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ASYMPTOTIC EXISTENCE
OF TIGHT ORTHOGONAL MAIN EFFECT PLANS

ROBERT GALLANT AND CHARLESJ. COLBOURN

ABSTRACT. Our main result is showing the asymptotic existence of tight OMEPs.
More precisely, for each fixed number k of rows, and with the exception of OMEPs
of theform 2 x 2 x --- 2 x 2s // 4swith s odd and with more than three rows, there
areonly afinite number of tight OMEP parametersfor which the tight OMEP does not
exist.

1. Introduction. An Orthogonal Main Effect Plan, or OMEP, is a matrix having k
rows (or factors), n columns (or runs), 5§ symbolsin row i, for 1 <i < k, and which
satisfies the property: If 1 <i < j <k, and if x isany symbol in row i, and y is any
symbol in row j, then the number of columnswith anx inrow i anday inrow j equals
the number of times x appearsin row i, multiplied by the number of timesy appearsin
row j, divided by n. We call the matrix an s; X s, X - -+ x & // n OMEP. The number
of times symbol x occursin row i is often denoted by rix. These numbers are called the

replication numbers of the OMEP. OMEPswiths; =S, = --- =5 = sand n = \S,
having all replication numbers equal to As, are orthogonal arrays of strength two and
index .

OMEPs have been considered by many authors, in part because they are useful in
constructing statistical designs. For a recent survey on OMEPs and related structures,
see[6]. For an application of tight OMEPs, see[4].

Suppose D isans; x s, X -+ x § //n OMEP, and that n = pJ"pJ%- - - p¥ is the
prime power factorization of n. Let

gi = ged{rix | xasymbol inrowi}.
Since for an OMEP we have
nrixryy  fori #j, xinrowi,yinrowj,

it follows

(@) njgigg foralll<i<j<k.

For each prime p; dividing n, let |; be the greatest integer such that p{‘|gj for each j,

and choose ¢; so that p'tt exactly divides g,. (Note that ¢; is not necessarily uniquely

determined.) Then, by (1), we seep® " divides g; for j # .. If ™" exactly divides g;
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forj # ¢, and furthermoreif 5 = n/g; for eachj € {1,2, ...k}, then we call the OMEP
tight. In this casewe havel; < my/2.

If D itself is not tight, then the I;’s and the ¢;’s still exist, and these determine the
parameter set of atight OMEP, say s} x s, X --- X § // n. Inthiscase, wehave g > g,
andsos < § for eachi. (In fact it also followsthat if D is not tight then some § > s.)
Hence, if thistight OMEP exists, then an OMEP with the same parameters as D can be
obtained by collapsing levelsin the tight OMEP. Therefore, it is useful to know when
tight OMEPs exist. Tight OMEPs were first discussed in [4].

From the preceding discussion, tight OMEPs have parameters of the form A;g x
A2g X - X NG [/ Mz -+ - A@?, with the \i’s pairwise relatively prime. Not all OMEPs
with these parameters are tight; it may bethat rj Z n/s = A1)z --- \g/Ai. However,
whenever n = A\ \o--- \g? and s = \g, it is at least possible in principle that there
is a tight OMEP with these parameters, that is, with r; = n/s. When we say that
S1 X § X -+ X § // nisatight parameter set, we mean that by taking rix = n/s;, the
replication numbers satisfy the necessary arithmetic conditions for the existence of a
tight OMEP, so it is at least conceivable that there existsatight s; x s, x --- x § //n
OMERP. It may be that the OMEP still does not exist, for example 6 x 6 x 6 x 6 // 36
is atight parameter set, yet the OMEP does not exist since it would correspond to two
MOLS of order 6.

We refer to some common design theory structures in this paper. For example a
transversal design TD; (k. g) is equivalent atight g x g x --- x g // A\g> OMEP with k
rows. An RBIBD(v, k., A) is a resolvable balanced incomplete block design on v points
with blocks of size k. For further information on these and similar structures, see any
good book on design theory, for example[2].

2. Asymptotic existence of tight OMEPs. Asymptotic existence of tight OMEPs
is established in this section. Asan intermediate step, asymptotic existence of resolvable
transversal designsisalso established. In[4], itisshown that every tight OMEP parameter
set on 3 or fewer rows has a corresponding tight OMEP, so we make the implicit
assumptionk > 4.

We first outline some common constructions for OMEPs.

THEOREM 2.1 (PRODUCT CONSTRUCTION). Ifans; x s, X - - - x § // nOMEP exists,
andans; xs, x--- xg, // " OMEPexists, thenan s;8; x 8, x - - - X &8, // nn" OMEP
exists.

Also, we need a concatenation construction. See [4] for details.

THEOREM 2.2 (CONCATENATION CONSTRUCTION). Suppose D isans; x s x -+- x
S // NOMEP, andD’isans; xs; x - - - x 51 x 5, // ” OMEP, with replication numbers
rix and rj’y respectively. Further suppose that these OM EPs have the same symbol setsin
thefirstk — 1 rows, rix/n=r{ /n" when1 <i < k— 1, and for the remaining row, the
symbolsin the first OMEP are all different from the symbols of the second OMEP. Then
the concatenation of these matricesisans; x S, X - - - X §1 X (& +5) //(n+n’) OMEP.

https://doi.org/10.4153/CMB-1998-007-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-007-9

TIGHT ORTHOGONAL MAIN EFFECT PLANS 35

The following incidence structure is useful.

DEFINITION 2.3. Let S = {vj | 1 <i < k.1 <j < g}. Let B be aset of subsets
(called blocks) of S. The pair (S, B) iscalled an R(g, k. ., A)-design if the block set can
be partitioned into parallel classesand if pairs of points vix, Viy arein no blocksif i = j,
in A blocksifi #Zjandx#y,andin u blocksifi #Zjandx=Yy.

LEMMA 2.4. Let g andk be fixed. Then an R(g. k. g2 — 1. g¢?)-design exists.
PrOOF. Let thepoint set be {(i,j) | 1 <i < g,1 <j <k}. The set of blocks

{{(P1. D). (2. 2). ... (- K} | p’s not all equal }
isaR(g.k, g2 — 1, g“*?)-design. .

If we do not exclude blocks with all p; equal, we get a RTDg (k. g). We state this
well known result formally here.

REMARK 2.5. For any fixed g and k, aRTDy.2 (K, g) exists.

LEMMA 2.6. If a RTD,, (k. g) and a RTD,, (k. g) exists, with gcd(A1, \2) = 1, then a
RTD, (k. g) existsfor all A > A1 A2. Henceif aRTD,,(k, g) with gcd(i:, g) = 1 exists, then
a RTD, (k, g) existsfor all A sufficiently large.

PrOOF. The first statement holds since A = s\; + tA, has a nonnegative integral
solutionin s, t for all A > A12. The second follows by using Lemma 2.4. ]

THEOREM 2.7. If an RBIBD(v.k.)) and a RTD,(v/k.g) exist, then a R(g.v.
A(@+ (v —K)/(k—1)). Au(v—K)/(k — 1))-design exists.

PROOF. We construct blocks on the point set
S={(i.)|1<i<gl<j<vh

Assumethat the RTD,,(v/k, g) ison the points {(i.j) | 1 <i < g.1 < <v/k}, and the
groupsareGj = {(i.j) | 1 <i < g}. AssumetheRBIBD isonthepoint set {1. 2. ... .. v}.
For each parallel class of the RTD, say {B1.B;..... By}, and each parallel class of the

RBIBD, say {B;.B5. .... B’¥ }, we construct aparallel classon Sasfollows. If

v
B = {(610.D: (22 (6up- ) |
then our parallel classon Shasblocks {3; | 1 < < g} defined by
B = {814} x BYU {82} x Bp) U+~ U({d1} x BY).

It is easy to check that these blocks give the desired design. ]

COROLLARY 2.8. Let g > 4 be a fixed number not divisible by 3, and let k be fixed.
Then for all A large enough, a RTD, (k. g) exists.
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PrOOF. Choose i such that 3*1 > k. Apply Theorem 2.7 using an
RBIBD(3*1. 3, (3 —1)/2) andaRTD(3. g) to obtain an R(g. 3**, g(3' — 1) /2+3'. 3))-
design which wetruncateto aR(g. k. g(3 — 1)/2+3'. 3)-design. Now take g(3' — 1) /2
copies of the blocks of a R(g.k.g<? — 1,g“"?) and one copy of the blocks of our
R(g.k.g(3 —1)/2+3.3")-design, to giveaRTD,, (k. g), where . = g¢<1(3' — 1) /2+3'.
Since . isrelatively prime to g, Lemma 2.6 givesthe result. ]

LEMMA 2.9. For any k, any m, and any A sufficiently large, a RTD, (k, 3™) exists.

ProOOF. The proof is as above, but for m > 1, we use a RTD(4,3™) and a
RBIBD(4", 4, (4 — 1)/3) as our “ingredient’ designs, and for m = 1, we use a
RTD,(4. 3) and aRBIBD(4*1, 4, (4 — 1)/3) as our “ingredient” designs. .

COROLLARY 2.10. For any k and any g with 3|g, and all X sufficiently large, a
RTD, (k, g) exists.

PrOOF. We first consider the case g = 6. In this case, choosei such that 5*1 > k.
Applying Theorem 2.7 using an RTDs(5, 6) and an RBIBD(5'*1, 5', (5' — 1) /4) gives
an R(6,M,6 - 5(5 — 1)/4 + M, M)-design, where M = 5*1. Adding 6 - 5(5 — 1)/4
copies of the blocks of an R(6, M, 6¥2 — 1, 6~2)-design givesan RTD, (M. 6), where
A=6-5-321.6M2+ Misrelatively prime to 6. Thus Lemma 2.6 now givesthe result.

For g # 6, write g = 3"g/, with 3 /¢. Sinceg # 6, g # 2. From Lemma 2.9, there
exists aRTD,, (k, 3™) with gcd(A1, g) = 1, and by Corollary 2.8 there is a RTD,, (k. d')
with ged(A2, g) = 1. Thedirect product of theseisaRTD,,,, (k. 9). Since gcd(A1 )2, 0) =
1, Lemma 2.6 now gives the result. ]

These last few observations show that for fixed k andg > 3, aRTD, (k — 1, g) exists
for all A large enough, say all A > M(g, k). Henceatight \gx g x - - - x g // A@ (having
k rows) existsfor al A > M(g, k). Therefore, (using the product theorem) for any set of
Ai's pairwise relatively prime with at least one \; > M(g, k) atight

(2) Mg X A2g X - X M@/ Mdz - eGP

OMERP exists. Since (for fixed k, g) there are only afinite number of parameters of the
form in (2) with the \i’s all less than A\, we see that there are at most a finite number
of such tight OMEP parameters for which the tight OMEP does not exist. Furthermore,
since for al sufficiently large g a TD(k, g) exists, and for such g and for any choice of
the A\i's @ A\1g X Aag X - -+ X @ // MAz- - - g OMEP exists. Thus, there are only
a finite number of parameter sets of the form in (2) with g # 2 for which the OMEP
does not exist. It remains to show that there are only afinite number which do not exist
when g = 2. Since a TD(K, 2«) exists for some o odd (depending on k), by collapsing
levels in it we obtain a 2o x 2a x 2 x -+ X 2 // 40 OMEP. Also, there is a tight
20/ x 2 x -+ x 2 // 4o/ OMEP for o (depending on k) a sufficiently large power of
2, and hence a tight 2o/ x 2a x --- x 2 // 4o’ OMEP. By using the concatenation
construction (Theorem 2.2) we obtain atight 2 x 2 X 2- -+ x 2 // 4uoc OMEP for all
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p > oo, Further, for such p, thereis atight 2 x 2o/ x 2 x --- x 2 // 4o/ OMEP.
Again using concatenation we obtain atight 2y x 2’ x 2--- x 2 // 4’ OMEP for all
i’ > aa. Thus, for any choice of y;’s pairwise relatively prime with at least two of the
pi'satleast a, thereis atight

3) 2“1X2“2X"'Xzﬂk//4ﬂlﬁb2"'uk

OMEP. We must now consider OMEPs of the form in (3) but where all but one of the
ui's arelessthan ae’. We need some lemmas first.

LEMMA 2.11. For any k, thereisan odd A suchthata 2\ x4 x2x 2--- x 2 // 8\
OMEP exists (having k rows).

PrROOF. Choosei suchthat 3*1 > k — 2 and i is even. For neatness defineM = 3*1,
LetD;bea2x4x2x2x2//8OMEP, andlet D, bean RBIBD(3*2, 3', (3 — 1)/2).
Let

T ={al M-tuplesusing 0,1 except (0,0, ....0)and (1. 1...,1)} .
Let thej-th parallel classof D, be {Bj1. Bj2. Bjs }. We construct an OMEP on M + 2 rows,
with rowslabeled 00, 0,1, 2, ... , M. We construct the OMEP so that the symbolsin row
ccaeT x{1.2,..., (3-1/2}u{1,2,...,M—1}, thesymbolsrow Oare {0, 1. 2, 3},
and the symbols in each other row are {0, 1}. Assume the symbols in the rows of D,
are {0, 1}, {0,1,2,3}, {0,1}, {0, 1}, and {0, 1}, respectively. Assume the point set of
Dyis{L2,..., M}. For each column (P, Po. P1. P2, P3)' of D1 and each parallel class
{Bj1. Bj2. Bj3} of D, we construct a column with 2j — p,, in the row oo, pg in row 0, py
in each row indexed in Bjy, p2 in each row indexed in Bj,, and ps in each row indexed
in Bj3. (Since {Bj1, Bj2. Bj3} is a parallel class this defines the entire column.) Further,
foreacha € {1,2....,(3 —1)/2}, each M-tuple T = (t1.tp.....tu) in T, and each
s € {0. 1, 2, 3} weconstruct a column with (T, ) in row oo, sinrow 0, and t; + sin row
[ for eachrow I, 1 <1 < M (where addition is done modulo 2). These columns together
form an OMEP where symbols from row oo and row 0 occur together once, symbols
from row oo androw | (1 <1 < M) occur together twice, symbols from row 0 and row
| (1 <1 < M) occur together \ times, where A = ((3* — 1) /2+ (M1 - 1)(3 — 1) /2,
and symbols from any pair of distinct rows with labels between 1 and M occur together
2\ times. (Sincei iseven, (3' — 1) /2iseven, and (3! — 1) /2is 0dd, so A isodd.) Thus
thisisa2\ x 4x2x2x --- x 2 // 8\ OMEP on M + 2 rows, which gives the desired
OMEDP, possibly after removing some rows. ]

LEMMA 2.12. For anyk, thereisa A which isa power of 2 such that atight 2\ x 4 x
2x2---x 2// 8\ OMEP exists (having k rows).

PROOF. Chooseisothat 4 > k—1. A4 x4x4x--- x4 // 4*1 OMEP exists,
having 4' + 1 rows. By collapsing levelswe obtaina4' x 4 x 2x --- x 2 // 4*1 OMEP.
Taking A = 221, weseethisisatight 2\ x 4x 2x - - - x 2 // 8\ OMEP, having4 +1 > k
rows. "

COROLLARY 2.13. For any k, and for all sufficiently large X, a tight 2\ x 4 x 2 x
2---x2// 8\ OMEP onk rows exists.
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Proor. Thisfollowsfrom Lemma2.11, Lemma2.12, and Lemma?2.6. n

We now show asymptotic existence of OMEPswith parametersasin (3). Againrecall
that k is some fixed number of rows.

In the first case at least one p; is even, say uz = 2u5. Then by (2.12), a tight
2\ x4x2x2---x2// 8\ OMEPonkrowsexistsfor al A large, say A > M'(k). Using
the product construction we seeatight 2\ x 2up x 2 x 2--- x 2 // 4\, OMEP exists
for A > M’(k), and so again using the product construction we see atight 2\ x 2u, X
2p3 X -+ X 2qi [/ A\pops - - - i OMEP exists for such A. Thus if some pi > M'(K),
and some y; is even, then atight 21 X 2up X - -+ X 2pu // dpape - - - i OMEP exists.
Hence there are at most a finite number of OMEP parametersin the first case for which
the OMEP does not exist.

In the second case, no p; iseven. If k < 3 then all possible tight parameter sets have
corresponding tight OMEPs (See [4]). We know if k > 4 and at most one ; is greater
than one then the OMEP cannot exist, and in this case the parameters have the form
2x2x---2x 2s//4sfor sodd. (See [4], for example.) Otherwise at least two ;’s
are greater than one. Suppose i1 > pz > 1. By the earlier results a 2\ iy X 2pup X
2up X -+ X 2up /| 4X' i3 OMEP exists for a (large) odd ', and so by collapsing levels
a2\ o X 2 X 2X 2% -+ X 2 /) H(N pp) 2 OMEP exists. Also a2 X 2up X 2X -+ - X
2 // 2%, OMEP existsfor large enoughi, sincefor largei a2 x 2x 2x --- x 2 // 2*1
OMEP on k rows exists. Thus again by an argument similar to the proof of Lemma 2.6
weseea2\ X 2up Xx 2x 2 X --- x 2// 4\ OMEP exists for all large A\, and so a
2\ X 2pp X 2uz X 214 X -+ X 2 [/ BApops - - - i OMEP existsfor all large A. Thus
if uy issufficiently large the OMEP exists, and hence at most a finite number of OMEP
parameters arise in the second case for which the OMEP does not exist.

These are the only possible cases and so there are at most a finite number of OMEP
parameters with the form in (3) for which the OMEP does not exist, with the one
exception of parameters of thetype2s x 2 x 2--- x 2 // 4swith s odd and with four or
more rows.

Combining all these results we see that for any fixed k, and with the exception of
parameters of theform2x 2 x 2 x --- x 2 x 2s // 4swith s odd and having 4 or more
rows, there are afinite number of tight OMEP parameters on k rows for which the OMEP
does not exist.

3. Application. With these results we can show that the Jacroux’s lower bound on
the number of runs n needed to construct an s; x s, X - -+ X § // n OMEP is “amost
asymptotically tight”. To explain what we mean herewe need to make some observations.

Jacroux’s[3] lower bound on the number of columnsinas; xs; x - - - x 5. // nOMEP
isasfollows.

THEOREM 3.1. Supposethat an OMEP D hask > 3 factors in which factor i has s
levels,i =1---k withs > s.1, and n experimental runs. If n = s s, for s;, S, satisfying

s, = min _ xy. Xy < 2518, S5 < ged(x.Y).

X>51.y>
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then D isa minimal OMEP.

Essentially we are bounding the number of runs required by bounding the number of
runs required for the truncated s; x s, X s3 // n OMEP.
Street [5] has extended Jacroux’s result whenk = 3:

THEOREM 3.2. If| < m < pand zistheleast number of timesa pair of symbolsfrom
rows two and three occur together in a column, thenan| x mx p // ((m+ X)(p+ y)/z)
OMEP cannot exist unless | < g;0,, where g1 = gedzm+ x,p+y) and g =
ged((Mm+x)/ga. (P +Y)/g2).-

The concept of atight OMEP quickly leads to the above results, asfollows. In [4], it
is shown that the minimal nfor whichans; x s, x 53 // n OMEP existsis the minimal
n for which atight s; x s, x 5 //n OMEP exists with § > s for i = 1,2,3. Let
d =gcd(s). 5. s5), and let u; = n/s fori = 1,2, 3. Now since we are dealing with three
row OMEPs, s} x s, x s} // nisthe parameter set of atight OMEPif and only if us, Uy, us
are pairwise relatively prime, and n = d?uju,us. All tight three-factor OMEPs exist, so
theminimal n for which atight s; x s, x s} // n OMEP existsis given by

min d2u; U,Us
subject to
ud>s,
ged(ui, u) =1 fori #j.
u, dpositiveintegers.

Assuming s; > S, > s3, elementary methods show thisintegral problem has an optimal
solution with uz = 1. Taking § = u;d, we see that there is an optimal solution with
n=s;s), ands, = god(s]. ).

Thus Jacroux’s lower bound is actually telling us the smallest n for which thereis a
tight OMEP parameter set s; x s, X ; // nwith § > s. Furthermore, since the above
integral system hasan optimal solution with uz = 1, we see that the smallest n for which
thereisatight OMEP parameter sets; x s, x - - - x § // nwith s > s can beassumedto
have the form n = p11129%, and the tight parameter set can be assumed to have the form

4) g X 2 X g X -+ X g // pap2g?

Now if g > 3 then there are at most a finite number of parameters with the form (4) for
which the tight OMEP does not exist. Thusif s, > s--- > 5, and s3 > 3, then there
are at most a finite number of choicesfor the other s for which Jacroux’s bound is not
tight. Evenif s3 = 2 and both s;, s, are greater than 2 then there are till at most afinite
number of caseswhere Jacroux’sboundis not tight. Thisiswhat we mean by the “amost
asymptotically tight” phrasein the beginning of this section.
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