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Higher £2-Betti Numbers of Universal
Quantum Groups

Julien Bichon, David Kyed, and Sven Raum

Abstract. We calculate all £2-Betti numbers of the universal discrete Kac quantum groups U}, as
well as their half-liberated counterparts U3,

1 Introduction

The category of locally compact quantum groups [KV00] is a natural extension of the
category of locally compact groups. There are two important reasons to pass from lo-
cally compact groups to locally compact quantum groups. First, classical Pontryagin
duality for locally compact abelian groups extends to a full duality theory for locally
compact quantum groups, in particular, establishing a duality between discrete and
compact quantum groups. Second, locally compact quantum groups form the cor-
rect framework to host a number of important deformations and liberations of classi-
cal groups. A convenient operator algebraic setting describing discrete and compact
quantum groups was first provided by Woronowicz [Wor87, Wor98], and since his
seminal work, an abundance of analytical tools have been shown to carry over from
discrete groups to discrete quantum groups (cf. [BMT01, Bral2, Ver07, Fim10, MNOG6,
Voill]).

This paper is concerned with the £*-Betti numbers of discrete quantum groups
[Kye08b], and our primary focus is on the duals of the free unitary quantum groups
U3, which are universal within the class of discrete quantum groups in the same way
that the free groups are universal within the class of finitely generated discrete groups;
that is, every finitely generated discrete quantum group is the quotient of some U7,
the latter to be understood in the sense of the existence of a surjection at the Hopf
algebra level. (We tacitly limit our focus to the case of quantum groups of Kac type
here, although the statement remains true if one allows non-trivial matrix-twists in
the definition of the unitary quantum groups; ¢f. [Ban97a].) Due to the lack of a
topological interpretation of (co)homology of quantum groups, the computation of
their £2-Betti numbers has proven to be a difficult task, and only general structural re-
sults [Kye08a, Kyell, Kyel2] were available until Vergnioux’s paper [Ver12], in which it
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was proven that the first £2-Betti number vanishes for the duals of the free orthogonal
quantum groups O, Subsequently, Collins, Hartel, and Thom showed that the higher
£2-Betti numbers of O, also vanish [CHT09]. Concerning the universal quantum
groups U, Vergnioux’s work also showed that the first £2-Betti number is non-zero.
He conjectured that it would equal one, which was recently ]i)roved by the second and
third authors in [KR16] along with the observation that ﬁ‘f,z (T#) = 0 for p > 4, thus
leaving open the question about the values of the important second and third ¢2-Betti
numbers of U

In this article we provide computations of all £2-Betti numbers of U}, by combining
techniques from [KR16] with those from [BNY15, BNY16] and a new free product
formula for £2-Betti numbers of discrete quantum groups. In particular, we obtain a
different proof of the fact that ﬂl(z) (TH=1

Theorem A  For any n > 2, the free unitary quantum group U7, satisfies

B (D)) - {1 e

0 otherwise.

In [CHTO09] it was proved that the discrete duals of the free orthogonal quantum
groups satisfy a certain Poincaré duality developed in [vdB98], meaning that there is
a natural isomorphism H, (O}, M) = H**(0},, M) for every Pol(O})-module M.
But since this property implies a symmetry in the £2-Betti numbers, Theorem A has
the following corollary.

Corollary B The discrete quantum groups U7, do not satisfy Poincaré duality.
The techniques used in the proof of Theorem A are of independent interest. First,
we provide a formula for the ¢2-Betti numbers of arbitrary free product quantum

groups [Wan95].

Theorem C If G and H are non-trivial compact quantum groups of Kac type, then

0 ifp=0,
BO(G +H) = { P (@) - (@) + O () - P (H) +1 ifp=1,
B (G) + pS(H) ifp>2.

Our second ingredient is the fact that £2-Betti numbers enjoy a natural scaling
behaviour under cocentral extensions, which is a quantum counterpart of the classical
scaling formula for finite index inclusions of groups (cf. [Liic02, Theorem 6.54(6)]).

Theorem D  Let C — Pol(H) — Pol(G) — CT — C be an exact sequence of Hopf
*-algebras in which G and H are compact quantum groups of Kac type and T is a finite
abelian group. Then for any p > 0, we have

B (H) = 1| (G).
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The previous theorem allows for other applications. We combine it with results of
[Kye08a] in order to obtain the following result (see Section 2 for the definition of the
half-liberated quantum groups).

Theorem E  For any n > 2, the half-liberated unitary quantum group U}, satisfies

B (T;) - {1 gr=1

0 otherwise.

2 Preliminaries
We collect some notation and necessary tools for the sections to follow.

Augmented algebras. A *-algebra A with a distinguished *-homomorphism ¢: A —
C is called an augmented x-algebra. We write A* = kere.

Compact and discrete quantum groups. Compact quantum groups were intro-
duced in the C*-algebra setting by Woronowicz [Wor87, Wor98]. If G is a compact
quantum group, we denote by Pol(G) the associated Hopf *-algebra of polynomial
functions, which possesses a unique Haar state denoted by ¢. In the case where ¢ is
tracial, we call G a compact quantum group of Kac type. We denote the discrete dual
of a compact quantum group G by G.

Von Neumann algebra completions and measurable operators. If G is a compact
quantum group and ¢ is the Haar state on Pol(G), then the von Neumann alge-
bra completion of Pol(G) in the associated GNS-representation is written L (G) =
7, (Pol(G))". If G is of Kac type, then L (G) is a finite von Neumann algebra and
we let M(G) denote the algebra of measurable operators affiliated with L (G).

¢*-Betti numbers. Given a compact quantum group of Kac type G, we denote by
dimp~ (g Liick's dimension function [Liic02] for modules over the finite von Neu-

mann algebra 1°(G). If G denotes the discrete dual of G, its £2-Betti numbers are
defined [Kye08b] as
P (@) = dimy= (g Tory™ @ (1°(G), C).

Work of Thom [Tho08] and Reich [Rei01] allows to calculate the £2-Betti numbers
alternatively as
By (B) = dimye () Bxth | o (C,M(K)),

whenever Pol(G) c Pol(K) as Hopf x-algebras for another compact quantum group
of Kac type K. This is explained in more detail in [KR16, Remark 1.8].

Cocentral homomorphisms. Let G be a compact quantum group and I' a discrete
abelian group. A Hopf x*-algebra homomorphism 71: Pol(G) — CT is called cocentral
if(m®id)o A = (m®id) o £ o A, where £ denotes the map flipping the tensor factors.
In this case

{aePol(G) | (id®71)0A(a):a®1} :{aePol(G) | (ﬂ®id)0A(a):1®a},
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and this subalgebra is denoted Pol(G),, and it too is the Hopf *-algebra of a compact
quantum group.

Exact sequences of Hopf algebras. Let A, B, L be Hopf *-algebras. A sequence of
Hopf x-algebra maps

C—B5A5L—C
is called exact if

* 1 is injective and 7 is surjective,

e kerm=A1(B*)=1(B") A, and
*i(B)={acA|(idon)oA(a)=a®l}={acA|(n®id)oA(a) =1®a}.

By [BNY16, Proposition 1.2], every surjective cocentral Hopf *-algebra homomor-
phism 7: Pol(G) — CT gives rise to an exact sequence of Hopf *-algebras

C — Pol(G), — Pol(G) - CT —> C.
The notation Pol(G), stems from the fact that 7 turns Pol(G) into a I'-graded Hopf
algebra.

Universal quantum groups. Wang’s [Wan98,VW96] universal quantum groups U},
and O;, can be described by their associated *-algebras of polynomial functions

Pol(Uy) = (uij 1< i, j<n|uu* =u*u=1=uu" =u"u),

Pol(0;) = (vij 1< i, j<n|vij=viw' =viv=1).
Here u, v, and u denote the n x n-matrices (vi;)ij, (4;)ij, and (u];):j, respectively.
Their comultiplications are given by dualising matrix multiplication u;; + Y j uj ®
ugjand v;j = 34 vik ® vij, respectively and their counits satisfy e(u;;) = 6 = £(vij)
foralli,je{1,...,n}. The matrices u and v are called the fundamental corepresenta-
tions of U}, and O}, respectively.

Graded twists of universal quantum groups. Examples 2.18 and 3.6 of [BNY15]
show that the Hopf *-algebra homomorphisms

POI(U;) —> (CZZ : Ll,‘j —> ui&j
Pol(O}) % Pol(0}) — CZ, : fo) — u0ij,
where v(¥) denotes the fundamental corepresentation corresponding to the k-th fac-

tor in the free product and u; denotes the generator of Z, inside CZ,, are cocentral
and induce exact sequences of Hopf x-algebras

(2.) C — Pol(H) — Pol(U; ) — CZ, — C,
2.2) C —> Pol(H) —> Pol(O}) * Pol(O}) 2 CZ, — C

for the same compact quantum group H. To see this, first note that since our ground
field is the complex numbers, the Hopf algebra denoted B(I,) in [BNY15, Exam-
ple 2.17] can be equipped with a *-structure making the canonical generators self-
adjoint and the resulting Hopf *-algebra identifies with Pol(O}). Similarly, the Hopf
algebra H(I,) of [BNY15, Example 2.18] can be given a *-structure, which satisfies
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u;; = vij on the canonical generators, and the resulting Hopf *-algebra naturally iden-
tifies with Pol(U} ). For notational convenience, we set A := Pol(O}) * Pol(O}) and
note that the cocentral Hopf *-algebra morphism p * p: A - CZ, defines a graded
twisting A’ [BNY15, Definition 2.6] of the Hopf *-algebra A, which in turn also allows
for a cocentral Hopf *-algebra morphism (p * p)': A* - CZ, [BNY15, Proposition
2.7]. We therefore obtain two exact sequences of Hopf *-algebras

C—a;— a2 cz, —C,

C— (4); — ' % ¢z, .
Recall that A’ is defined as span-{Ag ® ug, A7 ® ug, } ¢ A x Z,, where Z, acts on A
by flipping the factors in the free product and

Ag:={acA|(id®p*p)A(a)=a®ug}, g€l

One can now check (see [BNYI15, Example 2.18] for details) that the map u;; +
vf%) ® ug extends to a Hopf x-algebra isomorphism Pol(U};) ~ A’. A direct calcu-
lation verifies that (A")5 = A ® ug = A, and denoting the compact quantum group
underlying this Hopf *-algebra by H, we obtain the sequences (2.1) and (2.2).

Half-liberated quantum groups. The ideal in Pol(O} ) generated by
{abc-cba|a,b,ce{vij:i,j=1,...,n}}

gives rise to a quotient that is the Hopf *-algebra of a compact quantum group of Kac
type, known as the half-liberated orthogonal group [BS09] and denoted O},. Similarly,
the quotient of Pol(U;,) by the *-ideal generated by {ab*c — cb*a | a,b,c € {u;j :
i,j=1,...n}} is the Hopf *-algebra of a compact quantum group of Kac type which
is known as the half-liberated unitary quantum group [BDDI11] and denoted U,.

Automorphisms of Hopf *-algebras. Whenever « is an automorphism of Pol(G)
that preserves its Haar state, & uniquely extends to an automorphism of L (G). In
particular, if 7: Pol(G) — CT is a cocentral Hopf *-algebra homomorphism, then the
induced action of T, defined for y € T by

iden —~, id®ev
Pol(G) 2> Pol(G) ® Pol(G) 27 Pol(G) & CT — Pol(G) ® C(T) ' —o* Pol(G),
preserves the Haar state thanks to right invariance (¢ ® id) o A(a) = ¢(a)l.
3 A Free Product Formula for Discrete Quantum Groups

In this section we combine results from [Bicl6] with additional homological calcula-
tions to prove Theorem C. We start with a general lemma for inclusions of quantum
groups.

Lemma 3.1 IfG and K are compact quantum groups of Kac type such that Pol(G) c
Pol(K) as Hopf *-algebras, then

1+ B(G) - B () = dimye sy Hompey(c) ( Pol(G) ", M(K)).
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Proof Consider the short exact sequence 0 — Pol(G)* - Pol(G) - C — 0 of right
Pol(G)-modules and the associated long exact sequence of Ext-groups:

0+ Hom(C,M(K)) + Hom (Pol(G), M(K))) + Hom (Pol(G)", M(K)) J
50

[_) 1 1 1 +
PIEI)E&)(C,M(K)) - PEfE(t})(POI(G)’M(K)) - Plgl)gé)(Pol((G) ,M(K)) +

={o}
Splitting this long exact sequence at §°, we obtain two short exact sequences

0 — Homp,(g) ( C, M(K)) — HOmPOI(G)(POI(G),M(K)) —> ker 8 — 0,
0 —> ker 8° — Homp,y(g) ( Pol(G)*, M(K)) —> Extpy gy (C, M(K)) — 0.
Since Hompoy(g) (Pol(G), M(K)) = M(K) as a right L**(K)-module, applying the

dimension function dim (k) to the first short exact sequence gives
1= dimLoo(K) Hompol(G) ( POI(G), M(K))
= dimLoo(K) Hompol(G) ( C, M(K)) + dimLoo (K) ker(50)
= ﬁgz)(@) + dim e () ker(8°),

where the equality
dimy () H (C.M(K)) = dimg= () Extd e (C M(K)) = p§(C
1M e (K) H10Mpo)(G) | > (K) 1My (K) EXlpoyg) | > (K) Bo (G)

is explained in Section 2. Applying the dimension function to the second exact se-
quence, we obtain

dimLm(K) Hompol(G) (POI(G)+, M(K))
= dim (i) ker(8°) + B2 (G),

from which the formula follows. ]

Proof of Theorem C We denote the compact dual of G » H [Wan95] by K. Since
G and H are assumed to be non-trivial, the free product Pol(G) * Pol(H) is infinite
dimensional, so for p = 0 the result follows from [Kyell]. For p > 2, [Bicl6, Theorem
5.1] gives that

Extgol(K) (C, M(K)) ~ Ext}

poi(c) (G- M(K)) @ Exty

Pol(H)

(C,M(K)),

and since £2-Betti numbers can be calculated by Ext-groups (see Section 2), the result
follows from applying dim (k) to both sides. To prove the formula when p = 1, we
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apply Lemma 3.1 to each of the quantum groups G and H to get
2+ BP(G) + 7 (H) - B (G) - g5 (1)

= dim () Hompoy(g) (Pol(G) ™, M(K))

+ dimy () Hompq () (Pol (H) ", M(K) )
= dim = () Hompey() (Pol(K) ®poi(c) Pol(G) ", M(K))

+ dim = () Hompey(ic) (Pol(K) ®poiery Pol(H) ", M(K))
= dim~ () HOmPOI(K)( (Pol(K) ®pol(G) Pol(G)")

® (Pol(K) ®po(ary Pol(H) ™), M(K))

= dimp (k) Hompey(x) (Pol(K)™, M(K))  (by [Bicl6, Lemma 5.8])
=1+ /31(2)(@ « H) - /5(()2)(@ « H) (by Lemma 3.1)
=1+ pA (G + 1),

and the formula follows. [ |

4 A Scaling Formula for Cocentral Extensions of Discrete Quantum
Groups

In this section we generalise the considerations of [KR16, Section 2.1], which provides
us with a scaling formula for £2-Betti numbers of cocentral extensions of discrete
quantum groups by abelian groups. We start by collecting the analogues of [KRI6,
Lemmas 2.1 & 2.2].

Lemma 4.1 Let A > C be an augmented algebra and let T “~ A be an action of
a finite group. Consider the A-module C(T') that is induced by the homomorphism
Asaw (g coag(a)) e C(T). Then

AC(I) 2P 0a,C.

geT

Here, ., ,C denotes C considered as an A-module via the homomorphism ¢ o
ay: A — C. More generally, whenever 3: A — B is a ring homomorphism and X is a
B-module, we denote by gX the A-module X with module structure defined via j.

Proof The natural direct sum decomposition

C(T) =P Clyy,
ger

is compatible with the A-module structure, since C(T') is abelian. Because ,Cl ¢,y =
¢ 0 a,C, we can conclude the lemma.

Remark 4.2 If Ais Hopf *-algebra and I is an abelian finite group, one can start out
with a Hopf *-algebra homomorphism 7: A — CT and consider the induced action
T~A (cf. Section 2). Then the homomorphism A — C(f) constructed in Lemma 4.1
coincides with 7 after applying the Fourier transform CT = C(T).
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Lemma 4.3 Let A > C be an augmented *-algebra, « € Aut(A) and let ¢ € A* be
an a-invariant tracial state with bounded GNS-representation. Let M = 1, (A)"'. Then
forallp>0

dimy, Tor;(M, «C) = dimy Tor?(M, C).

Proof A flat base change [Wei%4, Proposition 3.2.9] gives an isomorphism of
M-modules

Tor?(M, «C) = Tor?(M ®4 (44),C).

Note that « extends to an automorphism of M, which provides an isomorphism of
left M-modules

M®y (,xA) ~ M.
Hence,
dimy, Tor?(M, «C) = dimy Tor?(aM,(C) = dimM,x(Torﬁ(M,(C)).

The endofunctor X — ,X on the category of left M-modules preserves the class of
finitely generated projective modules, is dimension preserving on this class, and pre-
serves inclusions; hence, dimp(X) = dimp(,X) for all M-modules X (see [Liic02,
Section 6.1]). Therefore,

dimj, Tor;(M, «C) =dimy, Tor?(M, C),
as claimed. ]
Proof of Theorem D We have
B (H) = dimye sz Tory™ ™ (1 (H), €)
= dimy= () L (G) ®1= iy Tor, "™ (1 (H), C),

since the functor L*(G) ®p~ () — is dimension preserving [Sau02, Theorem 3.18].
This functor is furthermore exact' [Sau02, Theorem 1.48], and therefore commutes
with Tor, so that

dimpe () L (G) ®r~ (m) Tori()l(H) (L*(H),C) = dimg=(g) Tori(’l(H) (L*(G),C).

Since the inclusion Pol(H) c Pol(G) is flat by [Chil4], we can apply the flat base
change formula [Wei94, Proposition 3.2.9], which gives

dimp= () ToriOI(H) (L*(G),C) =dim=(g) TorEOI(G) (L*°(G), Pol(G) ®poiay C).

The exactness assumption on our sequence gives in particular
Pol(G) ®poi(iry C = Pol(G)/Pol(G)Pol(H)* = CT = C(T),

as left Pol(G )-modules where the Pol(G )-structure on C(T) is defined via the iden-
tification with CT. The theorem now follows from a combination of Lemmas 4.1, 4.3,
and Remark 4.2 together with the fact that the dimension function is additive. |

IFor exactness and dimension-preservation in the case of group von Neumann algebras, see [Liic02,
Theorem 6.29]
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5 Calculations of ¢2-Betti Numbers

In this section we apply the formulas obtained in Sections 3 and 4 to the specific exam-
ples of cocentral extensions presented in [BNY15, BNY16]. This will provide a com-
plete calculation of the £2-Betti numbers of the universal discrete quantum groups
ﬁ; (all but the second and third were already found in [KR16]) and, furthermore, a
complete calculation of the £*-Betti numbers of the duals of the half-liberated unitary
quantum groups U}

Proof of Theorem A As explained in Section 2, we have exact sequences of Hopf
*-algebras

C — Pol(H) — Pol(U;) — CZ, — C
C — Pol(H) — Pol(O;,) * Pol(O;,) — CZ, — C,

for the same compact quantum group H. Applying Theorems C and D, this gives

0 p=0,
3+ 1 i Nt LAt N+ N+

3 (0 = 2,7 () = 5,7 (05 + O7) = 12- (B (03) - 57 (0) +1 p=1,

2-p7(0;) p>2.

Since ﬁl(,z) (01) = 0 forall p > 0 by [Ver12] and [CHT09], Theorem A follows. [ |

Proof of Theorem E By [BNY15, Example 3.7], there exist short exact sequences of
Hopf «- algebras
C — Pol(H*) — Pol(U;) — CZ, — C
C — Pol(H*) — Pol(O;},) * Pol(0O}) — CZ, — C,
for the same compact quantum group H*; the details of this argument are analogous
to those sketched in Section 2 for the free unitary quantum groups. By Theorems C
and D we therefore obtain
| 0 p=0,
2) (3% 2) sy 2) (R N+ I~ I~
70 = 387 (B = 570,50, =12 (B7(05) - /7 (O)) +1 p=1
2: /3 P (O:) p=2.

However, since O;, is infinite and coamenable [BV10, Corollary 9.3], ﬂ‘f,z) (Or) =0for
all p > 0 by [Kye08a], and the result follows. ]
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