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ON RECURRENCE RELATIONS FOR
BERNOULLI AND EULER NUMBERS

CHING-HUA CHANG AND CHUNG-WEI HA

We obtain a class of recurrence relations for the Bernoulli numbers that includes
a recurrence formula proved recently by M. Kaneko. Analogous formulas are also
derived for the Euler and Genocchi numbers.

1. INTRODUCTION

The Bernoulli polynomials Bn{x) and the Euler polynomials En(x) (n = 0,1,2,...)
may be computed successively by means of the formulas

fc=0 V * ' fc=0

Thus the corresponding Bernoulli and Euler numbers, defined respectively by Bn =
Bn{0) and En = 2nEn(l/2) (n = 0,1,2,. . .) , satisfy Bo = Eo = 1 and the recurrence
relations

(2) £
fc=0

Two important properties of Bernoulli and Euler polynomials we shall make use of
below are

(3) B'n+l(x) = (n + l)Bn(x), E'n+1(x) = (n + l)En(x);

(A) R (T 4- 11 — B (T) — nrn~l fl (T A- 1 ^ -I- P, (T^ — 9 r n

We refer to [1] for a good account of the properties of Bn(x), En(x) and the corre-
sponding Bernoulli and Euler numbers.

Recently a new recurrence formula for Bernoulli numbers was obtained in Kaneko
[6], for which two proofs were given (see also Satoh [8]). In this note we offer a proof
of Kaneko's formula which is simpler than those given in [6, 8] and, significantly, leads
to a general class of recurrence relations for Bernoulli numbers. Analogous formulas for
Euler and Genocchi numbers are also derived. Other interesting recurrence relations
for Bernoulli numbers may be found in [3, 5] and [7, p.122].
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2. Two LEMMAS

We first give two simple properties involving Bernoulli and Euler polynomials on
which our results are based.

LEMMA 1. For an integer n ^ 0, the polynomials Pn(x) and Qn{x) of degree 2n
defined by

fn+j (x) and
j=o SJ/ j=o

are even functions.

PROOF: It follows from (4) that

Pn(x + 1) - Pn(x) = f2 (U) {5"+i(^ + 1) " Bn+j{x)}

(5)

j=0

and

Qn(x + 1) + Qn(x) = f^ (n) {En+j(x + 1) + En+j(x)}
7=0 \1

For an integer k ^ 0 substituting x = fc and £ = — k - 1 into (5) and (6) we have

Pn(k + 1) - Pn(*) - Pn(-k - 1) - P n ( -*) ,

Qn(fc + 1) + Qn(k) = Qn(-k - 1) + Qn(-A),

and so by induction for all integers k ^ 1

Pn(k) = Pn(-k), Qn(k) = Qn(-k).

The lemma now follows as both Pn (x) and Qn (x) are polynomials.

LEMMA 2 . For an integer n ^ 0

(7) P n (x ) -P n ( l -x )= £[*"(* -1)"];

(8) Qn(x) + Q n ( l - x ) = 2 x " ( x - l ) n .
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P R O O F : Replacing x by — x in (5) it follows from Lemma 1 that

PB(x) = PB(-s) = Pn(l-s) + £[*B(s-l)n].

Using (6) instead we have similarly

Qn(x) = Qn(-x) = -Qn(l -x) + 2xn(x - l ) n . rj

We also need the following formula to evaluate certain derivatives. For integers
0 $J m sj n

This follows from the Leibniz rule and the equality

(see [7, p. 14]).

3. RECURRENCE RELATIONS

The main result of this note is the following. We denote for integers m,n ^ 0,
[n - m]+ — max{n - m, 0} .

THEOREM 1 . Let n ^ 1 be an integer. Then for any integer m > 0

PROOF: Let m ^ 0 be given. Applying (3) repeatedly we obtain the (2m + l ) t h

derivative of Pm+n+i(z), which by Lemma 1 vanishes at x = 0. Dividing the resulting
summation by (2m + 1)! we have

as Bj = 0 for odd j ^ 3. We have (a) by substituting j = m — n + k.
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In a similar way we calculate the (2m + 1)* derivative of the expression P m + n + 1 (x)

— P m + n + i ( l — x) and evaluate at x = 1/2. Dividing the resulting summation by

(2m + 1)! we obtain (b) by (7), (9) and the formula in (a) as #,-(1/2) = (l/2j~1)Bj-Bj

for j ^ 0. D

A feature in the formulas obtained in Theorem 1 as distinct from some known
results is the appearance in the coefficients of an arbitrarily chosen integer m ^ 0,
by which the number of terms in the recurrence may be adjusted. The same remark
applies also to those obtained in Theorems 2 and 3 below. Particularly interesting are
the special cases when m — 0 and m = n. We state them separately in the following
result.

COROLLARY 1 . For an integer n ^ 1

2r»

k=n

2n

2n + k + 1

h> 2k ) \ k ) * = ~1] 2^{ n )•

In deriving (c) and (d), we use the equality

(2n + 1\ (2n + k + 1\ (2n + k + 1\ (2k\
{ } V * ) { k ) - { 2k ) { k ) '

Kaneko's formula is now recovered in Corollary l(a).

THEOREM 2 . Let n ^ 1 be an integer. Then for any integer m 2? 0

/ m + n \/2m + k\Ek_/ l\"/m + n\

\m - n + k) V fe / 2*" ~ V 4 / V " / '

P R O O F : Let m ^ 0 be given. We calculate the (2m) derivative of the expression

+n(l — x) using (3) as in the proof of Theorem 1 and evaluate at x — 1/2.
Dividing the resulting summation by (2m)! we have by (8) and (9)

m+n

E
j=[m-n] +

/m + n\ fm + n + j \ En-m+j _ / l . \"/m + n\
\ j ) \ 2m ) 2n~m+J ~ \ A) \ m ) '
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The theorem follows by substituting j — m — n + k. U

Again we have the following two interesting special cases.

COROLLARY 2 . For an integer n ^ 1

(b) £1 2*
In deriving (b), we use the equality

k=n

l W 2 n

We may compare the recurrence relations for Bernoulli and Euler numbers in (2) with
those given in Corollaries 1 and 2.

Finally we recall that the Genocchi numbers may be defined by Go = 0 and
Gn = nEn-i(Q) (n — 1,2,...). We refer to [4] for an interesting exposition on Gn and
related polynomials and to [2, p.49] for a table of the first few Genocchi numbers. It
follows from the second formula in (1) that the Genocchi numbers satisfy the recurrence
relation

n - l , v

(12) 2Gn + 2^UjGfc = 0 ( n ^ 2 ) .

THEOREM 3 . Let n ^ 1 be an integer. Then for any integer m ^ 0

2n

O2n
n-m\+

n )•

PROOF: Let m > 0 be given. By Lemma 1 the (2m + l) t h derivative of <5m+n(x)
vanishes at x — 0. So (a) follows by a calculation similar to that in the proof of Theorem
2 and using the equality

/2m + k\ _ k (2m + k\
V2m+1/ ~~ 2m+ 1 V * ) '

On the other hand, (b) follows directly from the two formulas obtained in Theorem
1, as Gn = 2(l-2n)Bn for n ^ 0. D

In particular we have the following consequences.
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COROLLARY 3 . For an integer n

2n

(a)

(b)

(c)

(d)
fc=O

2k
lf2n+l

{ n

In deriving (c) and (d), we use again (10) and (11). We may compare (12) with
those given in Corollary 3.
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