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CLASSIFICATION OF RESTRICTED LINEAR SPACES 

JIM TOTTEN 

1. I n t r o d u c t i o n . The material in this paper is taken from the author ' s 
doctoral dissertation [2]. We will use the terminology and notat ion of [3]. 
Let us recall those terms which will be needed here. 

We define a restricted linear space (RLS) as a finite set of p elements, called 
points, of which q subsets, called lines, are distinguished so tha t the following 
axioms hold: 

(RLS-1) Any two distinct points u, v belong to exactly one common line uv. 
(RLS-2) Every line contains a t least two points. 
(RLS-3) q è 2. 
(RLS-4) (q - py ^ p. 

If only (RLS-1) and (RLS-2) hold it is simply called a finite linear space 
(FLS) . A non-trivial FLS is an FLS with q ^ 2. The square order of an FLS is 
tha t number n defined by n2 ^ p < (n + l ) 2 . 

We must now define a number of special FLS's . A near-pencil is an FLS 
with all its points bu t one collinear. Lin s cross has been defined as the 
unique FLS with 6 points having one 4-line and one 3-line. By a finite serni-
ajfine plane of type I I I (FSP3) [1, 6] we will mean an FLS obtained from a 
finite affine plane (FAP) by adjoining to it one "infinite" point. If the F A P 
we started with had order a t least 3 and if we delete a "finite" point from this 
FSP3 , we obtain what we will call a punctured FSP3 . I t was first handled by 
de Wit te in his doctoral dissertation [7] and has only recently appeared in 
pr int [8]. The next class of FLS's require much more explanation. 

An FLS J£ is called an inflated FAP if and only if the following conditions 
hold: 

(a) a subset of its points together with its induced set of lines forms an 
F A P , say i ^ * ; 

(b) the complementary subset of its points together with its induced set of 
lines forms a non-empty FLS, say 

(c) any line joining two points oi££' contains only points of ££'\ 
(d) any line joining a point of ££ ' and a point of S£* contains a t least one 

more point of «êf*. 
Because of (d) it is readily seen tha t this determines an injection from the 

set of points of ££' into the set of "parallel classes" of J?f*. If ££' has only one 
point, then J ? is an FSP3 . If ££' has 5 collinear points, where l ^ s — l ^ n = 
the order of J^*, then ££ is obtainable from a finite projective plane ( F P P ) of 
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order n by deleting n -\- 1 — s collinear points. If ££' is a near-pencil, then j£f is 
called a simply inflated F A P , and if «if ' is an F P P , thenJ*f is called a projectively 
inflated F A P . 

The objective then is to establish the following: 

T H E O R E M 1. *£ is an RLS if and only ifJ£ is one of the following: 
(i) a near-pencil, 

(ii) an F A P , an FSP3 , a punctured F S P 3 , or an F P P of order n with at most 
n points deleted and no lines deleted, 

(iii) Lin's cross, 
(iv) a simply inflated F A P or a projectively inflated F A P . 

I wish to thank Professor Paul de Wi t t e for suggesting the problem and 
Professors de Wi t t e and F . A. Sherk for their comments on and improvements 
to this work. 

2. Prerequis i tes . We will now reintroduce the notat ion of [3] and list some 
basic formulas (P1-P4) and results tha t may be found in [3, 4, 5]. T h e degree of 
a line x (resp. point u) is the number of points lying on it (resp. lines passing 
through i t ) , and is denoted by a(x) (resp. b(u)). A k-line (resp. k-point) is a 
line (resp. point) of degree k. We will assume throughout t ha t the points and 
lines have been given a monotone labelling, tha t is, the lines will be denoted by 
xa, 1 S <r ̂  q, such tha t a ^ r implies aa — a(xa) ^ a(xT) = aT, and the 
points will be denoted by ua, 1 ^ a ^ p, such t ha t a ^ p implies ba = b(ua) ^ 
b(up) = V If it is possible to have a monotone labelling in which Xi misses x2, 
we say tha t the FLS is loose; otherwise tight. We will assume tha t the monotone 
labelling for any loose FLS under consideration has been given so tha t x\ 
misses x%. T h e incidence number roa = r(x(T, ua) of a line xa and a point ua is 1 if 
ua lies on xa and 0 otherwise. The number of lines tha t miss a line xa will be 
denoted by s(x(T) = sa. 

P I . Z<r ÛV = J^a ba. 
P2. p — 1 = J2<r (a* — l)r<r«; hence p(p — 1) = J2« o,a(aa — 1). 
P 3 . If raa = 0, the number ba — aa counts the number of lines passing 

through ua t ha t miss xa. 
P4. Q - l = s, + J2« (ba - 1 K « . 

T H E O R E M A. An FLS is an F A P if and only if it is a loose RLS. 

T H E O R E M B. If J£ is an RLS of square order n we have a2 equal to: 
(i) 2 if J?f is a near-pencil, 

(ii) nif^ is an F A P , 
(iii) n + 1 otherwise. 

T H E O R E M C. If J£ is an R L S 0/ square order n we have a± equal to: 
(i) p — 1 if J^ is a near-pencil, 

(ii) n + 2 = 4c if J^ is Lin's cross, 

https://doi.org/10.4153/CJM-1976-034-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-034-0


LINEAR SPACES 323 

(iii) nif^ is an F A P , 
(iv) n + 1 otherwise. 

COROLLARY. If S£ is an RLS of square order n other than a near-pencil, then 
p ^ n2 + n + 1. 

T H E O R E M D. If i f is an RLS of square order n we have ba ^ n + 1 for all 
points ua, unless J£ is one of the following: 

ii) a near-pencil, 
(ii) Lin's cross, 

(iii) an FSP3 , 
(iv) a punctured F S P 3 . 

COROLLARY. If J£ is an RLS of square order n, then q ^ n2 + n + 1, unless 
S£ is one of the following: 

(i) a near-pencil, 
(ii) an F A P , 

(iii) an F S P 3 , 
(iv) a punctured FSP3 . 

T H E O R E M E. If ^ is an RLS of square order n other than Lin s cross, then 
parallelism is an equivalence relation on the set of n-lines. 

The following result is due to de Wit te [9]. 

T H E O R E M F. If <f£ is an FLS of square order n other than a near-pencil, then 
S£ is embeddable in an F P P of order n if and only if q ^ n2 + n + 1. 

3. M e t h o d of proof. In order to establish Theorem 1 it is sufficient to prove : 

T H E O R E M 2. If ££ is an RLS of square order n with q ^ n2 + n + 2 other 
than a near-pencil or Lin s cross, then^£ is an inflated F A P . 

Proof of Theorem 1 (assuming Theorem 2) . T h a t the FLS's listed in Theorem 
1 are restricted is very easy to show. So let us suppose S£ is an RLS of square 
order n. If q ^ n2 + n + 2, then .if must be one of (i), (iii) or (iv) by Theorem 
2 since it can be easily shown tha t any inflated F A P which is restricted must be 
either a simply or protectively inflated F A P or satisfy q ^ n2 + n + 1. On the 
other hand if q ^ n2 + n + 1, it follows from Theorem F tha t j£f is either 
(i) or (ii). 

For the remainder of this paper we will assume tha t i f is an RLS of square 
order n with q ^ n2 + n + 2 other than a near-pencil or Lin's cross. A line y 
will be called a maximal parallel of a line x, written y G M(x), if and only if y 
misses x and all lines z missing x satisfy a(z) S a(y). A point will be called real 
if it is an (n + l ) -poin t and ideal if not. A line will be called real if it meets 
every in + l)-l ine, ideal if it does not, and hyperideal if it misses every (n + In­
line. The weight of a non-empty set 5 of points will be defined as w(S) = 
min {ba — n — l\ua G S}. 
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To prove Theorem 2 we will first observe that it is an immediate corollary of 
the following two theorems, whose proofs we will then undertake: 

THEOREM 3. If S£ is an RLS of square order n with q ^ n2 + n + 2 other than 
a near-pencil or Lin s cross and if no (n + l)-line has a hyperideal maximal 
parallel, then<f£ is an inflated FAP. 

THEOREM 4. If f£ is an RLS of square order n with q ^ n2 + n + 2 other than 
a near-pencil or Lin s cross, then no (n + I)-line has a hyperideal maximal 
parallel. 

Before proceeding to the proofs of these two theorems let us establish some 
lemmas summarizing a number of small results. 

LEMMA \. If ££ is an RLS of square order n with q ^ n2 + n + 2 other than 
a near-pencil or Lin s cross, then 

(i) d\ = a2 = n + 1 and S£ is tight; hence any two (n + 1)-lines meet 
each other; 

(ii) p ^ n2 + n + 1 and so n ^ 2; 
(iii) oa ^ n + 1 for all points ua; 
(iv) parallelism is an equivalence relation on the set of n-lines; 
(v) p ^ n2 + 2 and q S n2 + 2n + 1 ; 

(vi) any real point lies on at least two (n + I)-lines; 
(vii) any ideal line contains only ideal points; hence the weight of any ideal 

line is at least 1 ; 
(viii) any (n + \)-line contains at least one real point; 

(ix) there is at least one ideal line; 
(x) there is at least one real point lying on at least two (n + 1)-lines; 

(xi) if x is hyperideal, then a(x) ^ n — 1; 
(xii) if y is an ideal line missing the (n + I)-line x, then s(x) ^ 1 + 

a(y)(w(y) - 1). 

Proof. By Theorems A, B and C we obtain (i). By Corollary to Theorem C 
we get (ii), and (iii) follows from Theorem D. Statement (iv) is simply 
Theorem E, and (v) is a consequence of (ii) and the fact that in an RLS of 
square order n we have q S p + n. By using (i), (v) and P2 we have (vi). 
Property (vii) is immediate from P3. By using (iii), (v) and P4 we get (viii). 
Statement (x) follows from (i), (vi) and (viii), and (xi) is then immediate 
from (x) and P3. Property (xii) is established simply by counting the lines 
at each point of y. It only remains to prove (ix). So let x be any (n + l)-line. 
If x misses a line, we have nothing to prove. So suppose x meets every line. 
Thus s(x) = 0. Then since q ^ n2 + n + 2, we see by P4 that at least one 
point of x, say v, is ideal. Let wbea real point on x and let y be an (n + l)-line 
passing through*u but different from x (guaranteed by (viii) and (vi) respec­
tively). Then by P3 there is a line passing through v that misses y and (ix) 
holds. 
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LEMMA 2. In any FLS if xa and xT miss each other and both of them meet xp, 

thenYja (ba - ap)r ( r a(l - rpa) ^ (aT - l ) ( a , - ap + 1). 

Proof. By P3 and P4 the expression ^ a ( J a — ap)r ( r a(l — rpa) clearly counts 
the number of lines which meet xa and miss xp. Now let v be the meet of xp and 
xT. Then there are aa(aT — 1) lines joining xa to xT tha t do not pass through v. 
At most (ap — 1) (aT — 1) of these lines also meet xp since none pass through v. 
Hence a t least (aT — 1) (aa — ap + 1) of the lines tha t meet xa and x r miss xp. 

COROLLARY (Transfer principle). If xa and xp are both k-lines, xa and xT miss 
each other, and both meet xp, and bQ ^ k for the point u8 in common to xa and xp, 
then J2« (°a — k)raa ^ aT — 1. 

Proof. Obvious. 

LEMMA 3. If xa and xp are k-lines, and if xp and xT meet each other and both 
miss X,,, then J2a (ba — k — l)raa ^ aT — 1. 

Proof. The proof is much the same as Lemma 2 and may be found in [5]. 

4. Proof of T h e o r e m 3. Suppose ££ is as described in the s ta tement of 
Theorem 3. To prove the theorem we need only establish: 

(a) the real points together with their induced set of lines form an F A P of 
order n, say 

(b) the ideal points and the ideal lines form an FLS, say J ? 7 ; 
(c) a line joining a real point and an ideal point contains a t least two real 

points. 
Let xp be an ideal line of maximal degree. By (i) we may assume tha t xp 

misses X\ and meets x2 since it is not hyperideal. Thus , it is appropriate to call 
x2 a transversal of (xi, xp). By considering any point of xp not on x2, which is 
ideal by (vii), we see tha t M(x%) is not empty. Let xT be a maximal parallel 
of x2. Then xT meets an (n + l)-l ine, say y (y may or may not be xi). Let u 
be the meet of x2 and xp, k the weight of the non-empty point set xp — {u\, and 
UB T^ u a point of xp having degree n + 1 + k. By (vii) we have k ^ 1. 

By applying the transfer principle to x2, y and xT we get 

^ (ba — n — l)r2« ^ aT — 1. 
a 

Through each of the points on xp different from u there are a t least k lines 
that miss x2 and hence s2 ^ k(ap — 1). Then by P4 we have 

a — 1 ^ s2 + ^ (ba — n — l)r2a + na2 ê k (ap — 1) + aT — 1 + n2 + n. 
a 

On the other hand there are exactly k lines passing through tip tha t miss x2 

and by P2 we get 

p - 1 g n2 + (ap - 1) + k(aT - 1). 

Since a ^ p + n we obtain 0 ^ (k — l)(ap — aT). Both expressions on the 
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right-hand side are non-negative. T h u s we get equalities for all the above 
inequalities: 

(1) p = q — n = n2 + ap + k(aT — 1) = n2 + aT + k(ap — 1). 
(2) s2 = k(ap - 1). 
(3) every point on xp different from u has degree n + 1 + k. 
(4) every ideal line missing x2 mus t meet xp. 

(5) E « (ba — n — l)r2a = aT — 1. 
(6) through up there pass one ap-line, n (n + 1)-lines meeting x2 and fe 

aT-lines missing x2. In fact we can say this about any point on xp different 
from u, by considering (3). 

Since x2 could have been chosen as any transversal of (xi, xp) having degree 
n + 1, in part icular one not passing through u, we see t h a t (3) and (6) also 
apply to the point u when there are a t least three points on xp. But if ap = 2, 
then aT = 2 and we have t h a t there are n (n + 1)-lines and kr + 1 2-lines 
passing through u for some k' ^ 1, and by applying P2 to the two points of xp , 
we get k = kf. T h u s we may improve (3) and (6) to read: 

(7) each point of xp has precise degree n + 1 + k. 
(8) through every point of xpj there pass one ap-line, n (n + 1)-lines and 

k aT-lines. 
By using (1) and P2 we get 

(9) any point lying on an aT-line must be ideal. 
From (8) and (9) we also obtain 

(10) every (n + l ) - l ine contains a t least one ideal point. 
Let uy 9^ u be any point of x2. Then by (i) and (8) we see tha t uy is joined 
to xp only by (n + l)- l ines. Since the role of x2 could have been played by 
any transversal of (xi, xp) of degree n + 1, in part icular one not passing 
through uy, we may conclude by (4), (i) and P3 tha t by = n + 1. T h u s by 
(5) and (7) we get 

(11) aT — 1 = J^a(ba — n — l)r2a = b(u) — n — 1 = k. 
Since any transversal of (xi, xp) of degree n + 1 could have played the role 
of x2, it follows tha t any (n + l )- l ine meeting xp has exactly one ideal point, 
namely the one lying on xp. Any (n + l)- l ine missing xp is joined to u by n 
(n + l)-l ines and one aT-line by (8). T h u s from (9) we see tha t 

(12) any (n + l)- l ine has n real points and one ideal point. Let v be the 
ideal point of X\. By (4) we see tha t every line passing through v meets either 
x2 or xp. Thus b{v) ^ n + ap, with inequali ty only if there is a line passing 
through v t ha t meets both x2 and xp a t dist inct points. By (12) and (8) such 
a line must have degree aT and thus have only ideal points by (9), contradict ing 
(12) for the line x2. Therefore we have 

(13) b(v) = n + ap. 
If y is any line joining v to x2 bu t not passing through u, we obtain by P2 

p - 1 ^ (n - l)n + a(y) - 1 + ap(aT - 1). 

By (1) and (11) we see tha t a(y) = n + 1. Therefore 
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(14) through v there pass n (n + 1)-lines (all missing xp) and ap a r-lines 
(all meeting xp). 

Now if x were any transversal of (xi, xp) of degree n + 1 not passing through w, 
then by (6) we have 

(15) every a r-line meeting xp must miss either x or x2 and is thus ideal. 
If y is a real line with a(y) S n, then by (14) and (15) y does not pass through 
v and thus meets all n (n + 1)-lines passing through v a t distinct real points 
by (12). Thus 

(16) any real line has exactly n real points and a t most one ideal point. 
By (16) we see tha t two ideal points must be joined by an ideal line and (vii) 
then implies tha t the ideal points and the ideal lines form an FLS, S£', and 
thus (b) is proved. Again by (16) and (vii) a line joining a real point and an 
ideal point is real and has n real points. Since n ^ 2 by (ii) we have proved 
(c). Let^Sf* be the FLS consisting of the real points and their induced lines. 
These lines are real lines of ^£ stripped of their ideal points, if in fact they had 
any. By (16) the degree of every line of J ? * is n, and since the degree of every 
point is n + 1, we have t ha t ~Sf* is an F A P of order n and (a) is proved. 

5. Proof of T h e o r e m 4. Let J?f be as described in the s ta tement of Theorem 4 
and suppose tha t there is an (n + l)-l ine z0 with an hyperideal maximal parallel 
y0. We must derive a contradiction. Set k = w(y0) and a = a(yQ). By (xi) and 
(vii) we have a ^ n — 1 and k ^ 1. The proof will be carried out in several 
stages. 

Stage 1: p ^ n2 + k(a - 1). 
Simply apply P2 to an (n + 1 + &)-point on y0. 

Stage 2: For any (n + l)-line x<j we have ^2a (ba — n — l)raa ^ a — k — 2. 
By P4 and (xii) we obtain 

q ^ n + n + 2 + a(k - 1) + X) Q>* - n - l)raa. 
a 

T h e result follows from Stage 1 and q ^ p + n. 

Note 2.1: 1 ^ k ^ a — 2 ^ w — 3, and hence 3 ^ a ^ n — 1. 

Stage 3: If x is ideal but not hyperideal, then a(x) ^ a — k — 1. 
If x misses x\ and meets x2, then by the transfer principle we have 

2]a (ba — n — l)fia è a(x) — 1 and the result follows from Stage 2. 

Stage 4: x is ideal if and only if x is hyperideal. 
Suppose there are ideal lines which are not hyperideal, since the proof in 

the other direction is trivial. Let H be the set of all such lines. Let xT be a line 
of H with maximal degree, and say it meets Xi and misses x2. Then let u be 
the meet of xT and Xi and let / = w(xT — {u}). Let % ^ w be any (n + 1 + / ) -
point on xT. Let g$ and hp be the number of real lines and the number of lines of 
H respectively, which pass through u&. Since xT G H, we have hp ^ 1. Let j 
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be the number of lines passing through Up which meet X\ and miss x2. Then 
j ^ 1 and there are n + 1 — j lines passing through Up meeting both X\ and 
x2. Then gp ^ n + 1 — j S n. Since j is also the number of lines passing 
through Up which meet x2 and miss %i, we may let xp be such a line. T h e transfer 
principle then states ^ « (ba — n — l)rïa ^ ap — 1 and by P4 we get 

q — 1 ^ Si + n2 + n + ap — 1 ^ Z(aT — 1) + w2 + w + ap — 1. 

Since ^ ^ w we see t ha t every (w + l)- l ine mJ^ has a t least one of its points 
lying on a line of H passing through Up. Let uy be any real point of ££ (guaran­
teed by (x)). Then by (vii) uy does not lie on any line of H and thus the 
number , cyi of in + 1)-lines passing through u7 cannot exceed the number of 
points lying on the lines of H passing through up. T h u s c7 g 1 + hp(aT — 1) 
and by P2 we get p - 1 ^ n2 + ^ ( a T - 1). Hence ^ ( a T - 1) è l(aT - 1) + 
ap — 1 and therefore /^ ^ / + 1. Suppose now tha t up lies on a t least one 
(n + l)- l ine. Then bp = gp + fe^. Now through up pass / lines missing x2, 
whose degrees cannot exceed aT since they are lines of H. Of the remaining 
lines passing through Up, xp is one and thus P2 implies 

P — I ^ ap — 1 + / (a r — 1) + C/sW + (n — Cp)(n — 1), 

where Cp is the number of (n + 1)-lines passing through Up. Since c^ ^ n, we 
must have ĉ  = n. Now all w (n + 1)-lines passing through Up mus t miss 3>0 

and hence n-\-l-\-l = bp^a-{-n, from which we obtain I ^ a — 1. By 
Stage 2 we get, for any (w + l)- l ine xa passing through Up, 

a - k - 2 ^ X (ba- n - !>„« ^ / , - n - l = U c - 1, 
a 

a contradiction. Therefore, there are no (n + 1)-lines passing through Up. 
Then by P2 we obtain 

p - 1 £ gp(n - 1) + ap - 1 + (A„ - l ) ( a T - 1) + (6, - ^ - ^ ) ( a - 1) 

= gp(n — a) + ap — 1 + Qip - l ) ( a T - a) + (w + Z) (a — 1) 

^ g/s(w — a) + ap — 1 + l{aT — a) + (n + l)(a — 1) 

= &?(w — a) + ap — 1 + l(aT - 1) + w(a - 1), 

where we have used the fact t ha t aT < a by Stage 3. Because g — 1 ^ n2 + 
w + ap — 1 + /(aT — 1), we get gp(n — a) ^ n(n + 1 — a ) , which contra­
dicts gp ^ n since we have a rg n — 1. 

iVote 4.1 : x w r e a / 1 / and ow/^ if x meets some (n + I)-line. 

Stage 5: Every (n + I)-line contains only real points. 
If an (w + l )- l ine x contains a t least one ideal point , say u, then by P3 and 

Stage 4 all (n + l)-l ines must pass through u, contradict ing (x). 

Note 5 .1: / d m / points lie on at least one ideal line. 

Stage 6: If x is ideal, then a(x) ^ a. 
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Obvious. 

Note 6.1: Any n-line is real. 

Stage 7: There are exactly n + 1 real lines passing through each point. 
If u lies outside any (n + l)-line, the result is true for u by Note 4.1. If u 

lies on all the (n + l)-lines, then by (x) u is real and certainly all lines passing 
through u are real. 

Stage 8: A real line x meets 1 + na(x) real lines. 
Immediate from Stage 7 and P4. 

Note 8.1: Any (n + l)-line meets n2 + n + 1 (rm/) /iwes. 77ms /or a?ry 
{n + l)-line x we have s(x) = s = q — n2 — n — 1 awd /^»£e 

(a) w è * è 1 + (ft - l )a è 1; 
(0) s S P - n2 - 1 ^ ft(a - 1) - 1. 

(a) follows from (v) and (xii), and (/3) from Stage 1. 

Note 8.2: There are n2 + n + 1 rea/ /iwes and s (hyper-) ideal lines. 

Note 8.3: Any n-line meets n2 + 1 rea/ /i'wes and misses n real lines. 

Stage 9: There are at least k + 2 (w + 1 + k)-points lying on y0. 
Let / denote the number of (n + 1 + ft)-points lying on the line 3>o- The 

number of lines that meet y0 and miss X\ is at least ka — t + 1. Thus we have 
^ = sx ^ 1 + ka - t and by (0) we get t ^ ft + 2. 

Stage 10: 77zer£ ar# a£ least n + ft + 3 — a n-lines passing through any 
(n + 1 + ft)-point on y0. 

Let #0 be any (w + 1 + ft)-point lying on y0 and let dp be the number of 
w-lines passing through it. Then by P2 we get 

p - l S dp(n - 1) + (n + 1 - dfi)(n - 2) + ft(a - 1). 

By (/3) we get s ^ dp — n — 2 -\- ka — ft and by (a) we have dp ^ n + k + 
3 - a. 

Stage 11: 2 (a - 1) ^ ». 
Let x be any n-Yme joining y0 to X\ (guaranteed by Stage 10 and Note 6.1). 

Applying Lemma 2 to Xi, y$ and x we get n ^ (a — 1) (» + 1 — » + 1). 

S/age 12: If two n-lines meet at a point u, then there is at most one ideal line 
meeting both and not passing through u. 

Let z\ and z2 be the n-lines and yif y2 two ideal lines not passing through u 
and meeting both z\ and z2. We must derive a contradiction. Without loss of 
generality the lines yi and y2 meet z\ at two distinct points, say v and w respec­
tively. By Note 8.3 it suffices to show that z2 misses at least n + 1 real lines. 
Since yi joins v to z2, at least two real lines passing through v miss z2 by Stage 7 
and similarly for w. By P3 there is at least one real line missing z2 passing 
through each other point of z\ different from u, which is a contradiction. 
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Stage 13: k = 1. 
Let u and v be two distinct (n + 1 + &)-points lying on the line y0 (guaran­

teed by Stage 9) and let d(u) and d(v) denote the respective number of ?z-lines 
passing through them. By Stage 10 and (iv) we see that every n-line passing 
through u meets an w-line passing through v and vice versa. By Stage 12 we 
can conclude that any ideal line different from y0 passing through u misses 
all fz-lines passing through v and vice versa. Without loss of generality, sup­
pose now that d(u) ^ d{v). Then, other than 3>0, the degree of any ideal line 
passing through u cannot exceed b(v) — d(v). By applying P2 to the point u 
we obtain 

p - 1 = d(u)(n - 1) + (n + 1 - d(u))(n - 2) + a - 1 

+ (k - 1 ) 0 + k - d(v)) 

= n2 - n - 3 + a + (k - 1 ) 0 + k) - d(v)(k - 2). 

By (a) and (0) we have 1 + (k — l)a ^ p — n2 — 1 and thus 

0 + k + 1 - d(v))(k - 2) = 2 + a(k - 2). 

By Stage 10 we have n + k + 1 — d(v) = a — 2. Therefore, k ^ 2 is im­
possible. 

5/age 14: 3>0 ^ ^ only ideal line {i.e. 5 = 1 and so q = n2 + n + 2). 
Suppose instead that x*. is an ideal line different from y0 having maximal 

degree. Let u be the meet of 3/0 and xr if they have a point in common, or any 
point of xr if yo misses xT. Let / = w(xT — {u}) and let / be the number of 
0 + 1 + /)-points of XTT different from u. Then 

s = St ^ 2 + t(l - 1) + (a* - t - 1)1 = (aT - 1)/ - / + 2. 

By applying P2 at an (w + 1 + /)-point v 7^ u of xT we see that 

£ - 1 = O + 1 ) 0 ~ 1) + / ( ^ - 1) = n2 - 1 + /(a. - 1), 

and by (13) we get / ^ 3. We also have 5 ^ 2 + (/ — 1) (aT — 1) and thus by 
(/3) again we get a = (/ — 1) (aT — 1) + 4. Now let us suppose that there are 
at most two w-lines passing through v which meet yo. Therefore, by applying P2 
to v we obtain 

p - 1 = 2 0 ~ 1) + (a - 2 ) 0 - 2) + O + 1 -a)(n- 1) + / ( a 7 r - 1) 
= w2 + 1 - a + /(a, - 1), 

and by (0) we have 5 = 1 + Z(ar - I) - a. Buts = 2 + ( / - l ) ( a , - l),from 
which we see that a* =• a + 2, a contradiction. Hence, there are at least three w-
lines passing through any (n + 1 + /)-point of xT different from u and meeting 
3>o. Now let 3^, 3>2, 3>3 be three w-lines passing through v and meeting 3/0. Since 
t ^ 3 we may let w be yet another (n + 1 + /)-point of xx different from both 
u and z;. Suppose s is an w-line passing through w and meeting yQ. Then by (iv) 
we see that z must meet at least two of yu y2, 3>3, say z meets yi and y2. But 
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ZJ Ju yi a r e certainly not concurrent and thus z must meet at least one of them, 
say yi, at a point not lying on y$. This contradicts stage 12 for the w-lines yi 
and z and the ideal lines y0 and xT. Therefore we must have 5 = 1 . 

Stage 15: All ideal points lie on y0 and have degree n + 2. 
By Note 5.1 and Stage 14 we see that every ideal point lies on y0 and Stage 14 

proves the rest. 

Stage 16: No 2-line meets y0. 
Suppose that a point v lies on y^ and a 2-line. Then from P2 we see that 

p — 1 ^ n(n — 1) + 1 + (a — 1) = n2 — n + a, 

which together with (v) gives a contradiction. 

Note 16.1: A real line has at least 2 real points. 

Stage 17: The real points of J£ together with all real lines stripped of their ideal 
points, if they had any, form an FLS, sayJ??*. 

This is immediate from (vii) and note 16.1. 

Stage 18: Any n-line x in J^ determines a partition TLX of the points of «Sf* 
into n + 1 lines ofJ£*, such that no line of Ux different from x passes through the 
ideal point of x in S£, if there is in fact an ideal point lying on x. 

This follows directly from Note 8.3 and Stage 15. 

Stage 19: If x and y are two distinct n-lines of S£ meeting in an ideal point, 
then lia; and 11̂  have exactly one line of f£ in common. 

Let u be the ideal point in common to x and y. Then by Stage 18 passing 
through each point of y there is exactly one line of Ux, the one through u being 
x itself. Since II^ contains n + 1 lines, there must be exactly one of them in n^. 

Stage 20: Let u be any fixed ideal point of J£. For every n-line x of J£ passing 
through u let us adjoin to J£* a new point [x] lying on all the lines of Rx (and 
only those lines). Then the resulting structure, denoted S£', is an FLS with 
p' = p* + d(u), q' = q* = n2 + n + 1 and bj = n + 1 for all a. 

By Stage 19 we see that ££' is an FLS.The values of p' and qf are obvious 
and bo! = n + 1 follows from Stages 15 and 18. 

Stage 21 : Jf' can be embedded in an FPP of order n, say S£". 
Since p* = p — a we see that 

p' = p - a + d(u) ^p + n + 4:-2a 

= p + 2 (a - 1) + 4 - 2a = p + 2 

by Stages 10, 11, 13 and 20. Therefore, f£' is an RLS of square order n with 
qr = n2 + n + 1 and by Theorem F we have ££' is embeddable in an FPP of 
order n. 

Stage 22: / / two n-lines of ££ both meet y§, they must meet each other. 
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Suppose the parallel n-lines xp and xa both meet y0j say a t u and v respec­
tively. Then passing through u there is another line, say xT, t ha t misses xa 

by P3 . By Lemma 3 and Stage 16 we get ]Ta (ba — n — l)rffa ^ aT — 1 ^ 2 , 
which contradicts Stage 15. 

Stage 23: Final contradiction. 
Let «if*, «if' and «if" be created as above for the fixed ideal point u of f£'. 

Any w-line of i f containing an ideal point different from u is mapped onto an 
(n — l )- l ine of «if' by Stage 22. Now for each ideal point of i f different from u 
we choose one n-l'me. These correspond to a — 1 dist inct (n — l)-l ines of «if ' 
which meet pairwise by Stage 22. In embedding S£' into S£" we must add to 
each of these a — 1 lines two more points which must all be distinct. T h u s as 
in Stage 21 we have 

n* + n + x = p>> ^ pi + 2(a - 1) ^ p + n + 4 - 2a + 2(a - 1), 

which contradicts the definition of n. 

De Wi t t e has found a different method of completing the proof of Theorem 4 
from Stage 22 on: 

Stage 22' : In the above embedding the n + 1 lines of S£* originating from the 
n + 1 real lines passing through any fixed ideal point v of S£ are mapped onto 
n + 1 concurrent lines of L". 

Let v be any ideal point of ^£ whatsoever. Then by Stage 10 there are a t 
least two w-lines passing through v, say x and y. In creat ing f£^ the n-lines 
x and y are mapped onto parallel (n — 1)-lines. T h e n + 1 real lines passing 
through v are mapped onto pairwise parallel lines of J^f*. They are in turn 
mapped onto n + 1 lines of J?f", which meet pairwise. Let X be this set of 
lines of J£". Let v" be the meet in ^£" of x" and y", which correspond to x and 
y in «i^\ and suppose a line z" of X does not pass through v". Then z" meets 
x" and 3/" a t points of f£" — ̂ £^. T h u s there is exactly one such line z" and 
every other line of X passes through v". Since there are n lines of X passing 
through v" and z" meets each in a dist inct point, z" mus t contain a t least n 
points of f£" — J£*. But by Note 16.1 this gives z" a t least n + 2 points, 
which is impossible. 

5/age 23 r : Final contradiction. 
By applying the a rgument of Stage 22' to two different ideal points of S£\ 

say v and w, we see tha t the n + 1 real lines passing through each are mapped 
onto n + 1 concurrent lines of S£", say concurrent a t v" and w". This means 
tha t the line v"w" of f£" corresponds to both a real line passing through v and 
one passing through w. This is impossible since the mapping J^* —» «if " is an 
embedding and thus injective. 
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