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Abstract

A distribution function F on [0,00) belongs to the subexponential class & if and only if
1 —F®(x) ~ 21— F(x)), as x — co. For an important class of distribution functions, a simple, necessary
and sufficient condition for membership of & is given. A comparison theorem for membership of & and
also some closure properties of & are obtained.
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1. Introduction

Throughout this paper all distribution functions will be distribution functions F on
[0, co) such that F(0) = 0, F(x) < 1forall x > 0, F(c0) = 1. F is said to belong to the
subexponential class & if

. 1-F?(x)
m S Fe) — 2

where F is the convolution of F with itself. Subexponential distribution functions
are of interest in the theory of branching processes, and in queueing theory; see
Athreya and Ney (1972), Chover, Ney and Wainger (1974), Pakes (1975) and Teugels
(1975).

We define the function F¢ by Fé(x) = 1 — F(x). It will sometimes be convenient to
denote the convolution of the distribution functions Fy, Fy by Fy,.y, and the
convolution of Fy with itself by F,, y. We have then

Fyayx) = f :Fx(x—y) dF (y) = J:Fy(x—y) dF (),
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and therefore

Fyofx) = JjF Xx—y)dF(y) = f:F y(x = Y)dF x(y).

Thus
ex®) _ [“Fdx=9) 4o f r !
Fyd) f o F =[] eV
*Fylx—y)
= | S —dF{y+1,
fo F(X) X(y)
and so
. e 1 *Fi(x—y)
1 Fe% ifand onlyif Lm dF(y)= 1.
M if and only i xLJO Fg 4FO)
It is well known (Athreya and Ney (1972), p. 148) that if Fe %,
. F(x+y _
2) ng;lo ) =1 forally.

The class of distribution functions for which (2) is true is denoted by #, and so
¥ o> ¥ If Fe %, F{(logx)is a slowly varying function of x at co, because for k > 0,
F(logkx)/F‘(logx) - 1 as x — c0. Hence for a > 0, x* F{(logx) = o0 as x — oo.
Replacing x by e*, we obtain e **/F{(x) — 0. It is this property that suggested the
name subexponential; but as all members of £ possess it, it would be logical to call
all distribution functions in % subexponential. However, the name has been
restricted to the subclass #. Note that if we define the tail function G by

G(x) = F(x), x<0,

=1-F(x), x>0,
we may write (1) as

. o1 ©G(x—y)
Fes ifand onlyif lim dF(y) = 1.
yif  lim L Gy UV

Since

*1Gx—y) _ 76—y 7 ®
fo o) lldF()’) L G dF(y) J odF(Y)‘FL dF(y),

it is evident that F € & if and only if G(x — y)/G(x) = 1 in mean F, as x — oo. The
requirement for membership of .# is the weaker G(x — y)/G(x) — 1 everywhere as
x — 0. Note that

Gy xX) _ *Gx(x—y) * =
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which — 1 as x — oco. Hence

oGy x(X)
Jim inf=2"0 = 2

(This result can also be found in Chistyakov (1964) and in Pakes (1975), equation 8.)

THEOREM L If Fye ¥, and Gy(x)/Gx(x) — ¢, as x — 0, then

Gx.y(x) Gy x(%)
3) {éx(x) —1}/{ G i) —1}—>c, as x — o0,
and, if ¢ > 0,
@ et s - (c+m){—Gg;(§f;"—2}+nz,

where 1y, 1, =0 as x — 0.
COROLLARY 1. If Fy€ &, Gy(x) ~ ¢Gy(x), x > 00, ¢ > 0, then Fye &.

COROLLARY 2. If Fy € &, Gy(x) = 0{Gx(x)}, x = 00, then Gy, y(x) ~ Gx(x),x — o0,
and Fy,ye ¥

PROOF.

Gyar®) | _ [*Gyx=p) o o [ [
Gex) ! L Gy F) f +J

The last integral is

SJ"‘ dFy()) _ Gyx—A4)—G (x)

which — 0 as x — 0.

s-a Gxlx) Gylx)
Thus
Gyexlx) | _ |*7*Gulx=y) o N
G %) 1 . G, dF(y) >0 as x— .
If¢ >0,and 0 < y < x— A, then when 4 is sufficiently great,
LGy
c eng(x_y)\c+s,
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x—A x—A —
(o) f G ar ) < L S ary)

<(c+2) f N Gx(i(x)y) dF ).

o g < S
< (c+e){95;(%—1—m},

where n,,n, = 0 as x — c0. Therefore for any ¢ > 0, when x is great,

Gy x(X) Gy+ (%) Gyt x(X)
(c—Zs){ éx(x) *l}éé—x(x)——IS(c+2£){%x(—})——l}.

This proves (3).
Let Ky, K, ... denote functions of x which — 0 as x — oo.

Gxix/Gx—1=(c+K)(Gy,x/Gx—1)

Hence
Cuer I8t = (¢4 K )Gy x/Gx— 2D+ K
Similarly, if ¢ > 0,
CrerZ B0 — (¢ 4K Gy nfGr =D+ Ko
Combining these, we obtain
5) Srox o {GH 2}+Kg;fx s

= (C+m){%";*—x—2}+n2,
X

where 7,17, = 0 as x — 0.

If Fye &, the right side of (5) » 0 as x — o0, and s0 Gy, {x)/Gy(x) = 2. Fye &Z.
This proves Corollary 1. This result was given in Pakes (1975), and the particular
case, ¢ = 1, in Tengels (1975). Corollary 2 follows immediately from (3). //

3.

It turns out that the theory is simpler in terms of the logarithms of tail functions.
For any tail function G, we shall write g = —logG, G=e¢7% Thus g is a
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nondecreasing function of x such that g(0) = 0. g(c0) = o0, and we shall reserve the
symbols g, g,, etc. for such functions. The set of g functions corresponding to
distribution functions in . will be denoted by .

H={g1l-e e}
We also define
XN ={g; 1—e e}

Note that g e # if and only if, for every a, e "9 /e 9**9 _ | a5 x — o0, thatis if and
only if

g(x+a)—g(x) - 0.

Obviously ge s, g,(x)—g(x) -0 as x — o0 =g, e#. We shall say that the
functions g, g, are equivalent, and write g <> g,. It follows from Corollary 1 above
that ge X, g g, = g, €X.

Ifg e 5#,and lim, _, , g'(x)exists, this limit must be 0. Also, if g is any function in #,
we can construct a function g,, which is equivalent to g, and which has a continuous
derivative g with limit 0 at co. Define g, by go(x) = g(x) at x =0, 1,2,..., and g,
linear in [n—1,n], n = 1,2,.... Clearly g, <> ¢, and in the set of points at which it
exists, go(x) — 0 as x — co. We obtain g, from g, by rounding off the corners, if any,
at the points x = 1,2,..., by circular arcs. Thus, # consists of those g with a
continuous derivative g’ which — 0 at oo, and their equivalents. We shall therefore
consider only g having a continuous derivative g’ with limit 0 at co. If G = ¢79, the
density function of the distribution is f = — G’ = e™?g’. Denoting the tail function of
F2 by G?, we have

6P . (*Gx—y)
G0x) “L G “FV

_ f “exp {g(x) - gx—3) ~ 90} /().

THEOREM 1L If g has a derivative g’ which eventually \ 0, a necessary and sufficient
condition for ge X is

(6) Jim L exp {yg'(x)—g(»)} g(¥)dy = 1,
and a sufficient condition is

(7 exp {yg'(») —g(»} 4'(»)

integrable over [0, c0].
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Proor. If ¢’ is not monotonic over the whole range [0, o], there is an equivalent
go With a derivative gg which is so. We may therefore assume that ¢’ is nonincreasing
over the whole range.

(2), (*x
GG(,(:)C) -1= P {g(x)—g(x—y)—g(»)} g'(y)dy

> : exp {yg'(x)—g(»)} g'(y) dy

™

> :exp {—90)} ¢()dy = F(x).

o

This shows that the condition (6) is necessary, since if g € X, the first and the last — 1
as x — 0.

L exp {g(x)— g(x— ) —g(»)} 70} dy

_ j x+J‘x
0 X
1x
= L exp {g(x) —g(x—y)—g(»)} g'(y) dy

4x
+ jo exp {g(x) —g(x—y)—g(»)} g'(x — y) dy.

The first integral is > F(3x) which — 1 as x — co. On the other hand, y < 4x, and
therefore x —y = ix, g(x)—g(x — ) < yg'(x — y) < yg'(3x). Thus the first integral is
< f§ exp {yg'(3x)—g(»)} g'(y) dy, which — 1 as x — oo if (6) is true. The first integral
then — 1. Moreover, as x — co, the first integrand — e "9 g'(y) = f(y) everywhere,
and the integral — 1 = |§ f(y)dy. Thus the first integrand coverges in mean to f(y).
The second integrand — 0 everywhere. It is dominated by the first integrand since
g(x—y) < g(y). Therefore the second integral—-0 as x— oo, and
G(x)/G(x)—1 — 1; ge . The second part of the theorem follows by dominated
convergence, since g'(x) < g'(y). //

EXAMPLE. Suppose G(x) ~ exp { —x(logx)™™}, m > 0, x - co. We may take
g(x) = x(logx)™™ when x is great,
g'(x) = (log x) ™" —m(log x) "~ 1.
When y is great

exp {yg'(»)—9g(»)} 9'(») = exp{ —mxylog y) ™'} {(log y) "™ —m(log y) ™'}
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and is therefore integrable over [0, c0]. Therefore ge A", F e &. Teugels (1975), p.
1001, states that Fe & if and only if m > 1.

The necessary condition (6) enables us to define distribution functions which
belong to £ but not to &. Thus & is a proper subset of Z. Let (x,) be an increasing
sequence of numbers, to be defined later, with x, = 0. Define g by g(x,) = g(0) = 0; g
is continuous and piecewise linear so that for x,_, < x < x,, g'(x) = 1/n. Consider

L exp {39 () —g0)} ¢ ) dy > f
Forx, ,<y<x,,
¥g'(x)—g(y) = y/n—{glx,- ) +n"(y=x,-1)} > —g(x,- 1),

and g'(y) = n~'. Therefore

f " exp {yg'x) — g0} ) dy

Xn -

>fx" exp{—glx,- )} n~ ' dy

Xn—

= eXp { —g(xn— l)} ('xn — Xy~ 1)/".
Choose the x, so that

exp{_g(xn—l)} (xn_xn—l)/n = 25

(xn —Xy— 1) =2n cxXp {g(xn— 1)}
We then have

g(x,) = g(x,_ 1) +(x, — X, 1)/n = g(x,_ ) +2expg(x,_,),
Xo =0, glxg)=0, x;, =2, glx;)=2,....
Clearly g(x) Too as x T 0. Also ¢g'(x) { 0, and so ge #. However,
L exp {yg'(x,)—g(»)} g (y)dy > 2,
and so
J exp {yg'(x)—g(»)} g'(v)dy does not — 1 as x — co.
o

Thus ge # but g¢ .

The following theorem shows how the general case may often be reduced to the
case g'(x)+ 0. We need to consider only distribution functions F with continuous
derivatives f.
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i

THeOREM I11. If £, /f, is bounded, and G,/G, bounded away from 0, then
Fie¥ = F,e¥ and F,e¥ => F,e¥.

ProOF. Suppose f,/f; < C < o, G,/G, > ¢ > 0, then ¢ < G,/G, < C.

Gyx=1)=Gy(x) _ CGylx—1)=G,(x)
GE® ¢ Gm

If FL e %, the last — 0 as x — 0. Therefore so does the other. G,(x — y)/G,(x) — 1,

0<

and F,e Z.
F,e¥ =» Fe¥ = F,eX.
Hence
GZ(x(x)y G 1) £, as x o oo
Also
Gy(x—y) C? Gy(x~y)

G(X) fz()\T G(x) fl(,V)

which converges in mean to C? ¢~ ! f,(y). Therefore (G,(x — y)/G,(x)) f,(y) converges
in mean to f,(y), and

*Gylx—y)
J‘O %sz(wdy - L //

In terms of the g functions we may state the corollary : ifg, —g, and g3/g, are both
bounded, g, € # = g, H#,g,€H = g,eN.

ExaMpPLE. Consider the case, when x is great
g,(x) = x/logx, gi(x) = 1/logx—1/logx),
g2(x) = x/log x + sin(x/log x),
g5(x) = {(1/log x — 1 /(log x)*} {1 +cos (x/log x)}.

The derivative g5(x) is zero when x/logx is an odd multiple of = and positive
-everywhere else. It is not monotonic in any infinite interval.

go(x)—g,(x) = sin(x/logx), g5(x)/g'y(x) = 1+ cos(x/log x),
which are both bounded. As shown above, g, € ", and so g, € "
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THEOREM V. If f,/fy is bounded, then
(8) O<p<l, Fye¥ = pFy+(1—-p)Fye,
) FyeF = Fy,ye¥.

PROOF. If F = pFx+(1—p)Fy, f = pfx+(1-p) fy-
p< PPy _ L (1) iy
fx Jx

Thus f/fy is bounded away from 0 and from oo. The conditions of Theorem III are
fulfilled, and Fye ¥ = Fe%.
Suppose f, < Cfy.

Jxer¥) = f:fy(x—)’)fx(y) dy<C 'f:fx(x*Y)fx(Y) dy = Cfx. x(x),

Sx+ ¥ fx+xlx) < C.

If Fyed, Gy, (x)/Gxx)—2 as x —» ov. Therefore Gy, x/Gy is bounded, and
Gy+x/Gyx+yalso,since Gy, y = Gy. Thus Gy, y/Gx . x is bounded away from 0, and
Sx+vlfx+xisbounded. Fye ¥ = Fy,ye¥ = Fy vy //

THEOREM V.
(10) 91,92, €X = g,+g,eX.
(11) m>lgeX = mgeX.

ProoF. If 0 < u < x,

x

L exp {90)—g(x — 1)~ (1)} g () dy f )
= Jo exp {g(x)—glx— Y — g} {g (V) —g'(x—y)} dy
= 1 —exp {g(x) — g(x —u)— g(u)}.

(12)  exp {g(x)—g(x —u)—g(u)}

=1+ JX exp {g(x)—g(x — y)—9(»)} g'(»)dy — fo

x-

<14 J: exp {g(x)—g(x—y)—g(»)} g'(y) dy,
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which — 2 as x — o if ge ¥, and so is bounded. Therefore g(x)— g(x — u) —g(u) is
bounded for all x, and all u < x.

Suppose g1,4, €X', g = g, +9,.
f “exp {g(x)—gx— )= g0} g 1) dy = f T )y,
where
I(x,y) = exp {g,(x) ~g,(x — ) — g:1(y) + g2(x) ~ g2 (x — )~ 9,(3)}
x {g1(0)+ 9200} < exp {g:(x) =g, (x~ ) =g:1(»)+ C1} g1(»)

+ exp {C +92(x)— g2(x — ¥) — 9,(»)} 95(),

which converges in mean to exp{—g,(y)+C,}g7(y)+ exp {C; —g,(»)} g5(»), as

X — 00,

Also I(x, y) » e * g'(y). Hence I converges in mean, and [3I(x,y)dy — 1. ge X"
If u, x —u are both > A > 0, we have from (12)

exp {g(x) — g(x — u)— g(u)}
n A
<1+ L exp {g(x)—g(x—y)—g(y)} g'(y)dy— Jo

x A
~1+[ 2"
0 0

which - 2—-2F(A4) = 2G(4) if geX. Choose A so that G(A)< 4, then
exp {g(x)—g(x —u)—g(u)} < 1 when x—u, u > A, and x is great. Consider

f :_ exp {mg(x) —mg(x — y)—mg(y)} mg'(y)dy.

When x is great, the integrand <exp {g(x)—g(x — y)— g(y)} mg'(y), which converges
in mean. Therefore, as x — oo,

j :_ exp {mg(x) —mg(x — y)—mg(y)} mg'(y)dy

- f:o exp { —mg(y)} mg'(y) = exp { —mg(A)}.

As shown above, [X_, — 0, and it may easily be shown by dominated convergence
that 4 — 1 —exp { —mg(A)}. Thus

f : exp {mg(x) —mg(x — y)—mg(y)} mg'(y)dy — 1,

so that mge X". //
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If &’ denotes the set of tail functions G corresponding to distribution functions F
in %, the above results may be written

G,G,e¥ = G,G, e,
m>1, Ge¥ = G"ed.
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