -Df)l if p = 7 (mod 8) 
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for every prime / in Q. Obviously, Cj(E) = 1 for all primes / = 1 (mod 8). 
Therefore, if there is at least one prime / = 1 (mod 8) for which Cj(E) = 
— 1, then Gal( / ) cannot be a solvable group. 

2. Assume that p = 5 (mod 8). We use [4, VI.3.10]. In this case, we have 
only to consider t = 1 or / = 2. If / = 1, then (E) = (1) + 2(L) and 
ct{E) = (— 1, dis(ii) )/ for every prime / in Q. Clearly, ct{E) = 1 for all 
primes / = 1 (mod 4). Now assume that / = 2. Then (E) = (1) + (L), 
and C/(L) = (—1, a)t for some rational number a (cf. Proposition 
(10.1)). It immediately follows that ct{E) = ct(L) = 1 for all primes 
/ = 1 (mod 4). Therefore, if there is at least one prime / = 1 (mod 4) for 
which ct(E) = — 1, then Gal( / ) cannot be a solvable group. 

3. Now assume that p = 1 (mod 8). If (p — \)/2t is odd then L/Q is a 
cyclic extension of degree 2l ^ 8. For such extensions it is known that 
Dis(ZVQ) = dis(L> is a norm from Q( \/2)/Q- Thus 

(2, Dis(ZVQ) ), s 1 

for all primes / in Q. On the other hand, Kahn [10] showed that the second 
Stiefel-Whitney class of the regular representation of C2>, the cyclic group 
of order 2\ is trivial if / ^ 3. Then by Serre's Theorem, we have 

h,(L/Q) = (2, Dis(L/Q) )7 ss 1. 

Since deg(L/Q) = 0 (mod 8), it follows that 

Cl(E) = Cl(L) s 1. 

If (p — l ) /2 / is even then we write 

(p - X)/2l = 2\2m + 1) for some m ^ 0. 

Now it could happen that deg(ZVQ) = 4. But if so, /' ^ 1 and ct{2(L) ) = 1 
for a cychc extension of degree 4. If deg(L/Q) = 2 then / ^ 2 and surely 
C/(4(L) ) = 1 for a cyclic extension of degree 2. Therefore, if there is any 
prime / with Cj(E) = — 1, then Gal(/) cannot be a solvable group. 

The point of the above discussions is that (10.7) combined with the 
explicit knowledge of stable Hasse-Witt invariants ct{E) asserts that 
Gal( / ) must be one of the nonsolvable groups listed in (10.7). 

We should note 

(10.9) COROLLARY. Letf(t) e Z[t] be a monic irreducible polynomial of 
prime degree p = 5 (mod 8) whose Galois group is solvable. If either 

1. sgn(^) = 1 and Df = 1 (mod 8), or 
2. sga(E) = p and Df = 5 (mod 8), 

then there are an odd number of rational primes 1 = 3 (mod 4) for which 
c,(E) = - 1 . 
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Furthermore, N contains a unique cyclic subfield L/Q of degree 2 if Dr is 
a square, and of degree 4 if Dr is not a square, and these are exactly the 
rational primes 1 = 3 (mod 4) that ramify in L/Q. 

(10.10) Examples. 1. Let 

f(t) = t5 - t4 + 2t3 - 5t2 + / 4- 3 G Z[t]. 

Then f(t) is irreducible over Q with Gal( / ) = D5. We see that 

sgn<£> = 1 and Df = 34792 = 1 (mod 8). 

The primes 3 and 79 are both congruent to 3 (mod 4). However, only 
79 = — 1 (mod 5) has the property that c19(E) = — 1. 

2. Consider the polynomial 

f(t) = tu - 8/12 4- 16/11 - 27/10 + 38f9 - 36/8 + 2lf - 12/6 

+ 13/5 - 19/4 + 21/3 - 15/2 + 6/ - 1 G Q[t]. 

Then / ( / ) is irreducible over Q and Gal( / ) = Du. We can compute 
that 

sgn<£> = 1 and Df = 544122636 = 1 (mod 8). 

Only 263 is congruent to 3 (mod 4), and hence c263(E) = — 1. 

Finally we would like to discuss the question which suggested the need 
for the results (8.4) and (8.6). In [4, III.6] it was shown that every Witt 
class in W(Q) with nonnegative signature can be represented by the 
absolute trace form of some algebraic number field. Then, upon reflection 
and consideration of some examples, the following is suggested, which we 
may state as a 

(10.11) CONJECTURE. If X G W(Q) is a Witt class for which sgn(X) = 0 
and if I is a finite rational prime for which 3/(X) = 0 in W(Z/IX), then there 
is an extension E/Q in which I is unramified and for which (E) = X. 

In fact, this was raised as a further question in [4, III.9]. In trying to 
verify the statement in some elementary cases for which 

d2(X) = ord2(dis(X) ) = 0 (mod 2), 

we came to realize that some relation between the Witt class invariants of 
the absolute trace form and the ramification of 2 was missing. This lead 
us to the discussions in Section 8, in particular, to (8.4) and (8.6). 

For example, 0 G W(Q) is obviously represented by the trace form 
from Q ( V — 1)/Q- Yet 2 is wildly ramified in this extension. Since 
/?(0) - 0 G Z/8Z we see by (8.6) that if E/Q is an extension in which 2 is 
unramified and for which (E) = 0 e W(Q), then 
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deg(£VQ) = 0 (mod 8). 

Such an extension does exist. Less obvious, however, is the case of 2(1). 
Here the van der Blij invariant is 2 (mod 8) so the degree of such 
an extension E/Q, in which 2 is unramified and for which (E) = 
2(1) e W(Q), must therefore be congruent to 2 (mod 8). No quadratic 
extension can represent 2(1). So the least possible degree of such an ex­
tension is 10. 

We can give the affirmative answer to (10.11) with 1 = 2 and X = 2(1). 

(10.12) THEOREM, (a) There exist monic irreducible polynomials f{t) ^ 
Q[/] of degree 5 satisfying the following properties'. 

1. Df is a square of an odd rational integer. 
2. f(t) has only one real root. 
3. Gal( / ) •= A5. 
(b) Letf(t) e Q[t] be such a quinticpolynomial. Let {at\i = 1, . . . , 5} be 

its roots in C. Define a polynomial 

MO = II {t - (at + a.) }. 
l ^ i< / -^5 

Then 
1. P10(0 is irreducible over Q, and 

E = Q[t]/(Pl0(t) ) 

is a simple extension of degree 10 over Q. 
2. Gal(P10) = As. 
3. dis(E) = - 1 e Q*/Q**. 
4. sgn(£> = 2. 
5. 2 w unramified in E. 
6. c2(E) = c^E) = — 1, ûwd C/(2s) = 1 /or a// odd primes I in Q. 
7. (2s) represents the Witt class 2(1) z'« J^(Q). 

Proof, (a) We give some examples of quintic polynomials with the re­
quired properties. Put F = Q[t]/(f(t) ). 

A0 *>/ sgn<F) Gal(/) 

I / 5 - / 4 + 2 / 3 -3 / 2 + 5/+l 172592 1 ^ 5 

II t5 + t4 + 4t3-3t2-3t + 3 3452412 1 ^ 5 

III f5 + / 4 - 2 / 3 + /2 + / + l 34232 1 ^ 5 

(b) 1. This was proved in [9]. 
2. This follows from Proposition (1.1.6) in [2]. 
3. P10(0 and its discriminant DP (and hence dis (Is) = — DP ) are given 

as follows: 
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M ^o(0 3P10 

I / 1 0 - 4 / 9 + 1 2 f 8 - 2 5 / 7 + 2 8 / 6 - 4 3 / 5 + 4 5 / 4 - 8 / 3 - 9 9 / 2 + 1 0 9 / - 5 3 17659864272 

II /10 + 4 / 9 +18/ 8 + 37r7 + 82/6 + 5 U 5 - l l / 4 - 1 6 4 / 3 - 4 2 9 / 2 - 1 8 9 r - 5 7 3225672232416313 

III /10 + 4 / 9 - 1 3 / 7 - 4 / 6 + 3 5 / 5 - 2 7 / 4 - 2 4 r 3 + 27r2 + 9 / - 9 320236314 

In all cases, P10(0 is irreducible over Q, and dis (is) = — 1 in 
Q*/Q**. 

4. As / ( / ) has two pairs of conjugate imaginary roots, from its definition 
P10(0 has exactly two real roots. So sgn(is) = 2. 

5. Since Dp is a square of an odd rational integer, 2 is definitely 
unramified in E/Q. 

6. For c2(E) use (8.6), taking n = 10 and N = — 1. Then c 2 (£) = 

( - 1 ) 3 = - 1 . For Coo(E) use (7.5) with JV = - 1 . Then c2(E)Coo(E) = 1 
so that c00(£') = — 1. The proof of C[(E) = 1 for all odd primes / is more 
involved. It suffices to show that h [(E/Q) = 1 for all odd primes, since 

C[(E) = h[(E/Q)(-h -\)[ = h[(E/Q). 

We need the results of [5] and [16], which we recall briefly. Over 
the classifying space, B(Sn), of Sn, there is the canonical «-plane bundle 
/„ —» B(Sn). Since Sn c 0(n) there is a map B(Sn) —> BO(n) unique up to 
homotopy. Then from the universal «-plane bundle |w —» BO(n) we simply 
pull back /„ -> £ ( S J . Now 

H*(B(Sn)\ Z/2Z) = #*(£„; Z/2Z) 

and thus the Stiefel-Whitney classes 

Sj(ln) e H\B(Sny, Z/2Z) 

can be regarded as elements of H\Sn; Z/2Z). In particular, 

J 2 ( / J e iî2(S„; Z/2Z) 

is <?*.?„ in Serre's notation. If T̂ is a field of characteristic ¥=2, then 

H\G(K)\ Z/2Z) = #*AK** and H2(G(K); Z/2Z) = 5r2(i^). 

Now a separable extension, F/K, of degree n, corresponds to a continuous 
homomorphism p:G(K) —» Sw onto a transitive subgroup. In fact, this is 
p(F). Then 

p(F)*(^( / J ) e Hl(G(K); Z/2Z) 

is the discriminant of i 7 /^ , Dis(i7iT) (not the discriminant of (F) ), 
and 

P(F)*(s2(ln)) e ii2(G(*0; Z/2Z) = Br2(K) 

is not quite the classical Hasse invariant, but needs to be corrected by 
(2, Dis(i7iQ ). (See [16, Theorem 1 and Remarks].) 
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Now we are ready to prove the assertion. Since S5 is 2-transitive, there is 
an embedding i:S5 ^ Sl0 whose image is a transitive subgroup. This 
induces the homomorphism 

i*:H*(SlQ; Z/2Z) -* H*(S5; Z/2Z). 

Now we need the following facts which were pointed out by V. Snaith: 

'"Ol^io) ) = S\0s)> a n d 

ns2(ll0)) = Sl(l5) Usx(l5) =sl(l5)
2. 

If Gal( / ) is a 2-transitive subgroup of S5, then p(F):G(Q) —> S5 is a 
homomorphism onto a 2-transitive subgroup. If we compose this with the 
embedding i:S5 ^ S10 we obtain 

XF:G(Q) -> S10 

whose image is a transitive subgroup of S10, and this corresponds to an 
extension E/Q of degree 10. If we note that 

X*:#*(S10; Z/2Z) -» H*(G(Q); Z/2Z) 

factors into 

if*(510; Z/2Z) -> /7*(S5; Z/2Z) ^ - 4 * H*(G(Q); Z/2Z) 

we can immediately see that 

Dis(£/Q) = Dis(i7Q) = D/ G Q*/Q**. 

Furthermore, at each prime / in Q, we have 

h,(E/Q) = (2, Df),(-\, Df), = ( -2 , ty),. 

Now we know that the polynomial P\0(t) defines the extension E/Q. Since 
Gal( / ) = A5 and Z^ is a square of an odd integer, Dis(Zs/Q) is also a 
square, while 

h,(E/Q) = ( - 2 , Z ^ ) / S 1 

for all odd primes / in Q. 
7. We have constructed E in such a way that the Witt class of (E) 

indeed represents 2(1) in W(Q). 

We close this section with 

(10.13) Remark. With the assumptions and notations of (10.12) in force, 
if Gal( / ) is a 2-transitive subgroup of S5, then 

WftQ, p(E) - p(F) ) = ( - 2 , Df\ h,(F/Q) 

= A,(£/Q) h,{F/Q) 

for every prime / in Q. 
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