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The notion of projective Banach module was defined by Helemskii in [1]—the paper
which properly founded the homological theory of Banach algebras. The same author
introduced the definition of the (relatively) flat Banach module in [2]. Recently M. C. White [3]
modified both of those definitions, introducing so called C-projective and C-flat Banach
modules.

For a given constant C > 0 the Banach module Zover a Banach algebra A, (abbreviated
below as "module"), is called C-projective [3] if for arbitrary modules Y, Z and morphism
(/>: X -> Z, epimorphism a : Y -> Z, and bounded linear operator j : Z -*• Y such that
aj = 1, there exists a morphism i/r: Z -» Y such that cn/r = (/>and \\\j/\\ < C||0||||y||. As well as
[1], the paper [3] gives us the more useful equivalent definition of C-projectivity. Namely, a
module X is C-projective if and only if the morphism of external multiplication
n : A ® X ->• X, defined by the formula n(a <g> x) = ax, has a right inverse morphism p such
that ||p|| < C. Here the symbol® denotes the projective tensor product of Banach spaces [4].
If ||p|| = C and there is no right inverse with a norm smaller than C, then it is natural to say
that X is exactly C-projective. In this paper we give answers to two questions that
(directly or not) were put in [3]. First, for arbitrary C > 1, we give an example of an
exactly C-projective Banach ,4-module. (Moreover, it is a maximal ideal in a uniform
algebra A.) Note that C-projectivity is impossible for C < 1 and for C = 1 there exist trivial
examples: consider for example any maximal ideal in the disc-algebra, corresponding to an
inner point of the disc. Second, we shall show that C-projectivity does not possess the same
"continuity property" as C-flatness [3]: that is, there exists a module (again a maximal ideal
in the uniform algebra) that is (C + c)-projective for all e > 0 but not C-projective.

As usual, we denote by A(E) the uniform algebra of functions that are continuous on the
given compact subset £ c C and analytic in its interior.

EXAMPLE 1. Consider the compact subset A: = D U £ o / C x R , where D — {(z, 0) :
\z\ < 1} is the closed disc and E = {(z, i) : |C|~' < \z\ < 1, 0 < t < 1} is the cylindric annulus.
(We denote by E, its section, where / is constant.) Consider the uniform algebra

A = {/€ C(K),f(z, 0) 6 A(D),f(z, 0 e A(E,) for * e (0, 1]}

PROPOSITION 1. For the maximal ideal M C A, corresponding to the point 0 = (0, 0),
(1) M is a C-projective Banach A-module,
(2) M is not k-projective Banach A-module for any k < C.

Proof. (1) Consider two functions: h e M such that h(z, t) = z for (z, t) € K and
f{z, t) = l/z for (z, t)eK\O. Note that \\h\\ = 1 and, for each meM,fm is defined on K\O
and we extend the definition to K by continuity. We have ||/m|| < C||/w||, because | f\ < C on

fThis work was partially supported by ISF (Soros foundation) grant M95300 and Russian RFFI grant 93-01-00156.

Glasgow Math. J. 40 (1998) 143-145.

https://doi.org/10.1017/S0017089500032456 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032456


144 L. I. PUGACH

E, and multiplication by z preserves the uniform norm in A(D). Now define the morphism
p : M ->• A® M by the formula p{m) — mf® h. Obviously n(p(m)) = mfh — m and ||p(w)|| =
llw/INI/ill < C\\m\\. Hence part (1) is proved.

(2) Assume the contrary; then for the epimorphism co : A -> C of evaluation at the point
O (which has a right inverse operator j given by the natural injection) and morphism
4>: M -*• C given by the formula 0( / ) = %(O) there exists a morphism ifr : M -*• A such that
coxjr = (j> and ||i/r|| < k\\<p\\ \\j || = k. But each morphism V : M -*• A is a multiplication by
some function g e C(K\O). See, for example, the standard argument in [5]. Since
||gm|| < A:||w|| we can conclude that \g\ < k on each annulus E,. Since co\jf = </> it is evident
that g = i + a o n D\O, where a e ^ (^ ) - By continuity \^ + a\ < k on EQ and hence on the
circle T = {(z, 0) : \z\ = 1/C}. Therefore 11 + az\ = \gz\ < k\z\ =k/C < 1 on T. This contra-
dicts the maximum modulus principle, and so M is an exactly C-projective ^-module.

EXAMPLE 2. Consider the compact subset K — D U {\Jn>c+\En) of C x R, where D is the
same disc and En = \{z, -j): ^ - \ < \z\ < 1 + £} is the closed annulus. Then

^ - 1/6

is a uniform algebra. Let M be the maximal ideal, corresponding to the point O = (0, 0).

PROPOSITION 2. For the maximal ideal M c A, corresponding to the point O = (0, 0),
(1) M is a (C + e)-projective Banach A-module for all e > 0,
(2) M is not a C-projective Banach A-module.

Proof. (1) Fix n > C+ 1 and let two functions he M and fe C(K\O) be defined by
h(z, t) — 1 on Ek, (C < k <n- 1), but h(z, t) = z on Ek, (k > n), and f(z, t) = 1 on Ek,

(C < k < n - 1), but / (z , 0 = 7 on Ek, (k > n) and on D\O. Note that \\h\\ = \+\ and, for
each m e M, we have |(/w|| < «C/(« - QIMI, because | / | < «C/(« - Q on En and the mul-
tiplication by z preserves the uniform norm in A(D). Now define the morphism p: M ->
/1(8>M by the formula p{m) — mf®h. Obviously n{m) = mfh — m and ||p(/w)|| = ||/w|| \\h\\ <
nC/(n - Q |M| (1 + i ) = C[l + ( C + l)/(n - Q]||m||. Since n is arbitrarily large part (1) is
proved.

(2) Repeating the argument from Proposition 1 we obtain a function g e C(K\O) such
that |g| < C on each annulus En and g = \ + a on Z)\O, where a e /4(I>). As the inner circles
Tn of En tend to the circle T of radius ^ from D, by continuity we obtain |g| < C on T. Hence
|1 + za\ = \gz\ < C. ^ — 1 on T. Using the maximum modulus principle we conclude that
a = 0. Thus g = j on D and so g(^, 0) = C; also by definition of the algebra A, g{^, i) = C,
for all n. Applying the maximum modulus principle to each annulus En, we conclude that
g = C on En. By continuity g = C on T giving a contradiction.

Note that both examples represent so-called non-idempotent maximal ideals; (that is
M ^ A/2). We know almost nothing about the exact estimates of C-projectivity in the idem-
potent case. If we analyse Helemskii's original proof of the projectivity of the algebra of
convergent sequences CQ (and the algebra /] of summable sequences) one can see that both
these algebras are 1-projective [1]. The author can generalize this result to the algebra C(K),
where X is a semi-discrete compact set. Let X be a compact set; denote by X the set of its
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accumulation points and A^n+1) = A^n) {n e N). If A^n) is empty for some n e N, we say X is a
semidiscrete compact set. As for the algebra C[0; 1] we can only see from [1] that the maximal
ideals in it are 2-projective, but the constant 2 seems not to be the best possible.
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