
DIAMETERS OF POLYHEDRAL GRAPHS 

VICTOR KLEE 

1, S e t t i n g of t h e p r o b l e m . T h e distance between two vertices of a con­
nected finite graph is the smallest number of edges forming a pa th t h a t joins 
the two vertices, and the diameter of the graph is the largest integer which is 
realized as the distance between two vertices of the graph. W e are concerned 
here with the diameters of two graphs associated with a ^-dimensional convex 
poly tope P (called henceforth a d-polytope). T h e graph T(P) of P is the 1-
complex formed by the vertices and edges of P , and the polar graph II (P) of P 
is the 1-complex whose vertices correspond to the (d — l)-faces of P , with 
two vertices joined by an edge in II (P) if and only if the corresponding (d — 1)-
faces intersect in a (d — 2)-face of P. T h e diameters of T(P) and II (P) will 
be denoted respectively by 5(P) (called the diameter of P ) and 4>(P) (called 
the face-diameter of P ) . 

T h e class of all d-polytopes will be denoted by Prf, while the subclasses 
Pd and VT

d consist respectively of the J-polytopes which are simple (each 
vertex incident to d edges) and those which are simplicial (each (d — l)-face 
incident to d (d — 2)-faces). We are interested in the maximum of <5(P) or 
</>(P) as P ranges over various subclasses of P d , and especially in the relation­
ship of 8(P) and <j>(P) to the numbers d a n d / S ( P ) , where fs denotes the number 
of 5-faces. Let us define 

A8(d, n) = max{<5(P):P G Prf and fs(P) < n], 
$,(d, n) = m a x { 0 ( P ) : P 6 P , and f,(P) < n\, 

and similarly define Av
s(d, n) and $°8(d,n) (where P ranges over Pv

d) as well 
as Af

s(d, n) and $f
s(d, n) (where P ranges over P£). 

Now suppose P is a d-polytope in 9?d, with 0 G int P , and let P° denote the 
polar body 

P° = {3/: (x, y) < 1 for all x 6 P } , 

where ( , ) is the inner product in dld. F rom the s tandard polari ty theory 
(Weyl, 15) it follows t h a t P° is a d-polytope, 

MP) = / ^ ! _ , ( P 0 ) , 
I I (P) is isomorphic with r ( P ° ) , 

0 ( P ) = 5(P0), 
P G Pv

d if and only if P° G Pd
r, 

and 
P G Pf

d if and only if P° G P i 
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Consequently, 

$, = Arf_!_s, $i = Af
d-i-s, and $£ = Av

d-i-s. 

In view of the above consequences of the polarity theory, attention can be 
confined to the functions As, Aj, and A{, and to the d-polyhedral graphs T(P) 
for P G Ptf. However, the polar equivalents are useful in the study of poly­
hedral graphs. These graphs have been studied by various authors (Balinski 
1, 2, Brown 3, Grunbaum and Motzkin 7, 8, Saaty 11, Steinitz and Rademacher 
12, Tait 13, and Tutte 14), but for d > 4 there is at present no graph-theoretic 
characterization of ^-polyhedral graphs. Thus the subject involves both com­
binatorial and geometric complexities, and leads to many unsolved problems. 

Our attention here is confined to the functions A0, Ad_i, AS, A^-i, Ao, A£_I 
and their polar equivalents, defined for n > d > 1. We are able to show that 

(1) Ao = AS and A^i = AJU 

Grùnbaum and Motzkin (7) observed that (for n > d > 1) 

(2) A0(d, 
, [n - 2~] 

+ i, 

where [h] is the largest integer < h, and they suggested that Aj should be 
significantly less than A0, conjecturing in particular that among the simple 
3-polytopes with a given number 2k of vertices, maximum diameter is achieved 
by the &-sided prisms. We show that the specific conjecture is incorrect, for 
indeed 

(3) Aj(3, 2k) = A0(3,2Jfe). 

However, their suggestion may be correct when d > 4, for then our construc­
tion shows only that 

(4) M{d, »)>(<*- l)|_§rE^J + 1 for n > 2"-

The same construction (discussed in §2) shows that 

n - 2dl 
.2* - 2 j + 2 (5) ALi(d, n) > 

and 

(6) Ad_x{d, n)> (d- l ) | j j -d + 2. 

The lower bound in (6) may be very good, for we show also that 

(7) Aa-^d - n) = -T'A' d + 2 iid < 3 or w < d + 4. 

This suggests that (7) may hold for all n > d > 1, but we have been unable to 
establish a general upper bound that is anywhere near this conjecture. A 
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weak upper bound may be obtained from (2) in conjunction with results of 
Gale (6) and Klee (9) that limit the number of vertices of a d-polytope in 
terms of the number of its (d — 1)-faces. 

Sharp upper bounds for Ad_i(d, n) would be of special interest in connection 
with linear programming, where there is a long-standing conjecture to the 
effect that Ad_i(d, 2d) = d. This conjecture is discussed (but not proved, 
except for d < 4) in §3 below, where reasoning suggested by Ernst Straus 
seems to show that if the conjecture fails, then its failure may be connected 
with the existence of neighbourly polytopes. The face-diameters of certain 
neighbourly polytopes (the cyclic polytopes) are calculated in §4. 

2. A stack of simplices. Several of the results stated above are based on 
a simple construction which we now describe. For d > 2 and j > 1, let P(d,j) 
be a d-polytope which is generated by j + 1 (d — 1)-simplices in 9îd, arranged 
in parallel hyperplanes so that adjacent simplices are antihomothetic and so 
that the relative boundary of each of these simplices lies in the boundary of 
P(d,j). For the case in which d = 3 and j = 2, the Schlegel diagram of such 
a poly tope is given in Figure 1. 

FIGURE 1 

Let 5o, Si, . . . , S j be the j + 1 (d — 1)-simplices which generate P(d,j), 
and let Vt denote the set of all vertices of St. For 1 < i < j , let n be the anti-
homothety (a reflection in the origin, followed by a dilation or contraction 
and then by a translation) which carries St-i onto St and Vt-i onto Vt. Then 
the edges of P(d,j) are exactly the edges of the various Si s together with 

https://doi.org/10.4153/CJM-1964-061-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-061-2


DIAMETERS OF POLYHEDRAL GRAPHS 605 

segments of the form [v, Tt(w)], where [v, w] is an edge of S\_i. The (d — 1)-
faces of P(d,j) are all simplices, namely, the sets 50 and Sj together with all 
the sets of the form con(£/U r*(F?_i ~ £/)), where 1 < i < j and U is a 
proper subset of Vt-i. The following can then be verified. 

2.1. The simplicial d-polytope P(d,j) has 

d(j + 1) vertices 
(2d - 2)j + 2 (d - l)-faces 
diameter j {but diameter 2 when j = 1 ) 
face-diameter (d — \)j + 1. 

Now we can prove the following statement. 

2.2. For n > d > 1, 

Ao(d, w) = A0(d, + 1. 

Proof. As was noted by Griinbaum and Motzkin (7), the fact that A0(d, n) 
< [(n — 2)/d] + 1 follows at once from Balinski's observation (2) that a 
^-polyhedral graph must be ^-connected, in conjunction with a theorem of 
Menger (10) and Whitney (16) asserting that in a ^-connected graph, any 
two vertices can be joined by d distinct paths which have only their end points 
in common. 

Obviously, Al(d, n) < A0(d, n). Thus, to complete the proof of 2.2, it 
suffices to exhibit, for n > d > 1, a simplicial d-polytope which has at most 
n vertices and has diameter [(n — 2)/d] + 1. Let P"(d,j) be the simplicial 
d-polytope which is obtained from P(d,j) by adding pyramidal caps on So 
and Sj. Then P"(d,j) has d(j + 1) + 2 vertices and its diameter is j + 2; 
this is true also for the dipyramid P" (d, 0). Now suppose that n = Id + m 
with / > 1 and 0 < m < d. Let P = P"' (d, I - 1) when m > 2, P = P" (d, 
1 — 2) when / > 2 and m — 0 or 1, and let P be a d-simplex when n = d + 1. 
In each case, P is of diameter [(n — 2)/d] + 1 and P has at most n vertices. 

Griinbaum and Motzkin observed (7, p. 158) that for arbitrary n > d > 1 
there is a d-polyhedral graph which has n vertices, has diameter A0(d, n), and 
is of valence < d + 1 (where the valence of a graph is the maximum number 
of edges incident at a vertex). Such a graph is obtained from a d-polytope 
generated by a stack of mutually parallel and mutually homothetic (d — ])-
simplices in 9?d, with suitable caps added (when necessary) on the terminal 
simplices in the stack. They asked how the maximum possible diameter is 
affected when attention is restricted to d-polyhedral graphs of valence d. In 
other words, what is the value of A?(d, n)? 

2.3. For n > 2d > 2, 

(d-1) l^]+l<AUn)<[^]+l. 
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Proof. Clearly A5 < A0, so the right-hand inequality holds for all n > d > 1. 
Now suppose that n > 2d > 2 and let j = [(n - 2)/(2d - 2)] > 1. We see 
from 2.1 that the simplicial d-polytope P(d,j) has at most n (d — l)-faces 
and that its face-diameter is equal to (d — l ) j + 1. The left-hand inequality 
of 2.3 follows from consideration of a polytope polar to P(d,j). 

Obviously Aj(2, •) = A0(2, •)• 

2.4. For n > 3, the numbers A?(3, n) and A0(3, n) never differ by more than 1, 
and they are equal unless n = 5 (mod 6). 

Proof. From 2.3. we see that for n > 8 

+ 1 < AS(3, n) < A0(3, n) = 4 n - 2 
3 J + 1, 

whence the numbers AQ(3, n) and A0(3, n) cannot differ by more than one. 
For 3 < n < 8, the same conclusion comes from considering a tetrahedron and 
a triangular prism. Note that a simple 3-polytope must have an even number 
v of vertices, for 3v = 2e, where e is the number of edges. To complete the 
proof of 2.4, it suffices to show that for each even integer n > 3 there exists 
a simplicial 3-polytope having n vertices and diameter [(n — 2)/3] + 1. For 
then AS(3, n) and A0(3, n) cannot be different unless n is odd and [{n — 2)/3] 
> [{n — 3)/3]. The desired polytopes may be obtained by polarity from the 
polytopes P(3 , j) or slight modifications of the latter. But, instead, we exhibit 
directly the relevant 3-polyhedral graphs of valence 3. For the case n = 20, 
such a graph is depicted in Figure 2. 

For n = 67, remove the inner triod and the outer spikes, placing p at x 

FIGURE 2 
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and q at y. Then the distance between p and q is 2j. For n = 67 + 4, add the 
broken arcs and distinguish the three points labelled q. The distance between 
p and q is 2/ + 1. Each of the graphs described is a 3-connected planar graph 
and hence must be 3-polyhedral (Grunbaum and Motzkin, 8). 

We turn now to the functions Ad^i(d, •)• These appear to be much less 
tractable than the functions Ao(d, •)> principally because a restriction on the 
number of (d — 1)-faces associated with a ^/-polyhedral graph does not show 
up in the graph-theoretic structure nearly as plainly as does a restriction on 
the number of vertices. 

2.5. For n > d > 1, 

Aj_i(d, n) = Ad_x(d, n) > (d - l)[n/d] - d + 2. 

Pra?/. To see that Av
d-i(d, n) > (d - l)[n/d] - d + 2, let 7 = [n/d] - 1. 

The inequality is trivial when j = 0. When j > 1 we see from 2.1 that a 
d-polytope polar to P(d,j) is simple; it is of diameter 

(d - l)j + 1 = (d - l)[n/d] - d + 2, 

and the number of its (d — 1)-faces is 

d(j + 1) = d[n/d] < n. 

To complete the proof of 2.5 we want to show that Av
d^i(d, n) > Ad_i(̂ Z, n), 

or equivalently that $o(d, n) > $o(dfn). For the latter it suffices to show 
that for each ^-polytope P having n vertices, there is a simplicial d-polytope Q 
with n vertices such that <f>(Q) > 0(P). This can be proved with the aid of the 
pushing process described in (9, 2.3). 

Let X denote the set of all vertices of P, let q be one of these vertices, and 
suppose that X' is obtained from X by pushing g to a new position qr. This 
means that X' = (X ~ {q}) \J {qr}, where q' is a point of con X such that 
the segment [q, q'] does not intersect any (d — l)-flat determined by points 
of X. Now suppose that V is the set of all vertices of a (d — l)-face of the d-
polytope con X'. From the reasoning in (9, 2.3) it follows that either q' $ V 
and V is contained in the set of all vertices of some (d — l)-face of Pf or 
q' G V and the set (V ~ {qf}) U {q} is contained in the set of all vertices 
of some (d — l)-face of P. From this and the definition of the face-diameter 
</>, it is evident that ^(conXO > $(conX). Finally, let Q = con X0, where 
Xo is obtained from X in n steps by successive pushing at all of the n vertices 
of X. Then Q has n vertices, Q is simplicial, and <t>(Q) > <t>(P). 

2.6. For d G {2,3} and n > d, 

Ad_i(d,w) = [̂—-j— d + 2. 

Proof. This is evident when d = 2. For d = 3 note that if a simple 3-polytope 
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has v vertices, e edges, and / 2-faces, then 3v = 2e and (by Euler's theorem) 
v — e + f = 2, when / = 2v — 4. From 2.5, 2.4, and 2.2. we see that 

A2(3, n) = Aj(3, n) = Aj(3, 2» - 4) = A0(3, 2n - 4) 

2.7. AU^,w)>[|—2 |] + 2. 

Proof. This is immediate from consideration of the polytopes P"(d,j) of 
2.2. A slightly stronger result is established by using not only P" (d, j) but 
also P(d,j) and the polytopes P'(d,j) which are obtained from P(d,j) by-
adding a single pyramidal cap on So. The conclusion is that 

f J ) ((2d-2)j + 2, 
A£.i(d, n) > <j + 1> when n > < (2rf - 2)j + d + 1, 

( j + 2* ((2" - 2)j + 2d. 

3. The d-step conjecture. Since we are using d for the dimension of the 
space, the long-standing "m-step conjecture" of linear programming becomes 
here the "d-step conjecture." We are able to prove it only for the previously 
known case d < 4, but our discussion may throw some new light on the prob­
lem. For n > d > 1, consider the (unproved) assertion 

A(d,n): Ad_i(d, n) < 
d 

1 1 — n d + 2, 

where the expression on the right will be denoted henceforth by f (d, n). For 
d < 3, A (d, n) was established in 2.6. The following result was suggested by 
an observation of Ernst Strauss. 

3.1. For d < n < 2d, A(d — 1, n — 1) implies A(d, n). 

Proof. Let us first verify that 

(a) f (d - 1, 2d - 1) < f (d, 2d), and f (d - 1, n - 1) < f (d, ») for n > d. 

For this purpose we set 

" i - 1 1 
* = 

whence Ç(d, n) = k — d + 2 and 

(ô) (d - l)n = £d + / with 0 < I < d. 

Let j be defined by the condition that 

(c) (d - 2)(n - ! ) = ( & - l)(d - 1) + j , 
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whence 

j < d - 1 implies f (d - 1, n - 1) < (k - 1) - (d - 1) + 2 = f (d, «) 

and 

j < 0 implies ${d — 1, » — 1) < f (d, w). 

From (b) and (c) it follows that j = k + l+l—n. When n = 2d, we have 
& = 2{d — 1) and / = 0, whence indeed j < 0. For n > d we want to verify 
that k + l<d-{-n — 2. Since / < d — 1, the contrary assumption implies 
(using (6)) that (d — l)w > in — \)d + I or n K d — I, a contradiction. 
Thus (a) has been established. 

Now suppose that the assertion A (d — 1, w — 1) is valid, and consider a 
d-polytope P which has m (d — 1)-faces, where m < w. We must show that 
if x and y are any two vertices of P , then the distance from x to y (in the graph 
r (P) ) is at most f (d, w). Note that each (d - l)-face F of P is a (d - 1)-
polytope which has at most m — I (d — 2)-faces, for each (d — 2)-face of F 
is the intersection of F with another (d — l)-face of P . Thus if x and y lie on 
a common (d — l)-face of P it follows that 

dist(x, y) < &d-2(d — 1, m — 1) = f (d — 1, m — 1) < f (d, w), 

where (a) justifies the last inequality. It remains only to consider the case in 
which no (d — l)-face of P contains both x and y. Under our hypotheses, this 
can happen only if m — n = 2d and each of x and y is on exactly d of the 
(d — 1)-faces of P . Let u be an arbitrary vertex of P that is a neighbour of x, 
so that the segment [x, u] is an edge of P . Then u lies on a (d — l)-face F 
which does not include x, whence F does include y and we see (using (a)) that 

dist(x, y) < 1 + Ad^2(d - 1, 2d - 1) = 1 + f (rf - 1, 2d - 1) < f(d, 2d). 

3.2. Suppose n > d > 1, and d < 3 or w < d + 4; £/&ew 

"d - 1 
Ad_i(d, n) = 

d n. d + 2. 

Proof. For d < 3, this was 2.6. Starting with the result for d = 3, we then 
apply 3.1 to establish the validity of ^4(4, n) for 4 < n < 8, of ^4(5, w) for 
5 < w < 9, etc. It remains to show that f o r 4 < d < n < d + 4 there exists 
a d-polytope having n (d — 1)-faces and diameter (d, n). This will be accom­
plished in §4, using polytopes polar to the cyclic polytopes. See 4.4. 

Let us consider the three conjectures: 

Ci(d) = ^d<n<2dA(d, n), 
C2(d) = A{d, 2d), 
Cz(d): If P is a d-polytope having exactly 2d {d — 1)-faces and x and y are 

vertices of P that are not on the same (d — l)-face, then x can be joined to y by a 
path consisting of d or fewer edges of P . 
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The term "d-step conjecture" usually refers to C2(d) or to the slightly weaker 
conjecture C%{d). (The latter appears as Problem 1 in Dantzig's list (4) of 
unsolved problems connected with linear programming.) The 4-step conjecture 
(and, in fact, C2(4)) is validated by 3.2, but not the 5-step conjecture. 

Now suppose the conjecture C2(d — 1) is valid but C2(d) fails for some 
d-polytope P. Thus, P has m {d — 1)-faces for some m < 2d; but there are two 
vertices x and y of P such that the distance from x to y (in the graph T(P)) 
is greater than f (d, m). From the reasoning of 3.1 we see that necessarily 
m = 2d, x and y are each on exactly d (d — 1)-faces of P and are not on the 
same (d — l)-face, and the assertion A (d — l,2d — 1) is false. Further, every 
(d — l)-face of P that includes y and also includes a neighbour u of x, as well 
as every one that includes both x and a neighbour of y, must have at least 
2d — 1 id — 2)-faces and hence must intersect every other (d — l)-face of P 
in a (d — 2)-face. Such a surprising situation cannot arise for d = 3, but for 
d > 4 this sort of behaviour is exhibited by polytopes polar to the neighbourly 
polytopes. Thus, it may be reassuring, in connection with the d-step con­
jecture, to know that the conjecture is not contradicted by the most tractable 
polytopes of this sort. This is established in §4. 

4. Facial structure of cyclic polytopes. The reasoning of §3 suggests 
that if the d-step conjecture fails, then there probably exists, for some k < d, 
a &-polytope P such that fk_i(P) = 2k, 8(P) > k, and each two {k — 1)-
faces of P intersect in a (k — 2)-face of P. The polar of P would then be a 
&-polytope which has 2k vertices, has face-diameter > k, and is 2-neighbourly. 
Here a poly tope is called m-neighbourly provided each m of its vertices deter­
mine an (m — l)-face. Because of this connection of neighbourliness with the 
d-step conjecture, and because the neighbourly polytopes seem destined for 
an important role in other studies of the facial structure of polytopes, it seems 
worthwhile to determine the face-diameters of the most tractable of the 
neighbourly polytopes, and thus to see that they do not contradict the d-step 
conjecture. 

A cyclic d-polytope is the convex hull of a set V of d + 1 or more points of 
the moment curve Md in 9îd, where M(l is the set of all points of the form (r, r2, 
. . . , rd) G 3?d (for r £ dl). Every cyclic d-polytope is [d/2]-neighbourly (Gale 
5). The points of the set V are linearly ordered by means of their first co­
ordinates, and Gale (5) shows that a d-pointed subset D of F is the set of all 
the vertices of some (d — l)-face of con V if and only if each two points of 
V ~ D are separated by an even number (possibly zero) of points of U. (Gale 
states this only when d is even, but his reasoning applies also when d is odd.) 
Since a cyclic polytope is necessarily simplicial, the problem of determining 
its face-diameter is thus purely combinatorial in nature. We shall introduce 
some terminology that will facilitate the discussion. 

From now on, V will denote a finite set which is linearly ordered by means 
of an antireflexive relation < . The first and last elements of V will be denoted 
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by a and co respectively. A cluster is a subset C of V such that 0 ^ C ^ F and 

(i) no point of C is between two points of V ~ C 
or (ii) no point of V ^ C is between two points of C. 

The cluster C is called central provided it includes neither a nor co; otherwise 
C is called terminal. Each terminal cluster C has a fe// Aa// L(C) [a n'g/^ &a//* 
-R(C)], i.e. a subset maximal with respect to satisfying (i) or (ii) and including 
a but not to [co but not a]. Either Z(C) or JR(C) may be empty, but they cannot 
both be empty, for the terminal cluster C is a proper subset of V. Note that 
every central cluster satisfies (ii) but not (i). If a terminal cluster includes both 
a and co, it satisfies (i) but not (ii). If a terminal cluster includes only one of 
a and co, it satisfies both (i) and (ii). 

Now let us define or = co ; œ+ = a. For each p Ç V ^ {a}, p~ is the immediate 
predecessor of p; for each p Ç F'^fco}, £ + is the immediate successor of p. 
For each cluster C in V, the fe/£ £«d £<n"tt£ lc and the rig/z/ e«d point rc are points 
of C which are defined by the conditions that lc~ i C and rc

+ $ C. Note that 
if C is a central cluster, then l~i < r%. If C is a terminal cluster, then r j < /J, 
with equality if and only if C omits but a single point of V. If the terminal 
cluster C includes both a and co, then rc G £(C) and lc G R(C). 

When D is a proper subset of V, a D-cluster is a maximal cluster in D. The 
set D will be called admissible provided every central Z)-cluster consists of 
an even number of points. Equivalently, D is admissible provided that for 
each two points p and q of V, there is an even number (possibly zero) of points 
of D between p and q. (Compare this with Gale's description (5) of the (d — 1)-
faces of a cyclic d-polytope.) Finally, an admissible pair is an ordered pair 
(X, Y) of admissible sets whose symmetric difference consists of exactly one 
point from each set; that is, 

Y = (X ~ {x}) U M for some x £ X ~ Y and y £ Y ~ X. 

When the sets X and Y are both of cardinality d, the following result de­
scribes the pairs of (d — 1)-faces of a cyclic d-po\ytope such that the inter­
section of the two (d — 1)-faces is a id — 2)-face. The proof consists of a 
routine vertification based on the remarks and definitions in the preceding 
paragraphs. 

4.1. Suppose X and Y are admissible subsets of V whose symmetric difference 
consists of exactly one point from each set; say Y = (X <^ {x}) KJ {y} with 
x Ç I ~ F and y G Y ^ X. Let C be the X-cluster which includes x. Then at 
most one of the following four statements is true, and the pair (X, Y) is admissible 
if and only if exactly one is true: 

C is a central cluster, x has an even number of predecessors in C, and y = rc
+; 

C is a central cluster, x has an even number of successors in C, and y = lc~; 
C is a terminal cluster; x Ç L(C) with an odd number of successors in L(C) 

or x G R(C) with an even number of predecessors in R(C); y = rc
+; 
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C is a terminal cluster; x G L(C) with an even number of successors in L(C) 
or x G R(C) with an odd number of predecessors in R(C); y = lc~-

Now we shall define a d-admissible chain in V to be a finite sequence of sets 
(Do, . . . , Dk), each of cardinality d, such that each pair (Dj.i, D Ï) is admissible. 
If F is of cardinality n > d, then the face-diameter of a cyclic d-polytope 
having w vertices is equal to the smallest number k such that whenever X 
and F are admissible sets of cardinality d in V, then there is a d-admissible 
chain (Z)0, • • • , T>k) with Do = X and D^ = F. Here we are concerned pri­
marily with the case in which d < n < 2d. 

It follows from 4.1 that for each admissible pair (X, F) there is a unique 
cluster C C X such that 

F = (X~ {lc})V {rc
+} or F = (X - {rc}) W {Zc-}. 

The cluster C is contained in some X-cluster but C need not be an X-cluster. 
Let XT denote the (unique) terminal X-cluster if there is one, and otherwise 
XT = 0. The pair (X, F) will be called central provided one of the following 
three conditions is satisfied : 

(i) C is central, 
(ii) a G C = L(Xr) with F = (X ~ {a}) KJ { r c +j , 
(iii) co e C = R(Xr) with F = (X ~ {co}) U {/c-}. 

In short, the admissible pair (X, F) is central if and only if its admissibility 
is independent of the fact that for some purposes the points a and co are adjacent 
to each other. It can be verified that (X} F) is central if and only if (F, X) 
is central. 

4.2. Suppose that X and Y are admissible subsets of V, with 

card V = n > d = card X = card F > 1. 

Then for some k < n — d there exists a d-admissible chain (Do, . . . , Dk) with 
Do = X and Dk = F. / / card L(XT) and card L(YT) are of the same parity, 
then the chain can be chosen so that every pair (Dt_i, Dt) is central (1 < i < k). 
If cardL(XT) > cardL(FT ) and these two numbers are of different parity, 
then the chain can be chosen so that (D^u Df) is central for 2 < i < k and 
Di = (Do ~ {%}) ^J {ID0T~} for some x Ç L(D0). 

Proof. Let the statement of 4.2 be denoted by S(d, n). The reader can verify 
that 5(2, n) is valid for all n > 2 and that S(d, d + 1) is valid for all d > 1. 
Now suppose, for a given n > 3, that S(c,n — 1) is known whenever n — 1 
> c > 1. Consider the case of S(d, n) with n — 1 > d > 1 (since S(d, d + 1) 
is also known). If a G X P\ F, we obtain the desired d-admissible chain by 
applying S(d — 1, n — 1) to the set F <^ {a} (in the induced ordering) and 
its admissible subsets X ~ {a} and F ^ {a}. If a $ X U F, the desired chain 
is obtained by applying S(d,n — 1) to the set V~ {a} and its admissible 
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subsets X and F; in this case the chain (D0, . . . , Dk) has k K (n — Ï) — d 
and every pair (Z}t--i, Dt) is central (1 < i < k). In the remaining case, a is 
in exactly one of the sets X and Y and it suffices to consider the case in which 
a £ X ^ Y. Let D0 = X and define 

D± = (X ~ {a}) VJ {rXT
+\ when card L(XT) is even, 

£>! = (X~ {a}) U {/xr"î when cardZ(X') is odd. 

Then a^DiKJ Y and the chain can be completed in the desired fashion by 
applying S(d, n — 1) to the set V ~ [a] and its admissible subsets Di and F. 

4.3. Suppose the cyclic d-polytope G(d, n) is the convex hull of n points from 
the moment curve Md, where n > d > 1. Then the face-diameter of G{d, n) is 
< n — df and 

(t>(G(d, n)) — n — d for d < n < 2d. 

Proof. The inequality is immediate from 4.2. For equality when n = 2d, 
let card V = n, let X consist of the first d points of V, and let F consist of 
the last d points of V. Then X and F are both admissible. The desired conclu­
sion follows from the fact that c a r d ( F ^ X ) = n — d, in conjunction with 
the definition of a ^-admissible chain. 

We have not determined the exact face-diameter of the cyclic polytope 
G(d, n) for n > 2d} though it appears that <j>(G(d, n)) = [n/2] when n > 2d. 

4.4. For 2d > n > d > 1, 

Ad-i(d, n) > —j—n - d + 2. 

Proof. Use 4.3, polarity, and the fact that Ç(d, n) = n — d for d and n 
as described. 
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