Natural Language Engineering 1 (1): 1-7 (© 1995 Cambridge University Press 1

Editorial

Natural Language Engineering was described in the Technical Background Docu-
ment of the Linguistic Research and Engineering European Programme as follows:

Linguistic Engineering (LE) is an engineering endeavour, which is to combine scientific and
technological knowledge in a number of relevant domains (descriptive and computational
linguistics, lexicology and terminology, formal languages, computer science, software engin-
eering techniques, etc.). LE can be seen as a rather pragmatic approach to computerised
language processing, given the current inadequacies of theoretical CL (European Commission,
‘Linguistic Research and Engineering in the Framework Programme (1991) 1990-1994’, p. 7).

This note (in a suitably technical and dry document) was the first mention we
encountered of the idea of ‘Language Engineering’. However, since then the label has
really taken off: conferences, centres of research, and now this journal, have been
named around it. At the same time, a good deal of discussion has taken place on
what Natural Language Engineering is (or, rather, should be, since we are dealing
here with definitions more than with descriptions).

This editorial is an attempt to define the identifying elements of Natural Language
Engineering (NLE), and hence define the topic of this new journal, if only in a partial
way.

Objective

The principal, defining characteristic of NLE work is its objective: to engineer
products which deal with natural language and which satisfy the constraints in
which they have to operate. This definition may seem tautologous or a statement
of the obvious to an engineer practising in another, well established area (e.g.
mechanical or civil engineering), but is still a useful reminder to practitioners of
software engineering, and it becomes near-revolutionary when applied to natural
language processing. This is partly because of what, in our opinion, has been the
ethos of most Computational Linguistics research. Such research has concentrated on
studying natural languages, just as traditional Linguistics does, but using computers
as a tool to model (and, sometimes, verify or falsify) fragments of linguistic theories
deemed of particular interest. This is of course a perfectly respectable and useful
scientific endeavour, but does not necessarily (or even often) lead to working systems
for the general public.

It will be noted that, in the definition above, the notion of ‘constraints to be
satisfied’ is left rather vague: this is intentional, since constraints vary from those

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

2 Editorial

relating to scale to those relating to robustness, and are all subject to the overriding
requirement of cost-benefit. As such, there are many different points of equilibrium
which can be reached. We will now examine the possible range of these criteria one
by one.

Usability

The first criterion is that there must be a need, i.e. there must be a set of users
in the market who would benefit from using the product rather than the current
alternatives, and the product is (or may in the future be) usable by those users
to satisfy this need. Furthermore they would be prepared to ‘pay the price’ for it,
where ‘price’ covers not only the cost of the product, but all related costs, such
as the inconvenience of learning new techniques, the need to adapt behaviour, the
ripple effect on other pieces of technology which would become incompatible or
obsolete and so on. If the product is really revolutionary, the target users may not
even be aware of their needs, let alone of which technology would satisfy them best:
however, even a visionary NL engineer should have a target user base in mind, and
a clear idea of why (once educated) the user would want to use the new technology.

For example, a reasonably simple translation system for brand-specific office
machine manuals, based on storing and aligning many years of hand translations
of previous editions of the manuals (or of ones for similar machines), was recently
developed in less than a year by a leading manufacturer for internal use, and
resulted in a saving of up to 50 per cent in the effort expended on the production
of new manuals for the same line of products. However, a much more sophisticated
translation system for intelligence documents, employing word translations, proved
unusable, after having absorbed considerably more resources. This is not to say that,
in general, small, domain-dependent, surface based solutions are better than large
scale, deeper ones under a NLE paradigm: it simply means that the balance of need,
production cost, technique currently available, time available, etc. was satisfactory
in the first case and unsatisfactory in the second. Usually, being aware of these
parameters and their interplay is the first step towards achieving a positive control
over them.

From this point of view, successful NL engineering is like successful cooking: there
are enormous numbers of wonderful dishes, from very simple staple ones to those
for sophisticated entertaining, but they all require a proper balance in their basic
ingredients, spices, cooking methods, etc.; unfortunately, there is also an apparently
infinite supply of awful concoctions, some of which are very rich, and all unbalanced
in some sense. Good NLE is primarily the art of avoiding them.

Cost-benefit

We have already mentioned the cost-benefit analysis that is generally applied (often
unconsciously) when judging whether a product is useful; now we will discuss the
wider cost-benefit analysis which the NL engineer should apply. In this analysis,
the objective must be, as we have seen, the delivery and acceptance by a user base

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

Editorial 3

of the product, and the external requirements of the work must be defined so that
they match a balance point for that user base (which means trying to discover, or
sometime second guess, the cost-benefit curve applicable to it). This is the basic case:
of course, the process may be highly complicated by a range of factors. Among
them, are the following:

(a) some of the costs are absorbed not by the final users but by others: typically,
government or universities may subsidise part of them, or discount them
against other gains, e.g. publications, prestige, education, etc.;

(b) a family of applications is expected to result from one fundamental core effort:
e.g. some core systems are nowadays being developed which would, in the
plans of their designers, result (after suitable modification and customisation)
in applications as far ranging as information extraction, database front ends
and translation;

(c) several satisfaction points may be available in the cost-benefit profile of the
user base, often separated by large areas of dissatisfaction: e.g. a user may
be prepared to buy a cheap, speaker dependent speech recognizer available
today, and also an expensive, speaker independent one ready in a year time,
but not any of the combinations in between.

Once this analysis has been carried out, the problem becomes one of fitting possible
internal requirement sets onto the given external ones. These internal parameters are
(at least) the following: resources, scale, techniques, robustness, flexibility, openness,
domain dependence, application dependence, efficiency, and implementation issues.

It is important here to remember that over-engineering is a mistake almost as
expensive as under-engineering: Henry Ford, who knew a thing or two about
engineering processes, used to send people to the car graveyards, to find out which
parts looked in good shape when the rest had already rotted away: those parts were
deemed to have been over-engineered, and resources were taken away from their
manufacturing in order to achieve a suitable quality balance.

Resources

This should follow directly from the understanding of what the user is prepared to
pay, plus a subsidy as mentioned above. Again, we are stating the obvious: however,
judging from the number of NLP projects left unfinished because the resources
available have not been well distributed over the various aspects of the lifecycle, the
obvious may indeed be where we need to start from in our area.

Scale

This is an extremely important parameter, which will influence most of the others:
e.g. going for a wide coverage grammar, without a suitably robust handling of
ungrammatical input, would be a typical example of over-engineering. Similarly,
going for a very basic, small scale domain model requires, in most applications,
that the necessary information be extracted from somewhere else (e.g. from corpus

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

4 Editorial

statistics, or from large scale general knowledge). Scale is probably the factor with
the biggest impact on resources: e.g, it is often possible to solve an efficiency problem
with a clever change in the complexity of an algorithm, but usually large scale — be
that in grammar coverage, lexicon, domain modelling, general knowledge, statistical
data, adaptation, etc. — can only be achieved through painstaking, time consuming
work, with the complexity of the task often growing exponentially.

Techniques

There is nowadays a very wide range of tools and techniques available to the NL
engineer: traditional, well formalized general linguistic and logic theories; localized
theories for specific subsystems (e.g. dialogue); statistical approaches; large corpora;
purpose built knowledge bases (e.g. WordNet); heuristic methods; adaptive methods
(e.g. evolutionary algorithms or neural nets); and even well publicized ad hoc
solutions for hard exceptions. While an individual NL engineer may favour some
particular techniques, the paramount consideration should always be what is the
best fit for the particular problem. For example, if the researcher is devoted to using
a technique independently from the short or long term benefits with respect to other,
competing ones, then she or he is really exploring that technique for its own sake,
and using NL simply as a test bench: this is, of course, perfectly acceptable, but it
would not be NLE as we understand it.

Robustness

It may seem self-evident that a system destined to become a product should be
robust in all its aspects, but this is in fact not always the case: it really depends
(again!) on the overall balance of the programme. For example, a template scanning
application based on initial parsing can often well afford to produce parse trees with
wrong prepositional phrase attachment, if that part of the analysis is not usually
called upon in the filling of the template slots. It follows that a system which does not
excel in any of its parts may still be the best possible combination for a particular
task.

Flexibility

A system destined to be used in one set-up only could, conceivably, be built without
regard to the issues of flexibility (reuse, maintenance, etc.). However, in practice
this will be the case only for systems so small and cheap that the overheads of
ensuring flexibility are not worth the gains, or for ones totally built out of existing
components (i.e. ones in which the flexibility has already been in-built at a previous
stage). In all other cases, flexibility issues must be of great importance: the larger
the efforts needed for developing a component, the more worthwhile becomes the
search for an existing stand-in, or the need to ensure that the result of such large
effort will be used again in future. This principle applies just as well to whole core
systems, as it does to components. The central role of reuse and maintenance is well

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

Editorial 5

documented and accepted in software engineering circles nowadays, but the message
may still have to make some inroads in the NLP community.

Openness

Openness can be seen as flexibility across various projects and research sites: by
making a system open (i.e. compatible with other systems), developers gain access
to external resources, but at the same time tie themselves to choices outside their
control (and they may also loose some exclusive rights). The tension between these
two conflicting interests is a delicate one: an early convergence onto standards may
cause serious harm to innovative research, but a complete lack of compatibility
forces large groups to reinvent the wheel, and may push smaller ones out of the
field altogether. For many years, the pendulum has swung, in our opinion, too far
in the direction of lack of compatibility: the situation seems to have improved in
recent times.

Domain and application dependence

Like the issue of techniques, the issue of domain and application dependence has
been at the centre of heated debates for a long time in the NLP community. A
debate that rages for a long time, especially if it does so among people sharing
the same goals, is usually a sign of a badly posed question, and this seems to us
to be the position in this case. Within a particular context of use either domain
dependent or independent approaches may be justified. Equally the use context will
define whether an application dependent or independent approach is appropriate.
Hence the debate is essentially meaningless. If the final goal is a system able to pass
the Turing test on any topic, then clearly domain dependence is not much use; if
the goal, however, is to correct the style and content of a technical manual, domain
dependence is the core of the issue. Similarly for application dependence: a core
system built to support many products will usually be better built with none in
mind, rather than as a collection of separate application dependent units.

Efficiency

There are usually two sides to the efficiency of a program: the theoretical one (its
complexity), and the practical one. They should both be addressed in a properly
engineered NL system. A basic analysis of complexity is essential: an error at that
level is often unrecoverable, and it may manifest itself only when large parts of
the system have been built. However, the reaction to the total lack of complexity
analysis often found in early work in NLP has recently lead to a mythization of the
power of complexity analysis. First of all, a complexity analysis is almost always
a worst case analysis (as the average case one is often too difficult to identify or
calculate): if that worst case is both rare and far outside the normal range, it will be
useless, and even misleading. Secondly, even when the worst case is the normal one,
complexity is about the behaviour as the input grows toward infinity: in many cases

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

6 Editorial

in NLP, the size of input is bounded, and thus the constants in the estimate, which
are irrelevant as far as the order of complexity is concerned, become paramount. An
example from another domain is given by quicksort, which has got the best possible
complexity of all sorting algorithms: however, for lists shorter than a certain size,
other sorting methods are in practice more efficient.

Implementation

We are dealing here with issues such as choice of programming languages, lifecycle
models, support tools, etc. A widely repeated cliché is that there are ‘languages
for AT, ‘languages for NLP’, etc. We believe this is a false distinction, as it is a
false distinction in all other areas of software engineering: the choice of language is
determined by a combination of factors (e.g. the scale of the project, the number of
developers involved, the languages already known in the group, the complexity of
the algorithms, the role and size of data, the importance of interfaces, the availability
of support tools, etc.). A good principle in NLE would be to keep an open mind
— shop around, remember what the cost-benefit of the choice will be, and don’t be
influenced by fashion.

Intermediate results

It might be inferred from what we have said above that only finished systems qualify
as NLE systems, and thus that only papers on such systems would be welcomed
in this journal: this, however, would be a mistaken reading. As long as the NLE
principles are adhered to, intermediate results (even highly theoretical ones) can be
counted as belonging to the NLE family; conversely, badly engineered system (with
respect to the user base) would not qualify, even if they happen to work ‘successfully’
out of context.

Testing and evaluation

Is the market the only real testing ground for NLE systems? Ultimately, that is
indeed the case, in our opinion; however, it would be rather wasteful if that were the
only testing means available, considering the time it often takes to develop a system,
and the expenses of bringing it to market. Fortunately, there are already intermediate
alternatives, and others are being developed. Paramount among the existing ones
are the competitions organized by ARPA (Advanced Research Projects Agency) of
the USA: MUC, SPREC, TREC and the rest of the Tipster programme. We hope
the journal of Natural Language Engineering will further promote the active debate
on the usefulness and effectiveness of these competitions.

We would also support the development of standard test-sets for the various NLP
applications. Discussion on this topic is of fundamental importance, and one of the
aims of Natural Language Engineering will be to encourage such debate.

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

Editorial 7

Temporary solution?

If we return to the original definition of Language Engineering with which we
began this editorial, we see that the authors somehow appeared to apologise for
this new direction, explaining that it was necessary ‘given the current inadequacies
of theoretical Computational Linguistics’. The assumption seemed to be that good
engineering (in the sense of technology) is an (inferior) substitute for good science
(in the sense of abstract theory), ready to give way once the latter is well developed.
This is a neo-positivist philosophical position that has passed its prime long time
ago: it is our opinion that, while it is true that good technology may exist even
where good theory is lacking (after all, cathedrals were built long before we knew
anything about the theory of distributed load, and most of them are still here), it is
also the case that good engineering is still needed when the theory is available, not
only to put it to use, but ultimately to provide the only defensible test for it.

In conclusion, then, Natural Language Engineering is a new and dynamic field.
We hope this new journal will help promote communication within the field and
also act as a vehicle for the NLE community to express its distinctive voice to those
outside the field.

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

https://doi.org/10.1017/51351324900000036 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324900000036

