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ON RECURRENCE RELATIONS FOR
BERNOULLI AND EULER NUMBERS

CHING-HuA CHANG AND CHUNG-WEI Ha

We obtain a class of recurrence relations for the Bernoulli numbers that includes
a recurrence formula proved recently by M. Kaneko. Analogous formulas are also
derived for the Euler and Genocchi numbers.

1. INTRODUCTION

The Bernoulli polynomials B,(z) and the Euler polynomials E,(z) (n =0,1,2,...)
may be computed successively by means of the formulas

(1) Z": (n: 1) Bi(z) = (n+1)z™, E,(z)+ kngo (:) Ex(z) = 2z™.

k=0

Thus the corresponding Bernoulli and Euler numbers, defined respectively by B, =
B,(0) and E, =2"E,(1/2) (n=10,1,2,...), satisfy Bg = Ep = 1 and the recurrence

relations
n n—1
n+1 _1 n\ Fy

(2) Z( & )Bk=0, E,+2" Z(k>2—k=1 (n21).

k=0 k=0
Two important properties of Bernoulli and Euler polynomials we shall make use of
below are
(3) B;:+1(1:) = (n + 1)Bn(z), E:z+1(-":) = (n+ 1)En(z);
(4) Bn(z +1) — By(z) =nz™" !, E.(z+1)+ E,(z) = 2z".

We refer to [1] for a good account of the properties of Bn(z), E,(z) and the corre-
sponding Bernoulli and Euler numbers.

Recently a new recurrence formula for Bernoulli numbers was obtained in Kaneko
[6], for which two proofs were given (see also Satoh [8]). In this note we offer a proof
of Kaneko’s formula which is simpler than those given in [6, 8] and, significantly, leads
to a general class of recurrence relations for Bernoulli numbers. Analogous formulas for
Euler and Genocchi numbers are also derived. Other interesting recurrence relations
for Bernoulli numbers may be found in [3, 5] and [7, p.122].
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2. Two LEMMAS

We first give two simple properties involving Bernoulli and Euler polynomials on
which our results are based.

LEMMA 1. For an integer n > 0, the polynomials P,(z) and Q.(z) of degree 2n
defined by

n

Po(z) = ]X;‘) <?) Bnij(z) and Qu(@) =3 (;‘) Enyj(z)

Jj=0

are even functions.

PROOF: It follows from (4) that

Paa+ 1) = Pa@) = 3 (7 {Brssle + 1) = Bass(a)}
(5) e
> (5) e+ amt = o+ 1) e 4 )

=0

and

n

n
Qn(z+1)+ Qn(z) = z (J) {Entj(z+ 1)+ Enyj(z)}
=0
"\ (n
=3 ( ')2’"“ = 2"(z+1)".
i=o0 M
For an integer k > 0 substituting z = k and £ = —k — 1 into (5) and (6) we have
Pn(k + ]-) - Pn(k) = Pn(_k - 1) - Pn(_k)v
Qn(k + 1) + Qn(k) = Qn(—k — 1} + Qn(—k),
and so by induction for all integers k& > 1

Pa(k) = Pa(—k), Qu(k) = Qu(~k).

The lemma now follows as both P,(z) and Q,(z) are polynomials. 0

LEMMA 2. For an integer n > 0

") Pa(a) — Pa(l = 2) = 2 [s"(z ~ 1)"};
(8) Qn(z) + Qn(l — z) = 2z™(z — 1)".
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PRrooF: Replacing £ by —z in (5) it follows from Lemma 1 that
d o0 n
P,(z) = Pa(-z) = P(l—x) d:z:[ (z-1"].

Using (6) instead we have similarly

Qn(z) = Qu(-z) = —Q,(1 — z) + 22" (z — 1)™. 0
We also need the following formula to evaluate certain derivatives. For integers
0o<m<gn
1 am n 1\n-m(n
(9) (2m)! dz?m [z"(z - 1) ]x=1/2 = (_ Z) (m)

This follows from the Leibniz rule and the equality

S () i) =)

(see (7, p.14]).

3. RECURRENCE RELATIONS

The main result of this note is the following. We denote for integers m,n > 0,
[n — m]; = max{n — m,0}.

THEOREM 1. Let n > 1 be an integer. Then for any integer m > 0

2n .
m+n+1\/2m+k+1
(a) 2 (m—n+k)( k >B’°‘°’
k=[n—m],
2n
m+n+1\/2m+k+1 am+1l/m+n+1
(b) Z (m—n+k>( k )_ (_)22"‘“( n )
k=[n-m];

PROOF: Let m > 0 be given. Applying (3) repeatedly we obtain the (2m +1)*"
derivative of Pp4n41(z), which by Lemma 1 vanishes at £ = 0. Dividing the resulting
summation by (2m + 1)! we have

"‘z*:" mtn+1) (mtn+tj+1)p o
j o2m + 1 nomty =

j=[m-n]4

as B; =0 for odd j > 3. We have (a) by substltutmg j=m-—-n+k.
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In a similar way we calculate the (2m + 1)*® derivative of the expression P 4ny1 ()
— Ppint1(1 — z) and evaluate at z = 1/2. Dividing the resulting summation by
(2m + 1)! we obtain (b) by (7), (9) and the formula in (a) as B;j(1/2) = (1/27~1)B,;~B;
for 3 20. 0

A feature in the formulas obtained in Theorem 1 as distinct from some known
results is the appearance in the coefficients of an arbitrarily chosen integer m > 0,
by which the number of terms in the recurrence may be adjusted. The same remark
applies also to those obtained in Theorems 2 and 3 below. Particularly interesting are
the special cases when m = 0 and m = n. We state them separately in the following
result.

CoROLLARY 1. For an integer n 21

(=) gj (Zf ,11) (k+1)B. = 0;

(b) kf:‘ (R ) G403 = Corgs

@ ' ’§<2n+211:+1) (2:)Bk=0;

@ i'% <2n +2: + 1) (2:) %k_ — (1 ;2:+11 <2n: 1>'

In deriving (c) and (d), we use the equality

(10) (an:— 1> (Zn +kk + 1) _ (2n +211: + 1) (2:).

Kaneko’s formula is now recovered in Corollary 1(a).

THEOREM 2. Let n > 1 be an integer. Then for any integer m > 0
22" m+n 2m+k ﬂ_(_l)" m+n

m-n+k k 2\ 4 n )
k=[n—-m]4

PROOF: Let m > 0 be given. We calculate the (2m)th derivative of the expression
Qmin(Z)+Qmin(l — ) using (3) as in the proof of Theorem 1 and evaluate at = = 1/2.
Dividing the resulting summation by (2m)! we have by (8) and (9)

7{5‘ m+n\/m+n+j En_mﬂ-_(_l)" m-+n
j 2m on-m+j T\ 4 m )

j=[m-n]4
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The theorem follows by substituting j =m —n+ k. 0
Again we have the following two interesting special cases.

COROLLARY 2. For an integer n>1

(a) é(kfn)%z - %)";
. i‘:o (2n2: k) (2:) % _ (_ % )" ('Zz)

In deriving (b), we use the equality

2n\ (2n+ k 2n + k\ (2k
o ()% -0 G)
We may compare the recurrence relations for Bernoulli and Euler numbers in (2) with
those given in Corollaries 1 and 2.
Finally we recall that the Genocchi numbers may be defined by Gy = 0 and
Gn=nE,_1(0) (n=1,2,...). We refer to (4] for an interesting exposition on G,, and
related polynomials and to [2, p.49] for a table of the first few Genocchi numbers. It

follows from the second formula in (1) that the Genocchi numbers satisfy the recurrence
relation

(12) 2G,.+n_1 "Y6r=0 (n32)
> (3)en

THEOREM 3. Let n > 1 be an integer. Then for any integer m > 0

() i <mn—1 : j— k) (2mk+ k) Cr=0;

k=[n—m]+

2n
m+n+1) (2m+k+1\Gr _ am+l/m+n+1
(b) k=[§m]+ (m—n+k>( k ) 2k =1 22n ( n )

PROOF: Let m > 0 be given. By Lemma 1 the (2m + 1)™ derivative of Qmin{(z)
vanishes at £ = 0. So (a) follows by a calculation similar to that in the proof of Theorem

2 and using the equality
2m+k\ k 2m+ k
2m+1/  2m+1 k)

On the other hand, (b) follows directly from the two formulas obtained in Theorem
1,a8 Gn, =2(1 - 2™)B, for n > 0. 1]

In particular we have the following consequences.
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COROLLARY 3. For an integer n 21

k=n
<b> B (g -z
© g (277.2—,: k) (2:) Ce = 0;
@ 22" (2n 4—2: + 1) (2:) % _ (_l)nn2;rn1 (2n: 1)

k=0

In deriving (c¢) and (d), we use again (10) and (11). We may compare (12) with
those given in Corollary 3.
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