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ON A CLASS OF NONPARAMETRIC TESTS FOR 
INDEPENDENCE—BIVARIATE CASEC) 

BY 

M. S. SRIVASTAVA 

1. Introduction. Let (Xlt Yj), (X2, Y2),. . . , (X„, Yn) be n mutually independ­
ent pairs of random variables with absolutely continuous (hereafter, a.c.) pdf 
given by 

(1) h(x, y;P)= f{»\x | y)g(y) == f(e(P)x-b(P)u(y))g(y), 

where/(P) denotes the conditional pdf of X given Y, g(y) the marginal pdf of Y, 
e(p)-> 1 and è(p)->0 as />->0 and, 

(2) «GO = -ig'(y)lg(y)l; g'(y) = (d/dy)(g(y)). 

We wish to test the hypothesis 

(3) H0:P = 0 
against the alternative 

(4) Kn:p = n-1/2b, 0 < b < oo, 
For the two-sided alternative we take — oo<Z?< oo. A feature of the model (1) is 
that it covers both-sided alternatives which have not been considered in the literature 
so far. One-sided alternatives have been considered by Konjin [6], Farlie [4] and 
Bhuchongkul [1], Hâjek and Sidkâ [5]. However, these models seem to be far from 

V 

satisfactory as pointed out by Hâjek and Sidâk [5]. We hope that the present 
approach may fill at least partially one of serious gaps mentioned by Hâjek and 
V 

Sidâk [5] in the preface of their book. 
The hypothesis H0 is equivalent to testing the independence of Zand 7, i.e., 

(5) h(x, y ; 0) = f(0\x \ y)g(y) = f(x)g(y). 

The form of h is not known but we shall assume that he A, where h denotes the 
class of all absolutely continuous two-dimensional pdf9s satisfying (1) and such 
that their marginals/and g satisfy 

(6) j[f'(x)/f(x)ff(x) dx < a,, j[g'(y)/g(y)fg(y) dy < oo. 

we will refer to the above conditions as Condition (CI) in the sequel. 

Received by the editors July 22, 1970 and, in revised form, October 26, 1971. 
(*) Research supported partially by Canada Council and National Research Council of 

Canada. 

337 

https://doi.org/10.4153/CMB-1973-054-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-054-9


338 M. S. SRIVASTAVA [September 

In this paper a class of rank-score tests for H0 is proposed in §2 and is shown to be 
locally most powerful rank tests. In §3, the asymptotic non-null distribution of the 
test statistics is given and, in §4 the Pitman efficiency with respect to the parametric 
correlation coefficient is derived. 

2. Rank score tests. Let 

VtUf) = -[f'(F-\t))lf(F-\t))], 0 < t < 1 

where/G â with distribution function F and F"1 is the inverse of F. We will con­
sider only those a.c. / for which the score function ip(t,f) is a nondecreasing 
function of t. We refer to this condition in the sequel as Condition (C2). Let Rt and 
Qi denote the ranks of X{ and Yt among (Xx,. . . , Xn) and (Yl9 . . . , Yn) respec­
tively. Let U^KU^< • • • <U{n} be an ordered sample from a uniform distri­
bution over [0, 1]. Let 

(7) an(Uf) = EW(U{:\f). 

We will show at the end of this section that the test with critical region 

(8) 2 an(/WoK(&, go) > k 

is the locally most powerful rank test for H0 against Kn at the respective level, 
where/0 and gQ are known densities belonging to the class A. Under condition (C2) 
an asymptotically equivalent class of statistics is given by 

(9) r n ( / 0 , g0) = - X ^ n l " — 7 > / o W n ( — T > g o ) > 

m=i \n + l ! \n + l I 

where 

(10) y>n(t, / ) = f P - , f), ( - ^ < t < j/n. 
\n + l J n 

We now turn to show that the critical region given by (8) is locally most powerful. 
Let F denote that the probability is being computed under the alternative. Let 

R=(Rl9. . . , Rn) and Q = ( 6 i , • • - Qnl Let S={(x„ j , ) , i = l, 2 , . . . , / i :R=r, 
Q=q}. We assume without loss of generality that e(p) = l, and b(p) = p. Then 

P{R = r , Q = q} = J . . . J n UoiXi-puiyMgoi}^ ax, dy, 
s 

= • • • f[fo(Xi)go(yi) dXi dyt 

IT go(tt) dXi dy( 
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( l /nO '+p î J . . .jlp-VJxt-puiyJi-MxJ}] 

k-1 

Lz-7c-fl 5=1 
IT go(yù d*i dy* 
2 = 1 

Following as in Hâjek and Sidâk [5, p. 71] it can be shown that (note that 

u'(y)=-g'o(y)lgo(y)) 

lim P{R = r, Q = q} 

n r C n 

= (i/nlf+pl ••• [-foixùlfoixùMyù TIMxùM dxt dy{ 

= (ilnlf+ptU-f'oMlUx,) I R = r ]£ 0 [ -g^) /g 0 (^) \Q = q] 

= (llnlf + PZan(Ri,f0)an(Qi,q<)), 

where E0 denotes that the expectation is taken under the hypothesis of independ­
ence. || 

3. Distribution of Tn. The following equivalent form of the statistic Tn seems 
more convenient to work with. Let us rearrange all n pairs of observations accord­
ing to the magnitude of their second coordinate into the sequence (Xd , Yd ), 
(Xd2, Yd),. . . , (Xdn, Yd) in such a way that Ydi< Ydz< • • < Ydn. Let tffbe the 
rank of Xd among Xl9. . . , Xn. Then 

(H) UU go) = -2 Wni^f- , /o )V«(-T: > &). 
m=i \rc + l / \n + l / 

V 

Hâjek and Sidâk [5, p. 168] have shown that the limiting null-distribution of the 
test statistic Tn(f0, g0) is normal with mean 0 and variance yWjn, where 

(12) 72 = f\2(tJ0)dt and â* = Fy?(t,g0)dt. 
Jo Jo 

It thus remains to obtain the limiting non-null distribution of Tn (under near 
alternatives); we obtain this under the following additional conditions 

(i) y>(',f) satisfies conditions A* and E of Chernoff, Gastwirth and John 
[2, p. 61]. 

(C3) (ii) f\(t, gJV'(t, g)[t(l - f)]1/2 dt < oo ; y/ = (dV/dt) 

(iii) r2 = yj(s, g0)y>'(s, g)yj(t, g0)y'(f, g M l - 0 ^ tir < oo. 
Jo Jo 
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First, we note that under condition (Cl) (see Appendix) 

[September 

(13) 2 [ « O T = 0„(n) and max\u(Yi)\ = ov(n
1'*) 

i=X l<i<n 

since u(y)=—g'(y)lg(y). Hence from Hâjek and Sidâk [5], we have conditionally 
given yl9. . . ,yn9 

(14) L(Tn\yi,...,yn)->N(^y2ô2lnl 

where L denotes the distribution "of" and 

(15) 

(16) 

pn = n V « n w(t,fo)f(t,f) dt, 

c'=Wn-ii^'---^«(^i^))-
It follows from Chernoff et al. [2] that under conditions (C1)-(C3) (see Moore(2), 
[7] also). 

"'IT""0) JV(0,T2 ) (17) 

where 

(18) 6 = y(t9 g0)y(t, g) dt, and r2 is defined in (C3). 

Hence (see Appendix) 

(19) L(Tn)^N(in,ri) 

where 

(20) I n = PJ\ V>(t, fMt,f0) dt, nl = (y2ô*/n)+(pyin) ^j(Uf)y(tJQ)dt\^. 

4. Asymptotic efficiency. The parametric test rn is based on the sample corre­
lation coefficient, 

n r n _ -11/2 

(21) rn = Z(Xt-XXYt-Y) IKXt-XfliYi-Yfl . 

Cramer [3, pp. 359-366] shows that 

(22) E(rn) = p+Oin-1) and Var0(rJ = 1/rc 

where p denotes the correlation coefficient between X and Y, and Var0 denotes the 

(2) I am indebted to Y. S. Lee for pointing out this reference which led to Chernoff et al. [2]. 
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variance under the hypothesis. Hence, the Pitman efficiency of the rank-score tests 
Tn relative to the correlation coefficient rw-test is given by 

e(Tn>
 rn) = lim _ a r v . . . i — — — — 

( 2 3 ) ™ [dE(rn)ldp\p=o\ /Var0(rJ 

[ W(t, goMt, g) dt\ f" [ y)(t,f0)y>(t,f) dt\ ly2è\ 

It follows from ChernofT-Savage [6] that e(Tn, r j > l , the equality holds only if/ 
and g are normal. 

V 

The expression (23) has been conjectured by Hâjek and Sidâk [5, p. 222]. 

ACKNOWLEDGEMENT. I wish to thank the referee for his helpful suggestions in condensing the 
proofs. 

APPENDIX 

Proof of (13). Since u{Y^),. . . , u(Yn) are iid random variables with finite 
expectation (also finite variance), the first part of (13) follows from the Kol-
mogorov's strong law of large numbers. The second part of (13) follows from the 
following more general result; the proof parallels to that of Gnedenko and Kol-
mogorov [p. 105]: Limit distributions for sums of independent random vari­
ables; translated by K. L. Chung, Addison Wesley, Reading, Mass. 

LEMMA. Let Xl9 X29. . . be a sequence of random variables with distribution 
functions Fl9F29. ... Then Xn-*0 in probability if and only if the following two 
conditions are satisfied: 

(i) f dFn(x)->0, 
J\x\>l 

(ii) I x*dFn(x)-+0. 
J\x\<l 

Proof of (19). Since for any two-dimensional r.v. (Xn, Yn) 

lim P[Xn < x, Yn < y] = lim f P[Xn <x\y] dGn(y) 

we get 

limP[X„ < x, Yn < y] = [ \imP[Xn <x\y] dG(y) 
n-»oo J—oo w-*oo 

if Gn{y)-^G(y) for every continuity point y of G(y) and lim P[Xn<x \ y] exists for 
all j . 
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