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Abstract. Let 5 be a semigroup. A class of S-automata is called a hereditary
pretorsion class (HPC) if it is closed under quotients, subautomata, coproducts (disjoint
unions) and finite products. In this paper we present two characterizations of HPC.
Specifically, we show that there is a bijective correspondence between the HPCs of
S-automata, the right linear topologies on 5' and the idempotent preradicals r on the
category of S-automata such that the set of automata {M | r(M) = A/} is closed under
subautomata and finite products.

0. Introduction. In ring theory, there is an important correspondence between
torsion modules, radicals on the category of ring modules and certain topologies on the
ring. The general concept of torsion comes from the study of torsion modules in the rings
of fractions and modules of fractions.

In this paper, we would like to begin the first step in obtaining similar results to
semigroups and automata theories. We are able to establish the bijective correspondence
between hereditary pretorsion classes of automata, right linear topologies on the
semigroup adjoined with identity and certain idempotent preradicals.

Many people have studied radical and torsion theories in semigroups, monoids or
their automata. For example, Marki, Mlitz and Strecker studied radicals and torsions on a
collection of monoids in [3]. However, they defined the image of a radical as a
congruence on the monoid while we defined the image of a preradical on an automaton as
a subautomaton. On the other hand, Luedeman worked on torsion theories on monoids
with zero and their automata in [2]. His approach was similar to ours but he had the
advantage of defining the torsion theories on automata axiomatically as in the case of ring
modules. He also made use of right ideals of monoids in his construction while we used
right congruences as our main tool instead. The connection between right congruences
and right ideals in rings is very intimate but it is not the case in semigroups. So we hope to
present a different approach to those concepts here.

This paper is organized as follows: Section 1 provides some background definitons
and preliminary results which can be found in [1] and [4]. Section 2 defines the right linear
topologies on semigroups and on automata. Section 3 defines the hereditary pretorsion
classes of automata and shows their correspondence with right linear topologies. Section 4
deals with preradicals on the category of automata and shows their connections with the
hereditary pretorsion classes. The last section states the main correspondence theorem
between the three concepts and also illustrates a particular example of a pretorsion class
existence in the automata of fractions.

At this moment, the author would like to express his sincere gratitude to Professor
Robert H. Oehmke for his advice on this project.

1. Basic definitions and the isomorphism theorem. Assume 5 is a semigroup
throughout this paper.
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DEFINITION 1.1. A right congurence on S is an equivalence relation p on 5 such that
(x,y)e p and s eS imply (xs,y.s)€ p.

DEFINITION 1.2. (A/, 5, <p) is called an S-automaton if M is a set, 5 is a semigroup and
<j):MxS—>M is a function such that (f>((j)(m, s), t) = <p(m,st). For simplicity, we write
<t>(m,s) as /rcs and (M,S, (j>) as A/.

DEFINITION 1.3. Let M be an 5-automaton and N a subset of M; then /V is called an
S-subautomaton (or subautomaton) of M if N is closed under 0; i.e. n e N and s e 5 imply
«5 e /V.

DEFINITION 1.4. Let M be an 5-automaton. p is a right congruence on M if it is an
equivalence relation on M such that it is closed under the action by 5; i.e. (m, n) e p and
s eS imply (ms, ns) e p.

DEFINITION 1.5. Let M be an 5-automaton and p a right congruence on M. Then
M/p is a set of equivalence classes of p. We define the action of the elements of 5 on
M/p as follows: if [m]eM/p and seS, then [m]s = [ms]. This will turn M/p into an
5-automaton.

DEFINITION 1.6. The direct product of a set of 5-automata {Ma,} is xWff! where 5
operates on xMa as follows: (ma)s = (/n^s) where (ma) e x A/,,..

DEFINITION 1.7. The coproduct (or direct sum) of a set of 5-automata {Ma} is the
disjoint union ®Ma, where 5 operates on @Ma in the obvious way.

DEFINITION 1.8. A function a:M^N between two 5-automata M and N is called an
S-homomorphism if it is closed under the action of 5; i.e. meM and seS imply
a(ms) = a(m)s.

DEFINITION 1.9. The kernel ker(a') of an 5-homomorphism a:M—>N is the right
congruence induced on M by a-; i.e. (m, n) e ker(a-) if and only if a{m) = a(n).

DEFINITION 1.10. Two 5-automata M and N are said to be isomorphic if there is an
5-homomorphism between M and N such that it is both injective and surjective.

THEOREM 1.1 (Isomorphism Theorem). / / a:M-*N is a surjective 5-
homomorphism between two S-automata M and N, then M/ker(o-) = N.

Proof. Define Yl:M/ker(a)^N by n([m]) = a(m). •

For more basic results, please consult [1].

2. Right linear (RL-) topologies on semigroups and on automata.

DEFINITION 2.1. A topological semigroup is a semigroup 5 with a topology such that
the semigroup operation (s, t)>-^st is a continuous function from 5 x 5 to 5 (considering
the corresponding product topology on 5 x 5).

DEFINITION 2.2. A topological semigroup 5 is right linearly topological if there is a
fundamental system of neighborhoods consisting of the equivalence classes of a set T of
right congruences on 5 such that this set T satisfies the following conditions.

Tl. If p eT, a is a right congruence on M and o=> p, then oel.
T2. If p and o belong to T, then pDoeJ.
T3. If p e T and u e S, then (p:u) e T, where

(p:u) = {(s,t)eSxS | (us,ut)ep).
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DEFINITION 2.3. Let T be defined as above. A subset G of S is said to be open in S if
for each a e G, there exists p e T such that [a]p is contained in G. This defines a topology
on 5 and {[a]p \ a e 5, p eT} is a basis. We will by abuse of language call T the topology
for 5.

LEMMA 2.1. T makes the semigroup operation continuous.

Proof. Fix a point (s,t)eSxS. We show that given y e T with [st]Y, we can find
a, PeT such that a e [s]a and b e [t\p imply aft e [st]Y. Let a- = y; then a e [s]a implies
that ae[s]y , which implies that (a,s)ey and then (ab,sb)e y. Next, since y e T and
s e 5, (y:s) e T by T3. Let (5 = (y.s). Then b e (7]̂  implies (b,t) e /? which again implies
(sb,st) e y. By combining both results, we get (ab,st) e y. •

Next, let 5' be 5 adjoined with an identity element 1 if 5 does not have an identity,
otherwise it is equal to 5. All automata in the following will be unitary. This means that
the identity element of S1 acts as the identity operator on the given automaton, where 5 is
the input semigroup of the automaton. Suppose S1 is a right linearly topological
semigroup with T as a neighborhood system of right congruences and M is an
S-automaton. We may consider M as an S'-automaton with the obvious modification.

Let TM be a set of right congruences on M satisfying the following conditions.
Ul. If a is a right congruence on M, o => p and p e TM, then a e TM.
U2. If p and a belong to TM, then so does pD a.
U3. If p e TM and m e M then (p:m)e T, where

(p:m) = {(s , / )eS ' x S1 | (ms, mt) e p}.

This turns M into a right linear topological S-automaton with the equivalence classes
of elements in TM as a neighborhood system. We will again by abuse of language call TM

a topology. In general, if 5 is a right linear topological semigroup, then M is a right linear
topological S-automaton if it is an S-automaton, equipped with a topology consisting of
right congruences on M such that the map M x S—>M, given by (m,s)i-»mj is
continuous. The construction here will be similar to that described as above for the right
linear topological semigroup.

LEMMA 2.2. Let S1 be a right linear topological semigroup with topology T. For any
S-automaton M, there is a topology on M, namely, the one for which the set of open right
congruences is

T(M) = {pip is a right congruence on M and (p:JC) e T, VJC e M},

where (p :x) = {(s, t)eSlx S7(^,xr) e p}.

Proof. T(M)=?t0 because it contains the universal congruence. Suppose oz>p and
peT(M). Let xeM; then (a:x)=>(p:x). Since peT(M), (p:x)eT. Then (o:x)eT
also by Tl. Since this is true for all x e M, o e T(M).

Next, suppose p and a belong to T(M); then (p:jc)eT and (a:jc)eT. Then
(p:x)n(o:x)eJ by T2. However (p D o:x) =>(p:jc)Pl (o,x). We conclude that
pHoeT(M).

Finally, U3 is satisfied automatically by the definition of T(M). •

LEMMA 2.3. Same notation as above. T(M) contains the trivial congruence if and only
ifker(ax) eT, VJC e M, where ax:S

l—>xSl is defined as ax(s) =xs, Vs e Sl.
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Proof. Suppose T(M) contains the trivial congruence i. Then, by definition,
( i . x ) e T , V x e A / . N o w , ( s , t ) e ( i : x ) if a n d o n l y if ( x s , x t ) e t . if a n d o n l y if ( s , t ) e
ker(<*,.). We thus have ker(ax)eT, VxeM. The other direction can be proved by
reversing all the previous steps. •

LEMMA 2.4. Suppose M is an S-automaton and x e M; then clearly xSl is an
S-subautomaton of M. Moreover, 5'/ker(aA.) = xS\ where ax is as in Lemma 2.3.

Proof. As before, define ax:S
{—*xSl by ax(s) =xs. Both 5' and xS] are 5-

automata. Furthermore, ax(st) = x(st) = (xs)t = ax(s)t, \/s,teS. Therefore, ax is an
5-homomorphism and it is clear that ax is surjective. Then Sl/ker(ax) ^xSl by the
Isomorphism Theorem. •

3. Hereditary pretorsion classes of 5-automata (HPC).

DEFINITION 3.1. A nonempty set of 5-automata is called a pretorsion class if it is
closed under quotients by right congruences, coproducts and finite products. We call its
elements pretorsion S-automata.

DEFINITION 3.2. A pretorsion class of 5-automata is called hereditary if it is also
closed under subautomata. We then call this set an HPC.

THEOREM 3.1. Let T be an RL-topology on 51. Define

C = {M/M is an S-automaton and ker(o^) e T, Vx e A/}.

Then C is an HPC.

Proof. First of all, it is easy to show that 5 ' / veC, where v is the universal
congruence. So C¥=0. Next, suppose M s C and p is a right congruence on M. We show
that M/p e C; i.e. C is closed under quotients. Let x eM; then [x] e Ml p. Consider the
5-homomorphism <X\x\:S*->[x]Sx given by alx](s) = [x]s = [xs]. Then (s, t) e ker(a'|J.)) if
and only if [xs] = [xt]. Therefore, ker(a\x{) => ket(ax). Then ker(ar^|)eT by Tl. Since
x e M is arbitrary, we have M/p e C.

Next, it is clear that C is closed under coproducts and subautomata. We show that C
is also closed under finite products. Let M},.. . , Mn e C, and let x = (x,) e M, x . . . x Mn.
Then

ker(^) = {(s, t) e 51 x 51 | ax(s) = ax(t)}

Since M, e C, ker(a,.) e T, V/ = 1 , . . . , « , and hence ker(a,) e T by T2. •

THEOREM 3.2. Let C be an HPC. Define

T = {pip is a right congruence ofS1 and Sl/p e C}.

Then T is an RL-topology on S1.

Proof. Let A/eC and xeM; then xSleC, since C is closed under subautomata.
Since xSl = Sl/ker(ax) by Lemma 2.4, ker(a^)eT. Thus, T * 0 . Next, let a^p and
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p e T . Define J J :5 ' Ip—*S ' lo by r?([i]p) = [s]a. Then it is easy to show that 77 is a
well-defined surjective S-homomorphism. By the Isomorphism Theorem,
(S]/p)/ker(r]) = Si/o. Since C is closed under quotient, S ' / a e C and hence oeT. So Tl
is established.

Now, suppose that p and o belong to T. Consider a function 6:Sl/p n o—>
5 ' /p x S'/CT defined by 0([s]pno) = ([s]P, [s]a)- Then, again, it is easy to show that 6 is a
well-defined S-homomorphism.

ker(0) = { ( [ j ] p n n [t]pna) I [s]p = [t]p and [s]o = [*]„}

= {([s]Pna, [t]Pna) I t e [s]p PI [s]a = [s]pna}.

Therefore ker(6) is the trivial congruence which implies that S*/p X S]/o contains an
isomorphic copy of Sx Ip D a. Hence, Sllp C~\ o eC, p f l a e T and T2 is established.

Finally, let p e T and s e S 1 . Define 0 :£'->• S' /p by /3(JC) = [SJC]P. Then /3(JC/) =
[5(jcr)]p = [ («) / ] p = [sx]pt = /3(jc)r for fe 5. Therefore, /3 is a well-defined 5-
homomorphism. Thus, 5 ' /p contains an isomorphic copy of S'/ker(/3). Now

= {(x,y)\(sx,sy)ep}

= {(x,y)\(x,y)e(p:s)}.

So ker(/8) = (p:s). Thus, S]/(p:s) e C and hence (p:j)eT. •

THEOREM 3.3. The set of hereditary pretorsion classes of S-automata can be
parametrized by the set of right linear topologies on Sl.

Proof. To each /?L-topology T we have associated an HPC, namely, C = {M | M is
an 5-automaton and ker(ax) e T, Vx e M} by Theorem 3.1. Conversely, if C is an HPC,
then T = {p \ p is a right congruence on S1 and S' /p e C} defines an /?L-topology on S1

by Theorem 3.2. It remains to verify that we have obtained a bijective correspondence
between the set of HPC and the set of /?L-topologies on 5 ' .

Let T be an /?L-topology on S1. Then we define C as above. Moreover, we define

Ti = {p I p is a right congruence on Sl and S ' /p e C}
and

T2 = {p I P is right congruence on S1 and (p:a) e T , Va eS 1 } .

Then we show T, = T by proving that T, = T2 = T. First,

(p:s) = {(s,t)eSixSl\(as,at)ep)

= ker(arM).

It is, then, clear that T, = T2.
Next, let p e T and aeS1; then ( p : a ) e T by T3. Since this is true for all aeS1,

p e T2. On the other hand, if p 6 T2, then p = (p : 1) e T. Therefore, we have established
that T2 = T. Hence T, = T.

Conversely, suppose C is an HPC. We define

T = {p I p is a right congruence on S1 and Sl/p e C}.

https://doi.org/10.1017/S0017089500009903 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009903


332 CLEMENT S. LAM

Then define

C| = {M | M is an 5-automaton and ker(ax) e T, VJC e M}

and

C2 = {M | M is an 5-automaton and each cyclic subautomaton

(i.e. JC5' where x e M) is in C}.

We show that C, = C by showing that C, = C2 = C.
Suppose MeC, ; then ker(ax)eT, VJC e M. Let xeM; then JC5' is a cyclic

5-subautomaton of M. Since xS* = S1/ker(ax) and ker(ar,.) e T, xS1 eC, and hence
M e C2. Reversing the steps above, we establish C] z> C2.

Next, if M e C, then obviously each cyclic subautomaton is also in C, since C is
closed under subautomata. Thus, M e C2. Conversely, suppose MeC 2 ; then xS[eC,
VJC e M. Then ©JC5' e C. However then M is the homomorphic image of ©JCS1 by the
5-homomorphism which "forgets" the extra separating indices between the same
elements in different cyclic subautomata. Hence M e C . •

4. Preradicals on the category Aut(S) of 5-automata. First note that the
morphisms in Aut(5) are 5-homomorphisms.

DEFINITION 4.1. A preradical r is a functor on Aut(S) which assigns to each
5-automaton M a subautomaton t(M) in such a way that every 5-homomorphism
q>:M—>N induces the map r(cp):r(A/)—>r(N) by restriction.

LEMMA 4.1. Suppose that 51 is a right linearly topological semigroup with topology T.
For each S-automaton M, define

t(M) = {xe M/ker(ax) e T}.

Then t is a preradical on Aut(5).

Proof. Suppose M e Aut(S). Then clearly A/r>t(M). Let xet(M) and ueS. Then
ker(ax) e T by definition. Now

(ker(ax):u) = {(a,b)eSx x 51 | (ua, ub) e ker(a,)}

= {(a,b)\(xu)a = (xu)b}

= ker(a",u)eTbyT3.

Thus xu e t(M) and t(M) is an 5-subautomaton of M.
Moreover, let M and N be 5-automata and y.M-*N be an 5-homomorphism.

Consider the induced map t((p):t(M)-»N where t(<p) is equal to q> restricted to t(M).
Since ker(ax)eT, Vjtet(M), T(t(M)) contains the trivial congruence by Lemma 2.3.
Therefore ker(t(<p)) e T(t(Af)) by Ul, and thus (ker(t(<p)):jc)eT, Vx et(M). However,

ker(ort(v)(jt)) = {(u, v) e 51 x 5' | t(<p)(jc)« - t(<p)(x)v}

= {(u,v) | (xu,xv)eker(t(<p))}

Therefore, ker(tf,(,,)Cr)) e T and hence t(<p)(jc) e t(N). So the induced map is t(q>): t(M)
t(N) and we conclude that it is a preradical on Aut(5). •
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DEFINITION 4.2. A preradical r on Aut(S) is idempotent if r(r(M)) = r(M) for all
M e Aut(S).

LEMMA 4.2. The preradical t we defined in Lemma 4.1 is idempotent.

Proof. Clear. •

Next, we would like to relate the preradical t with HPC.
Define C, = {M | M is an 5-automaton and t(M) = M).

THEOREM 4.3. C, is an HPC.

Proof. C, =£ 0 since t is idempotent by Lemma 4.2. Suppose M e C , and N is an
S-subautomaton of M. It suffices to show that t{N)^>N. Let xeN; then xeM and
x e t(M) since M = t(M). But then ker(a-^) e T by definition of t(A/) and hence x e t(N).
So C, is closed under subautomata.

Secondly, suppose M e C , and p is a right congruence on M. We show that Mlp e C,.
Define JT:M—»M/p by n(m) = [m]p. Then n is a well-defined surjective 5-
homomorphism. Since t is a preradical, we have the induced map t(n):t(M)—*t(M/p).
Since M e C , , the induced map is t(n): M-> t(M /p). But t(n)(M) = n(M) = Ml p.
Therefore t(M/p) => M/p and hence Mlp e C,.

Thirdly, suppose {Ma} is a collection of S-automata in C,. Since t(M(V) = Ma, Vcr, the
induced map of each inclusion is t(Ma)-^>t{®Ma) which is then Ma^>t{®Ma). It follows
that \{@Ma) = ®Ma by the universal mapping property of coproducts. Hence C, is
closed under coproducts.

Finally, we show that C, is closed under finite products. Suppose M,, . . . , Mn e C,;
then t(M, x . . . x Mn) = {x = (JC,) e i W , x . . . x i W , , | ker(cv,.) e T. Let * = (*,) e M, x . . . x
A/,,. As before, ker(a-r) = f l ker(a-v.). By hypothesis, M, e C,. So t(M,) = Mh V« =
1,. . . , n, and then ker(o;v.) e T. Therefore, ker(o^) e T by T2. Hence t(M, x . . . x Mn) =
i W , x . . . x M , , . •

THEOREM 4.4. The set of hereditary pretorsion classes of S-automata can also be
parametrized by the set of idempotent preradicals r such that Cr={M\M is an
S-automaton and r(M) = M} is closed under subautomata and finite products.

Proof. Let C be an HPC. Define T by

T = {p | p is a right congruence on 5 ' and S ' / p e C } .

Then define t on Aut(S) as t(M) = {x e M \ ker(cr,) e T} and C,= {M \ t(M) = M).
Suppose M e C , , then t(M) = M which implies that ker(a-.v) e T, Vx e M. Then xS' =
5'/ker(a-v) e C for all x e M by definition of T. So ©J tS ' eC and hence M, being the
homomorphic image of ©JC5' , belongs to C. On the other hand, if M e C , then
ker(a-.r) e T, Vx e M by the proof of Theorem 3.3. Then t(M) = M and M e C , . Hence
C = C,.

Conversely, let t be an idempotent preradical on Aut(S) such that C, is closed under
subautomata and finite products. Then C, is an HPC because the proof in Theorem 4.3
on closure under quotients and coproducts does not depend on the particular definition of
t. By Theorem 3.3, we get an RL-topology

T = {p | p is a right congruence on S1 and S'/p e C,}.
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We define t, on Aut(S) by t,(M) = {x e M \ ker(ax) eT}. We would like to show that
ti = t. Suppose M e Aut(S). Let xett(M); then ker(ax)€T which implies that
S'/ker(a^)eC,. Then xS{eCt. Now ©jtS'eC, and so is t,(M). Therefore t(t,(M)) =
t,(A/). But M=>t,(Af); so t(M)=>t,(M). On the other hand, we show that t,(M) is the
largest subautomaton of M belonging to C,. Suppose M => N => t((M) and N e C,. Let
x e Mt,(Af); then ker(^) $ T and thus JC5' = Sl/ker(ax) $ C,. Since NeC, and JC5' is a
subautomaton of N,xSleCt. So we have reached a contradiction. Furthermore,
t(M) e C, since t is idempotent. We then have t,(A/) => t(M). Hence t, = t. •

5. Semigroups of fractions and automata of fractions. We summarize here the
previous results from Sections 3 and 4 as follows.

THEOREM 5.1. The set of hereditary pretorsion classes of S-automata can be
parameterized by both the set of right linear topologies on 5" and the set of idempotent
preradicals t on Aut(S) such that C,= {M/t(M) = M) is closed under subautomata and
finite products.

Next, we turn our attention to the concepts of semigroups of fractions and automata
of fractions. Then we construct a specific example for an HPC and use the Correspon-
dence Theorem 5.1 to develop some interesting results. We first present some preliminary
definitions and results while details and proofs may be found in [1,4,5].

DEFINITION 5.1. Let 5 be a semigroup as always and A be a subsemigroup. A right
semigroup of fractions is a monoid 5[/t~'] together with a semigroup homomorphism
0:5-*S[A~'] satisfying the following conditions.

51. <p(a) is invertible for all a e A with respect to the identity.
52. Every element in S[/4~'] has the form (t>(s)(f)(a)~l with s € S and a eA.
53. (j)(s) = (f>(t) if and only if sa = ta for some a eA.

LEMMA 5.1. 5[/t~'] exists if and only if the subsemigroup A satisfies:
Al. If a eA and s eS, then there exists b eA and t e S such that at = sb.
A2. If a eA and as = at with s,teS, then there exists b eA such that sb = tb.

LEMMA 5.2. When S[A~*\ exists, it has the following universal property: for every
semigroup homomorphism A:5—» T such that X{a) is invertible in T, for all a eA, there
exists a unique homomorphism o:s[A~l]-*T such that o°(p = L We then conclude that
S[Y4~'] is unique up to isomorphism.

When S[A~l] exists, it has the form S[A~'] = SxA/~ where ~ is the equivalence
relation defined on SxA as (s,a)~(t,b) if there exist u,veS such that su-tv and
au = bv eA. If we denote elements of 5[/4~'] by [s,a], then 0 :5^5[>1~ 1 ] is defined as
<p(s) = [sa,a] for any aeA. Moreover, it is easy to show that the identity in S[/4~'] is
[a, a] for any aeA.

DEFINITION 5.2. A subsemigroup A of 5 is called a right denominator set when it
satisfies Al and A2.

DEFINITION 5.3. Suppose 5[y4~'] exists and M is an S-automaton. An automaton of
fractions with respect to A is an 5[i4~']-automaton M[/4~'].
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It has the form M[/4~'] = M x A/~, where ~ is the equivalence relation defined on
M x A as (m,a)~-(n,b) if there exist s,teS such that ms = nt and as = bteA. We
denote elements of M[J4~'] by [m,a]. Moreover, 5[^~'] operates on Af[/1~'] by
[m, a][s, b] = [mt, be], where [s, b] e S[A~l], t e S,c eA and at = sc.

LEMMA 5.3. Suppose A is a denominator set. If N is an S[A~]]-automaton, then N is
an S-automaton with the S-operation defined by n. s = n<p(s), where (p is as defined in
Definition 5.1.

LEMMA 5.4. Suppose that M[A~]] is an S[A~l\-automaton. Then the function
HM:M—*[A~X\, defined by [iM(m) = [ma, a] for any aeA is a well-defined S-
homomorphism. Moreover \iM satisfies the following universal property: for each
S[A~^-automaton N and S-homomorphism a:M—»/V with the S-action as defined in
Lemma 5.3, there exists a unique S[A~x\-homomorphism o:M[A~*]—*N such that
ofiM = a. Moreover, each element [m, a] e M[A~l] can be expressed as [iM(m)(p(a)~'.

Let nM:M^> M[A-i] be defined as above.

DEFINITION 5.4. ker(^M) is called the A-torsion of M.

LEMMA 5.5. ker(;UM) = {{m, n) e M x M/3c eA (me = nc)}.

DEFINITION 5.5. M is an A-torsion S-automaton if M is an S-automaton and ker(/iM)
is the universal congruence on M. M is A-torsion-free if ker(/uM) is the trivial congruence.

THEOREM 5.2. Let C be the set of A-torsion S-automata and their coproducts. Then C
is an HPC.

Proof. We show that C is closed under subautomata, quotients, coproducts and finite
products. It is clear that subautomata of /1-torsion S-automata are /1-torsion by using the
definition of ker(/zM). Suppose {Ma} is a set of ,4-torsion S-automata and N is a
subautomaton of (BMa. Then since @Ma is a disjoint union N = ®Na, where Na =
N r\Ma,Va. It is clear that each Na is an S-subautomaton of Ma and thus is /4-torsion.
Hence iV is a coproduct of /l-torsion S-automata.

Next, suppose M is ^4-torsion and p is a right congruence of M. Let M — MI p.
Consider the map /x^M—»M[/t~'] defined as before. By Lemma 5.5, ker^u^) =
{([m], [n])eM x lii \ 3c eA([m)c = [n]c)}. Since M is >l-torsion, if m,neM, then there
exists ceA such that me = nc. Then [m]c = [n]c. Thus ([m], [n]) eke^ju^). We then
conclude that M/p is also ,4-torsion. Now suppose {Ma} is a set of /l-torsion S-automata
and p is a right congruence on ®Ma. Let D = {D7} be the set of equivalence classes of p.
For each ex, let Ea = {D, | D, n Ma =£0}. We claim that Ea is an /l-torsion S-automaton
for each a. First of all, Ea =£ 0 . Assume not, then there is an a such that D, n Ma = 0 for
all j . Then U Dy = (U Mp)\Ma which is absurd. Next, suppose Dy e Ea and seS; then
D, n M ^ 0 . So there is x € Dy n Ma, and xs e Dfs D Ma. This implies that Dys e Ea and
so Ea is an S-automaton. Suppose Dy and Dk are arbitrary elements of Ea\ then
Dy DMai=0 and Dk r\Ma±®. Let dj e Dy D Ma and dkeDkC\ Ma. By hypothesis, Ma is
/4-torsion, and so there is ceA such that df = dkc. Then DjC = Dkc and (Dy, D^) e
ker(ft£j. Hence, we conclude that ker(ju£j is the universal congruence. We then have
(BEa e C. Since D is the homomorphic image of ®Ea under the S-homomorphism which
forgets the extra separating indices from the same elements D, but in different automata
Ea, ®Malp = D e C. Hence, C is closed under quotients.
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Finally, we show that C is closed under finite products. We first show that the finite
product of/4-torsion 5-automata is /4-torsion. However, it suffices to show that it is true
for only two ,4-torsion 5-automata, say, M and N. Suppose (m, n) and (x,y) are arbitrary
elements of M x N. Since M and N are v4-torsion, there exist c,d eA such that me =xc
and nd = yd. Moreover, c eA and d eS imply that there exist b eA and e e 5 such that
ce = db by Al in Lemma 5.2. Therefore, mce = xce and ndb = ydb. Let g — db e A; then
mg =xg and ng = yg. We then conclude that ker([iMxN) is the universal congruence and
M x N is /4-torsion. Next, suppose @Ma and @NP are coproducts of /4-torsion
5-automata. Then it is easy to show that {@Ma) x (®NP) = ®(Ma x A^)- Since Ma x Np

is ^-torsion by the proof above, (®Ma) x (®Nfi) is a coproduct of /l-torsion
5-automata. •

COROLLARY 5.1. Let C be the set of A-torsion 5-automata and their coproducts; then
C is the set of S-automata each cyclic subautomaton of which is A-torsion.

Proof. Since C is an HPC by Theorem 5.2, we can define

T = {p | p is a right congruence on S1 and S'/p e C}

by the Correspondence Theorem 5.1. Then

C = {M | M is an 5-automaton and ker(<!•_,) e T, V* e M}

by Theorem 5.1 again. However, ker(a-j.) eT, V* e M if and only if S'/ker(ax) e C, VJC e
M. This is equivalent to JC5' e C, Vjf e M, which is then equivalent to xS' being /4-torsionuivalent to JC5'
for all x e M.

DEFINITION 5.6. Elements of C, as defined in Corollary 5.1, are called pre-A-torsion
S-automata.

/l-torsion 5-automata are obviously also pre-,4-torsion. Moreover, pre-A-torsion
5-automata are pretorsion since C is an HPC.

Notice that

C = {M | M is an 5-automaton and each cyclic subautomaton is /4-torsion}

= {M \xSl is y4-torsion for all x e M}

= {M | ker(ju .̂si) = universal congruence for all x e M).

We define t2 on Aut(5) as

t2(M) = {x e M | ker(juj5i) = universal congurence}.

Then C = {M \ t2(M) = M). Since C is an HPC, we can define, via the Correspondence
Theorem 5.1, an RL-topology

T= {p | p is a right congruence on 51 and 5'/p e C}.

Then we get our original t which is defined as i{M) = {x e M \ k e r ^ ) e T}.

COROLLARY 5.2. t2 = t.

Proof, x e t(M) if and only if ker(ar,.) e T. Then this is equivalent to 5'/ker(a->.) e C.
Then xSleC since 5'/ker(a;v) = x5l. But this is equivalent to kerdulSi) = universal
congruence and it is the same as x e t2(M). Hence t2 is also an idempotent preradical such
that C = {M | t2(M) = M} is closed under subautomata and finite products. •
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