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Abstract. We prove that a quotient singularity �n/G by a finite subgroup G ⊂
SLn(�) has a crepant resolution only if G is generated by junior elements. This is a
generalization of the result of Verbitsky (Asian J. Math. 4(3) (2000), 553–563). We also
give a procedure to compute the Cox ring of a minimal model of a given �n/G explicitly
from information of G. As an application, we investigate the smoothness of minimal
models of some quotient singularities. Together with work of Bellamy and Schedler,
this completes the classification of symplectically imprimitive quotient singularities
that admit projective symplectic resolutions.

1. Introduction. Crepant resolutions of singularities play key roles in various
branches of algebraic geometry, and have been studied intensively. When one treats a
quotient singularity by a finite group, crepant resolutions have particularly important
meanings in the context of the McKay correspondence, which relates the geometry of
a crepant resolution to the representation theory of the group. The aim of this paper
is to tackle the existence problem of crepant resolutions of quotient singularities.

Let V be a finite dimensional �-vector space and let G ⊂ SL(V ) be a finite
subgroup. How can we determine the existence of a crepant resolution of the given
quotient singularity V/G? When dim V = 2, V/G is a well-known Kleinian singularity
and therefore it has a unique crepant resolution. The existence of crepant resolutions
for three-dimensional cases is also proven (cf. [9,27]). However, for higher dimensional
cases, crepant resolutions do not exist in general. No general criterion for existence
of crepant resolutions has been known, but when V is a symplectic vector space and
G is a subgroup of the symplectic group Sp(V ), there is a useful necessary condition.
Verbitsky proved that V/G for G ⊂ Sp(V ) admits a symplectic (or equivalently crepant)
resolution only if G is generated by symplectic reflections [30, Theorem 1.1] (see
Section 3 for the definition).

One of our main results in this paper is the following.

THEOREM 1.1. If V/G for G ⊂ SL(V ) admits a crepant resolution, then G is
generated by junior elements.

We will define a junior element g ∈ G and give a proof of the theorem in Section 3.
For symplectic cases, junior elements are nothing but symplectic reflections. Thus, the
theorem is a generalization of Verbitsky’s result to nonsymplectic cases.

We also suggest a procedure to determine the (non)existence of projective crepant
reslutions of V/G for a given finite subgroup G ⊂ SL(V ). The idea is as follows. By
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a general result of birational geometry established in [4], it is known that V/G always
admits a minimal model. Since crepant resolutions are nothing but smooth minimal
models, it is enough to check whether each minimal model X is smooth or not. To
this end, we compute the Cox ring Cox(X), which was introduced by Hu and Keel
[19], of X from G (without constructing X explicitly) and recover X from Cox(X).
This is done by using the similar method to one by Donten-Bury and Wiśniewski in
[15], where the authors give the Cox ring of a symplectic resolution of V/G for four-
dimensional V and G of order 32. We generalize their method to minimal models for
any finite subgroups in SL(V ). We give the algorithm to calculate generators of Cox
rings and show several examples including Kleinian singularities in Section 4. This
gives a different calculation of the Cox rings of the minimal resolutions of Kleinian
singularities from the ones in [16] and [13]. Most of the calculations need a help of
computer software such as ‘SINGULAR’ [17] or ‘Macaulay2’ [18]. In Appendix, in
Section 7, we give efficient ways of calculations.

In Section 5, we study the property of the Cox rings from the viewpoint of geometric
invariant theory (GIT) and birational geometry. The spectrum X = Spec(Cox(X)) has
a natural action by an algebraic torus associated to the divisor class group Cl(X). The
crucial fact is that every minimal model can be recovered from the Cox ring as a GIT
quotient of X by the torus action with an appropriate linearization. The sets of generic
linearizations form a fan called the GIT fan on the vector space Cl(X) ⊗ �. We also
discuss the structure of the GIT fan. It contains some information such as the number
of minimal models. We give one example in Section 5.

Let χ ∈ Cl(X) ⊗ � be a linearization that gives the minimal model X . If the
(semi)stable locus U ⊂ X associated to χ is smooth, one can check the smoothness of
X by looking at the torus action on U . However, the author does not know if U is
always smooth. Moreover, when the order of the group is not small, it seems almost
impossible to calculate the relations of the generators of the Cox ring and to check the
smoothness of U by the Jacobian criterion even if one uses a computer. Thus from
these viewpoints, our method is not enough to completely answer the question raised
in the second paragraph of this section.

As an application of the description of the Cox rings, we classify all symplectically
imprimitive subgroups G ⊂ Sp(V ) such that V/G admits a projective crepant
resolution. This was already done by Bellamy and Schedler except six types of groups
all of which are subgroups of Sp(4, �) [10]. In Section 6, we complete the classification
by studying the remaining six cases (Theorem 6.1). It will turn out that only one group
among the exceptional groups admits a projective crepant resolution and that this is
not a new example.

2. Quotient singularities, minimal models and Cox rings. Let V be a complex
vector space of dimension n, and let G be a finite subgroup of SL(V ). Note that
G contains no pseudo-reflection, that is, g ∈ G such that codimV Vg = 1 where Vg

denotes the fixed subspace by g. It is well-known that the quotient singularity V/G =
Spec �[V ]G by G is Gorenstein [31, Theorem 1]. Thus, we can talk about the discrepancy
of exceptional divisors of a birational morphism to V/G.

DEFINITION 2.1. A minimal model of V/G is a �-factorial normal variety X
that has only terminal singularities together with a crepant birational morphism
X → V/G.
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Note that a nonsingular minimal model of V/G is nothing but a crepant resolution
of V/G. Throughout this paper all minimal models and crepant resolutions are
assumed to be projective over V/G unless otherwise stated. The following theorem
is a consequence of a result in the celebrated paper of Birker, Cascini, Hacon and
McKernan.

THEOREM 2.2 (Special case of [4, Theorem 1.2]). There exists a minimal model X
of V/G.

To introduce Cox rings, we should consider the divisor class group of a minimal
model. As for V/G, its divisor class group Cl(V/G) is known.

PROPOSITION 2.3 ([6, Ch. 3]). The divisor class group Cl(V/G) of the quotient
singularity V/G is canonically isomorphic to the group Ab(G)∨ = Hom(G, �∗) of
characters of G where Ab(G) denotes the abelianization G/[G, G] of G. In particular
Cl(V/G) is a torsion group.

Let X be a minimal model. Then, one easily sees that Cl(X) is also finitely generated
since every divisor of X consists of exceptional divisors of π and divisors from V/G. We
now assume that Cl(X) is torsion-free for simplicity. Let D1, . . . , Dm be Weil divisors
whose classes form a basis of Cl(X). We define the Cox ring of X as

Cox(X) =
⊕

(a1,...,am)∈�m

H0(X,OX (a1D1 + · · · + amDm)).

For a Weil divisor D, the vector space H0(X,OX (D)) is identified with the set

{f ∈ �(X)∗ | div(f ) + D ≥ 0} ∪ {0},

and the Cox ring has the natural ring structure inherited from the multiplication in
�(X). It is known that the isomorphism class of the Cox ring is independent of the
choice of Di’s (cf. [1, Section 1.4]). Cox(X) has a Cl(X)-grading and this grading gives a
torus action on Cox(X) in the following way. Let T := Hom(Cl(X), �∗) be the algebraic
torus. It acts on the homogeneous part H0(X,OX (a1D1 + · · · + amDm)) of Cox(X) for
D =∑m

i=1 aiDi ∈ Cl(X) by multiplying by t(D) for each t ∈ T . This action naturally
induces an action on the spectrum X = Spec(Cox(X)).

Next, we consider GIT quotients of X by T . To this end, we should choose a
T-linearization on X. We particularly use the trivial line bundle twisted by a character
of T . When we take a divisor class D ∈ Cl(X), we can regard it as a character of T
by the evaluation map T → �∗, t �→ t(D). We can define the GIT quotient X//DT of
X by T with respect to a character D of T . As we will see later in Section 5, the most
important feature of X is that every minimal model X ′ of V/G can be obtained as a
GIT quotient of X for some D.

3. Discrete valuations on function fields. Let V and G be as in the previous
section. For an element g ∈ G, we define a discrete valuation νg : �(V ) → � ∪ {∞}
on the rational function field �(V ) of V as follows. Let x1, . . . , xn ∈ V∗ be linearly
independent eigenvectors of g. Then, there are unique integers ai for i = 1, . . . , n, such
that 0 ≤ ai < r and g · xi = ζ ai xi, where r is the order of g and ζ = exp(2π i/r) ∈ � is
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the primitive rth root of unity. For any nonzero polynomial

f =
∑

α=(α1,...,αn)∈�n
≥0

cαxα1
1 · · · xαn

n , cα ∈ �,

we set

νg(f ) = min
α=(α1 ,...,αn)

cα �=0

{∑
i

αiai

}
.

This extends uniquely to a discrete valuation on the whole of �(V ).
If π : X → V/G is a minimal model, the function field �(X) of X is identified

with the G-invariant subfield �(V )G of �(V ). Therefore, we get a discrete valuation on
�(X) by restricting νg. On the other hand, we also have another valuation on �(X).
Let E be an irreducible exceptional divisor of π . Then, it gives the divisorial valuation
νE on �(X) defined by νE(f ) = ordE(div(f )) for f ∈ �(X)∗.

Next, we introduce the notion of the age of an element g ∈ G. Let a1, . . . , an and
r be as above. Then, we set age(g) = 1

r

∑n
i=1 ai. Note that age(g) is always an integer

since g is in SL(V ). One can easily check that age is invariant under conjugation by
GL(V ).

REMARK. In [20, 2.1], age is not defined as a function on G but on � := Hom(μR, G),
where R ∈ � is a common multiple of the orders of all elements in G and μR is the
group of the Rth roots of unity. However, the definition in [20] coincides with ours via
the isomorphism � → G; f �→ f (exp(2π i/R)).

We call an element g ∈ G junior if age(g) = 1. The following theorem claims that
the information about exceptional divisors of a minimal model can be read off from
the information about G. Ito and Reid proved the following.

THEOREM 3.1 ([20, Theorem 1.4]). Let π : X → V/G be a proper birational
morphism from a �-factorial normal variety X. Then, π is a (not necessarily projective)
minimal model if and only if there is a bijection of the sets

{an irreducible exceptional divisor of π} ∼= {a conjugacy class of junior elements in G}
such that if E is an irreducible exceptional divisor of π that corresponds to g ∈ G via this
bijection, the equality

νE = 1
r
νg|�(X)

holds.

We also give a result in relation to the existence of a smooth minimal model (i.e. a
crepant resolution) of V/G.

DEFINITION 3.2. Let V be a finite dimensional symplectic �-vector space and let
G be a finite subgroup of Sp(V ). An element g ∈ G is called a symplectic reflection if
the codimension of the fixed subspace Vg in V is two.

Verbitsky proved that if V/G admits a (not necessarily projective) symplectic
(or equivalently crepant, cf. [22, Proposition 3.2]) resolution, then G is generated by
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symplectic reflections [30, Theorem 1.1]. The aim of this section is to generalize this
result.

THEOREM 3.3. Let G be a finite subgroup of SL(V ) for a finite-dimensional �-vector
space V and let π : X → V/G be a minimal model. Then, the algebraic fundamental
group π

alg
1 (Xreg) of the regular part of X is trivial if and only if G is generated by junior

elements.

For the definition of an algebraic (or étale) fundamental group, see e.g. [25, Section
1.3].

Proof. Let H ⊂ G be the normal subgroup generated by all junior elements in G and
let X ′ (resp. X ′′) be the main component (which dominates V/G) of the normalization
of the fibre product X ×V/G V/H (resp. X ×V/G V ). Then, we have the commutative
diagram

X ′′ p̃′
−−−−→ X ′ p̃−−−−→ X

π ′′
⏐⏐	 π ′

⏐⏐	 ⏐⏐	π

V
p′

−−−−→ V/H
p−−−−→ V/G.

We need the following lemma.

LEMMA 3.4. Let E be a π -exceptional divisor. Then, the finite surjective morphism p̃
is unramified at any generic point of p̃−1(E).

Proof. Let F1, . . . , Fk be the irreducible components of p̃−1(E) and let F ′
i be an

irreducible component of p̃′−1(Fi). By construction, one has the equality of valuations
on �(X)

νF ′
i
|�(X) = r1νFi |�(X) = r2νE,

for any i, where r1 and r2 are the ramification indices along F ′
i of p̃′ and p̃ ◦ p̃′,

respectively. Let g ∈ G be an element in the conjugacy class corresponding to E via the
bijection in Theorem 3.1. By [20, 2.6 and 2.8], one has r1 = r2 = � 〈g〉. Therefore, the
claim holds. �

REMARK. From this lemma one can check that π ′ : X ′ → V/H is crepant and thus π ′

is a minimal model (provided that X ′ is �-factorial). Let C ⊂ G be the G-conjugacy
class containing g that corresponds to E. Then, the decomposition of p̃−1(E) into the
irreducible components corresponds to the division of C into the H-conjugacy classes
via the bijection in Theorem 3.1 for π ′.

Now, we return to the proof of the theorem. First, we assume that G �= H. By this
assumption and Lemma 3.4, the map p̃ is étale in codimension one of deg(̃p) > 1. By
the purity of branch locus, this implies that p̃ is étale over Xreg. Therefore, π

alg
1 (Xreg) is

nontrivial.
Conversely, we assume that π

alg
1 (Xreg) �= 1. Then, there is a nontrivial finite étale

covering Y0 → Xreg. By taking the normalization of X in �(Y0), one can extend
the covering map to a finite surjective morphism q : Y → X . Let Y → Z → V/G be
the Stein factorization of π ◦ q. As Z → V/G is finite étale over (V/G)reg, we can
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write Z = V/K for a suitable normal subgroup K of G. Since q is étale in codimension
one, the birational morphism Y → V/K is also a minimal model. By Theorem 3.1,
we see that K contains all junior elements. (Any junior element g ∈ G defines an
exceptional divisor of Y → V/K , and thus g is G-conjugate to an element in K .)
Therefore, H ⊂ K � G. �

If V is symplectic and G ⊂ Sp(V ), then symplectic reflections are nothing but
junior elements (see e.g. [21, Lemma 1.1]). Therefore, the following is a generalization
of Verbitsky’s result.

COROLLARY 3.5 =Theorem 1.1. If V/G admits a (not necessarily projective)
crepant resolution, then G is generated by junior elements.

Proof. If X → V/G is a crepant resolution, the topological fundamental group
π1(X) is trivial (see [23, Theorem 7.8] or [30, Theorem 4.1]). This implies that π

alg
1 (X)

is also trivial [25, p28]. As X = Xreg, we conclude by the theorem that G is generated
by junior elements. Note that we did not use the projectivity of X → V/G. �

4. Embedding of the Cox ring and description of the generators. The goal of this
section is to give an explicit procedure for calculating the Cox ring of a minimal model
of a given V/G. This is done by considering the Cox ring as a subring of some bigger
and simpler ring. This construction is almost due to Donten-Bury and Wiśniewski.
In [15], the authors calculated the Cox ring for a group of order 32 acting on a four-
dimensional symplectic vector space (see Example 2 below in this section).

As in Section 2, we can also define the Cox ring of V/G. It is defined as

Cox(V/G) =
⊕

D∈Cl(V/G)

H0(V/G,OV/G(D)),

as an H0(V/G,OV/G)-module whereOV/G(D) is the rank-1 reflexive sheaf associated to
a Weil divisor class D. Note that H0(V/G,OV/G(D)) is identified with {f ∈ �(V/G)∗ |
div(f ) + D′ ≥ 0} ∪ {0}, where D′ is any Weil divisor on V/G that represents D. Then,
Cox(V/G) has a Cl(V/G)-graded ring structure that is defined similarly to the case in
Section 2. However, this construction is not exactly the same because of torsions in
Cl(V/G) (cf. Proposition 2.3). See [1, Section 1.4] for details.

The degree zero part of Cox(V/G) is �[V ]G, and thus Cox(V/G) is a �[V ]G-algebra.
We have the following result.

PROPOSITION 4.1 ([2, Theorem 3.1]). There is an isomorphism as �[V ]G-algebras
between Cox(V/G) and �[V ][G,G] that preserves the natural gradings by Ab(G)∨.

Let g1, . . . , gm be a complete system of representatives of the conjugacy classes of
junior elements in G and set νi := νgi . Then, for each i there is a unique irreducible
exceptional divisor Ei of π : X → V/G, such that νEi = 1

ri
νi|�(X) by Theorem 3.1 where

ri is the order of gi. Let Cl(X)free be the free abelian group Cl(X)/Cl(X)tor, where
Cl(X)tor is the torsion part of Cl(X). Then, the rank of Cl(X)free is m. This follows from
the short exact sequence

0 →
m⊕

i=1

�Ei → Cl(X)
π∗→ Cl(V/G) → 0, (4.1)

noticing that Cl(V/G) is a torsion group (Proposition 2.3).
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Let �[Cl(X)free] =⊕D̄∈Cl(X)free �tD̄ be the group algebra, where tD̄’s denote the
basis. Now, we construct an embedding of Cox(X) into �[V ][G,G] ⊗� �[Cl(X)free]
as follows. For any Weil divisor D on X and any homogeneous element f̃ ∈
H0(X,OX (D)) ⊂ Cox(X), we can regard f̃ as an element of H0(V/G,OV/G(π∗D))
via the identification �(X) = �(V/G) between the function fields. Let f ∈ �[V ][G,G] be
the corresponding element to f̃ via the isomorphism which appeared in Proposition
4.1. Then, we obtain a ring homomorphism 	 : Cox(X) → �[V ][G,G] ⊗� �[Cl(X)free]
setting 	(̃f ) = f ⊗ tD̄, where D̄ is the class of D in Cl(X)free. The following is a
generalization of [15, Proposition 3.8].

LEMMA 4.2. 	 : Cox(X) → �[V ][G,G] ⊗� �[Cl(X)free] is injective.

Proof. Let f̃ be any element in the kernel of 	. As 	 is compatible with the quotient
map Cl(X) → Cl(X)free, we may assume that all the divisor classes Di’s to which the
homogeneous components of f̃ belong are in the same class of Cl(X)free. On the other
hand, the natural map Cox(X) → Cox(V/G), which is obtained by the composition of
	 and the evaluation t = 1, is also compatible with the surjection Cl(X) → Cl(V/G).
Therefore, we may also assume that Di’s are in the same class of Cl(X)/

⊕m
i=1 �Ei by

(4.1). However, since the subgroup
⊕m

i=1 �Ei is torsion-free, the element f̃ ∈ Cox(X)
must be homogeneous. In this case, the claim is clear by definition. �

Therefore, Cox(X) can be realized as a subring of �[V ][G,G] ⊗� �[Cl(X)free]. Our
next task is to know which elements in �[V ][G,G] ⊗� �[Cl(X)free] are in the image of 	.

Let p : V/[G, G] → V/G be the quotient map. For an element f of �[V ][G,G] that
is homogeneous with respect to the Ab(G)∨-grading, consider the Weil divisor Df =
p∗(divV/[G,G](f )) on V/G. Let D̄f be the class in Cl(X)free of the strict transform of Df

by π−1 : V/G ��� X .

LEMMA 4.3. Let f and D̄f be as above. Then, the equality

D̄f = −
m∑

i=1

1
ri

νi(f )Ēi

in Cl(X)free holds where Ēi is the class of Ei in Cl(X)free. Moreover, f ⊗ tD̄f is in Im 	.

Proof. Let D̃f be the strict transform of Df by π−1 : V/G ��� X and let f̃ be the
element of Cox(V/G) that corresponds to f via the isomorphism in Proposition 4.1.
As f is homogeneous, some power f r (r ∈ �) is in �[V ]G and equals f̃ r ∈ Cox(V/G)0.
Since the pullback of rDf by π can be written as

π∗(divV/G (̃f r)) = rD̃f + νE1 (̃f r)E1 + · · · + νEm (̃f r)Em,

we have rD̃f = −r
∑m

i=1
1
ri
νi(f )Ei in Cl(X) by Theorem 3.1. By dividing both sides by

r, we obtain the desired equation.
For the second claim, one can easily check by definition that 	(̃f ) = f ⊗ tD̄f . �

By this lemma, we can describe generators of Im 	 from those of �[V ][G,G]. Let
S = {φ1, . . . , φk} be a generating system of �[V ][G,G] such that each φj is homogeneous
with respect to the Ab(G)-action. We consider the following condition (∗):
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‘For every nonzero Ab(G)∨-homogeneous f ∈ �[V ][G,G], there are monomials f1, . . . , fl

of φ1, . . . , φk such that

(i) f = f1 + · · · + fl, and

(ii) νi(f ) ≤ νi(fj) for all i and j.’

REMARK. Condition (∗) is a reformulation of condition (3.6) in the paper of Donten-
Bury and Grab [14] where they consider G ⊂ Sp(V ) whose commutator group [G, G]
contains no symplectic reflections. Proposition 4.4 below is a counterpart of Theorem
3.8 in [14]. In the proof of Proposition 4.4 given below, we use the essentially same
idea as in [14]. Nevertheless, we give the proof since we can avoid complexity caused
by using the space of curves introduced therein.

PROPOSITION 4.4. If the homogeneous generators φ1, . . . , φk of �[V ][G,G] satisfy (∗),
then the subset

{φj ⊗ tD̄φj }j=1,...,k ∪ {tĒ1, . . . , tĒm}

of �[V ][G,G] ⊗� �[Cl(X)free] is a generating system of Im 	.

Proof. First note that tĒ1 , . . . , tĒm are in Im 	 since Ei’s are effective divisors. Take
any homogeneous element f ⊗ tD̄ in Im 	 with a Weil divisor D on X . By the condition
(∗), we can write f = f1 + · · · + fl satisfying the conditions and hence can also write

f ⊗ t−
∑m

i=1
1
ri

νi(f )Ēi =
l∑

j=1

fj ⊗ t−
∑m

i=1( 1
ri

νi(fj)Ēi−
∑

i ai,j Ēi),

for some ai,j ∈ �≥0. Since the images of the RHS and
∑l

j=1 fj ⊗ t−
∑m

i=1
1
ri

νi(fj)Ēi by the
natural map Im 	 → �[V ][G,G] = Cox(V/G) are the same, the sum

∑
i ai,jĒi must be

in
⊕m

i=1 �Ēi.
Take f̃ so that 	(̃f ) = f ⊗ tD̄. Then, the inequality

∑m
i=1

1
ri
νi(f )Ei + D ≥ 0 must

be satisfied since f̃ is in H0(X,OX (D)). Thus, we can write f ⊗ tD̄ = f ⊗ t−
∑m

i=1
1
ri

νi(f )Ēi ·
t
∑

i biĒi for some bi ∈ �≥0. The same argument as above shows that bi is in �≥0.
Since each fj is a monomial of φ1, . . . , φk, each fj ⊗ tD̄fj = fj ⊗ t−

∑m
i=1

1
ri

νi(fj)Ēi is also

a monomial of φj ⊗ tD̄φj ’s. Therefore, we obtain a desired expression of f ⊗ tD̄. �

Therefore, we can construct the Cox ring explicitly if we find generators of
�[V ][G,G] satisfying (∗). Now, we give an algorithm for finding such generators from
any generators of �[V ][G,G].

Let φ1, . . . , φk be generators of �[V ][G,G]. We may assume that they are
homogeneous with respect to the Ab(G)-action. For each i ∈ {1, . . . , m}, let
xi,1, . . . , xi,n ∈ V∗ be linearly independent eigenvectors for the 〈gi〉-action. When we
write an element φ ∈ �[V ][G,G] as the sum of monomials of xi,1, . . . , xi,n, let mini(φ) be
the sum of the monomials whose values of νi are minimal among these monomials.

Consider the ring homomorphism α : �[X1, . . . , Xk] → �[V ][G,G], Xj �→ φj and
let I be the kernel of α. We give a grading on �[X1, . . . , Xk] by setting degi(Xj) = νi(φj).
For an inhomogeneous polynomial h, let degi(h) denote the minimal degree of h. We can
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define the minimal part mini(h) for h ∈ �[X1, . . . , Xk], and let mini(I) ⊂ �[X1, . . . , Xk]
be the ideal generated by the set {mini(h) | h ∈ I}. One sees that, for each nonzero
h ∈ mini(I), there is h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I and degi(h) < degi (̃h).

On the other hand, consider the ring homomorphism βi : �[X1, . . . , Xk] →
�[V ], Xj �→ mini(φj) and let J be the kernel of βi. Let mini(J) denote the ideal generated
by homogeneous elements in J with respect to the Ab(G)-action where the Ab(G)-action
on �[X1, . . . , Xk] is the natural lift of the Ab(G)-action on �[V ][G,G]. Thus, we obtain
two ideals of the polynomial ring associated to φ1, . . . , φk: the ideal mini(I) of the
minimal terms of the relations, and the ideal mini(J) of the Ab(G)∨-homogeneous
relations of the minimal terms.

The reason for introducing mini(I) and mini(J) is explained as follows. Fix i, and
assume that we are given a nonzero Ab(G)∨-homogeneous element f ∈ �[V ][G,G]. When
we take a lift h ∈ �[X1, . . . , Xk] of f such that α(h) = f , the inequality degi(h) ≤ νi(f )
always holds. If degi(h) = νi(f ), then the condition (∗) is satisfied for f and i. However,
degi(h) < νi(f ) can happen in general. This case happens for the reason that the image of
mini(h) by βi cancels. Thus, mini(J) is the set of such ‘bad’ polynomials. Nevertheless, if
such h is in mini(I), then we can take another ‘better’ polynomial h̃ such that α(̃h) = f
and degi(h) < degi (̃h). The algorithm we will give below can produce generators of
�[V ][G,G] such that mini(I) = mini(J) (Proposition 4.9).

We have the following lemma.

LEMMA 4.5. For each i, the two ideals mini(I) and mini(J) are degi-homogeneous.
Moreover, the inclusion mini(I) ⊂ mini(J) holds.

Proof. The degi-homogeneity for mini(I) is clear by definition. To prove the claim
for mini(J), give a grading on �[V ] such that the degree of xi,j is νi(xi,j). Then, the map
βi sends elements which are in distinct degi-homogeneous components to ones that are
homogeneous and have distinct degrees. Therefore, the kernel J is degi-homogeneous.

Let h be any Ab(G)∨-homogeneous element of J. Let h =∑j hj be the unique
decomposition of h into the sum of monomials in �[X1, . . . , Xk]. Since every
monomial of �[X1, . . . , Xk] is Ab(G)∨-homogeneous, all hj’s are in the same Ab(G)∨-
homogeneous component. Since every monomial is also degi-homogeneous, the sum
of the monomials hj which take the same value, say d, of degi is exactly the degi-
homogeneous component of degree d of h. By the degi-homogeneity of J, this degi-
homogeneous component of h is contained in J. Thus every Ab(G)∨-homogeneous
element of J is decomposed into the sum of elements of J which are both Ab(G)∨-
homogeneous and degi-homogeneous. This implies that mini(J) is degi-homogeneous.

For the claim of the inclusion, it suffices to show that each nonzero mini(h) with
h ∈ I is in mini(J). We may assume that mini(h) is Ab(G)∨-homogeneous since α is
Ab(G)∨-graded homomorphism. Set d = degi(h). As mentioned above, we can take
h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I and degi (̃h) > d. We see that νi(α(̃h)) > d by the
definition of degi. Since α(̃h) = α(h), we also have νi(α(h)) > d. This implies that βi(h)
vanishes since βi(h) is exactly the part of α(h) whose value of νi is d. �

For a subset A ⊂ {1, . . . , m}, let RA be the polynomial ring �[X1, . . . , Xk, {ti}i∈A].
The grading degi (i ∈ A) on �[X1, . . . , Xk] naturally extends to one on RA by setting
degi(tj) = −δi,j where δi,j is Kronecker delta. For nonzero h ∈ �[X1, . . . , Xk], let hA be
the element in RA obtained by homogenizing h by ti’s with respect to degi’s respectively.
That is, if h =∑l hl where hl’s are monomials, then hA =∑l(hl

∏
i∈A tdegi(hl )−degi(h)

i ).
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Consider the ideal I = Ker α as above and let IA ⊂ RA be the homogeneous ideal
generated by the set {hA | h ∈ I}.

Now we define a collection {Sp}p=0,1,... of subsets each of which consists of finitely
many elements in �[V ][G,G] inductively by taking the following steps.
Step (0)
Set S = S0 := {φ1, . . . , φk} and go to Step (0, 1).

Step (0, i) (i = 1, . . . , m)
Compute mini(I) and mini(J) for S. Write mini(J) = mini(I) + (h1, . . . , hl) with degi-
homogeneous hj �∈ mini(I).
� If mini(I) = mini(J) and i = m = 1, then set Sp+1 = Sp+2 = · · · := Sp.
� If mini(I) = mini(J) and i = 1 < m, then replace S by Sp+1 := Sp and go to Step

(0, 2).
� If mini(I) = mini(J) and i > 1, then replace S by Sp+1 := Sp and go to Step (1, i).
� If mini(I) � mini(J), then replace S by Sp+1 := Sp ∪ {α(h1), . . . , α(hl)} and go to

Step (0, i) again.

Step (i′, i)(1 ≤ i′ < i ≤ m)
Compute the two ideals Ĩi′,i := I{1,...,i′,i} ∩ (ti′, ti) and Ĩ ′

i′,i := (I{1,...,i′,i} ∩ (ti′)) +
(I{1,...,i′,i} ∩ (ti)) for S. Write

Ĩi′,i = Ĩ ′
i′,i + (h1, . . . , hl),

where hj’s are elements in R{1,...,i′,i} \ Ĩ ′
i′,i which are homogeneous with respect to degj

for each j ∈ {1, . . . , i′, i}. (Note that Ĩi′,i and Ĩ ′
i′,i are degj-homogeneous ideals for each

j ∈ {1, . . . , i′, i}.)
� If Ĩi′,i = Ĩ ′

i′,i, i = m and i′ = m − 1, then set Sp+1 = Sp+2 = · · · := Sp.
� If Ĩi′,i = Ĩ ′

i′,i, i < m and i′ = i − 1, then replace S by Sp+1 := Sp and go to Step
(0, i + 1).

� If Ĩi′,i = Ĩ ′
i′,i, i < m and i′ < i − 1, then replace S by Sp+1 := Sp and go to Step

(i′ + 1, i).
� If Ĩi′,i � Ĩ ′

i′,i, then replace S by Sp+1 := Sp ∪ {α(mini(h1|t=1)), . . . , α(mini(hl|t=1))}
and go to Step (i′, i) again.

We should perform the above algorithm in the following order of the steps possibly
with repetition in each step:

(0) → (0, 1) → (0, 2) → (1, 2) → (0, 3) → (1, 3) → (2, 3) → (0, 4) → (1, 4) → · · ·
Note that each Sp is not unique since it involves several choices. A concrete

procedure for performing the algorithm above (with a computer) will be given in
Appendix in Section 7.

The relation between Ĩi′,i and Ĩ ′
i′,i is similar to that between mini(J) and mini(I).

Fix i, and assume that we are given nonzero h ∈ mini(J). Then, we have degi(h) < νi(f )
where f := α(h). If S satisfies mini(J) = mini(I), then we can take another lift h̃ ∈
�[X1, . . . , Xk] of f such that degi (̃h) = νi(f ). However, degi′(h) > degi′ (̃h) for another
i′ can happen in general. Such ‘bad’ h defines an element of Ĩi′,i. If this element is also
in Ĩ ′

i′,i, then we can replace the lift h̃ by ‘better’ one (see the proof of Proposition 4.10).
The algorithm can produce S such that Ĩi′,i = Ĩ ′

i′,i (Proposition 4.12). The idea of this is
as follows. Consider the situation where Ĩi′,i � Ĩ ′

i′,i in Step (i′, i) for S = Sp. Then each
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mini(hj|t=1) is ‘bad’ in the sense above. In Sp+1, however, it can be replaced by the newly
introduced variable which is ‘better’. We will show that we finally get the equality of
the ideals after finitely many steps. The situation for Step (0, i) is similar.

We will show that the algorithm terminates in finite time and gives generators of
the Cox ring (cf. Corollary 4.13). To this end, we define conditions on S as follows.

DEFINITION 4.6. Fix S = Sp.
� Let A ⊂ {1, . . . , m} be any subset. We say that S satisfies (∗A) if for every nonzero

Ab(G)∨-homogeneous f ∈ �[V ][G,G], there is h ∈ �[X1, . . . , Xk] such that f = α(h)
and νi(f ) = degi(h) for every i ∈ A.

� Let A ⊂ {1, . . . , m} \ {i} be any subset and let h ∈ �[X1, . . . , Xk] be any element.
We say that h satisfies (∗A, i, p) if there is h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I ,
degi(h) < degi (̃h), and degj(h) ≤ degj (̃h) for every j ∈ A.

Note that if f = α(h), the inequality νi(f ) ≥ degi(h) always holds. However, the
equality does not hold in general.

LEMMA 4.7. Fix S = Sp and let A ⊂ {1, . . . , m} \ {i} be any subset. Assume that Sp

satisfies (∗A). Then, Sp satisfies (∗A ∪ {i}) if and only if h satisfies (∗A, i, p) for any
degi-homogeneous element h ∈ mini(J).

Proof. We first assume that Sp satisfies (∗A ∪ {i}). Take any degi-homogeneous
element h from mini(J). Then one sees that νi(α(h)) > degi(h). On the other hand, there
is h̃ ∈ �[X1, . . . , Xk] such that α(̃h) = α(h) and νj(α(̃h)) = degj (̃h) for every j ∈ A ∪ {i}
since Sp satisfies (∗A ∪ {i}). Therefore, h satisfies (∗A, i, p).

To prove the converse, we show that Sp satisfies (∗A ∪ {i}) assuming that h
satisfies (∗A, i, p) for any degi-homogeneous h ∈ mini(J). For each nonzero Ab(G)∨-
homogeneous f ∈ �[V ][G,G], by assumption there is h′ ∈ �[X1, . . . , Xk] such that
f = α(h′) and νj(f ) = degj(h

′) for every j ∈ A. If νi(f ) = degi(h
′), we are done. So

we assume otherwise. Then, the degi-minimal part h = mini(h′) is in mini(J). Since
h satisfies (∗A, i, p), there is h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I , degi(h) < degi (̃h),
and degj(h) ≤ degj (̃h) for every j ∈ A. Therefore replacing h in h′ by h̃ increases the
value of degi without decreasing the values of degj for j ∈ A. Repeating this process
gives h′ such that νi(f ) = degi(h

′) by induction on νi(f ) − degi(h
′). �

One can show that the Cox ring of a minimal model X is finitely generated using
[4, Corollary 1.1.9]. Therefore, we can take finitely many homogeneous generators
f̃1, . . . , f̃s of Im 	. Set fj := f̃j|t=1 ∈ �[V ][G,G]. To check whether or not the condition
(∗A) is satisfied, we only have to check it for these fi’s by the following lemma.

LEMMA 4.8. Fix S = Sp and let A ⊂ {1, . . . , m} be any subset. Then S satisfies (∗A)
if and only if for each f ∈ {f1, . . . , fs}, there is h ∈ �[X1, . . . , Xk] such that f = α(h) and
νi(f ) = degi(h) for every i ∈ A.

Proof. The ‘only if ’ part is trivial. We show the converse. By the argument in the
proof of Proposition 4.4, we see that each f̃j ∈ Im 	 is a product of fj ⊗ tD̄fj and tĒi ’s.
Therefore, for any nonzero f ∈ �[V ][G,G], the element f ⊗ tD̄f ∈ Im 	 is expressed as a
polynomial of fj ⊗ tD̄fj ’s and tĒi ’s. By evaluating t = 1, we obtain an expression of f as a
polynomial of fj’s such that the values of νj’s (j ∈ A) of each monomial are greater than
or equal to those of f . Replacing fj’s by the expressions as polynomials of elements in
S satisfying (∗A), we obtain an expression of f satisfying (∗A). �
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The following proposition shows the termination of Step (0, i).

PROPOSITION 4.9. Fix S = Sp ⊂ �[V ][G,G] and i ∈ {1, . . . , m}. Then the equality
mini(I) = mini(J) holds if and only if S satisfies (∗{i}). Moreover, Step (0, i) ends in
finite time (i.e. the equality mini(I) = mini(J) holds for Sq with q � p).

Proof. First assume that S satisfies (∗{i}). Let h be a degi-homogeneous element of
mini(J). Then, there is h̃ ∈ �[X1, . . . , Xk] such that α(̃h) = α(h) and degi (̃h) > degi(h)
by Lemma 4.7. Since h is degi-homogeneous, h is the minimal part of h − h̃ ∈ I and
therefore h ∈ mini(I). By using the fact mini(J) is a degi-homogeneous ideal (Lemma
4.5), we conclude that mini(I) = mini(J).

Conversely, we assume that mini(I) = mini(J) holds. Then, for any h ∈ mini(J),
there is h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I and degi(h) < degi (̃h). Thus, h satisfies
(∗∅, i, p), and S satisfies (∗{i}) by Lemma 4.7.

To prove the second claim, it is enough to show that Sq satisfies (∗{i}) with q � p. By
Lemma 4.8, we only have to check the condition (∗{i}) for each f ∈ {f1, . . . , fs}. Similarly
to the proof of Lemma 4.7, take h′ ∈ �[X1, . . . , Xk] and h = mini(h′) ∈ mini(J)
such that α(h′) = f . Then, one can write h = h′′ +∑l

j=1 ajhj, where h′′ ∈ mini(I),
aj ∈ �[X1, . . . , Xk], and hj’s are ones in Step (0, i). We may assume that h, h′′ and each
ajhj have the same value of degi since mini(I) and hj’s are degi-homogeneous. Since h′′ ∈
mini(I), there is h̃′′ ∈ �[X1, . . . , Xk] such that h′′ − h̃′′ ∈ I and degi(h

′′) < degi (̃h
′′). Let

Xk1 , . . . , Xkl ∈ �[X1, . . . , X|Sp+1|] be the new variables associated to Sp+1 corresponding
to h1, . . . , hl, respectively. Then replacing h′′ and hj’s in h by h̃′′ and Xkj respectively
increases the value of degi. Repeating this process gives h′ ∈ �[X1, . . . , X|Sq|] for q � p
such that νi(f ) = degi(h

′) by induction on νi(f ) − degi(h
′). �

The condition (∗{1, . . . , i′, i}) is in fact characterized by the equality of the ideals
Ĩi′,i and Ĩ ′

i′,i.

PROPOSITION 4.10. Fix S = Sp ⊂ �[V ][G,G] and 1 ≤ i′ < i ≤ m. Assume that S
satisfies (∗{1, . . . , i′ − 1, i}). Then, the equality Ĩi′,i = Ĩ ′

i′,i holds if and only if S satisfies
(∗{1, . . . , i′, i}).

Proof. First assume that S satisfies (∗{1, . . . , i′, i}). Let h′ be any element in Ĩi′,i
which is homogeneous with respect to degj for each j = 1, . . . , i′, i. If ti′ |h′ or ti|h′,
then clearly h′ is in Ĩ ′

i′,i. So we assume otherwise. Set h = mini(h′|t=1) ∈ mini(I). Since
S satisfies (∗{1, . . . , i′, i}), there is h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I , degi(h) <

degi (̃h), and degj(h) ≤ degj (̃h) for j = 1, . . . , i′ by Lemma 4.7. Set h′′ = (h − h̃){1,...,i′,i} ∈
I{1,...,i′,i}. Note that both h′|ti=0 (which is nonzero since ti � h′) and h′′|ti=0 become h
when one substitutes t = 1. Therefore, by the homogeneity of h′ and h′′, one sees that
h′|ti=0 = h′′|ti=0

∏i′
j=1 tlj

j in R1,...,i′,i for some lj ≥ 0 (j = 1, . . . , i′). Note also that h′|ti=0

is divisible by ti′ since h′ is in Ĩ ′
i′,i while h′′|ti=0 is not divisible by ti′ by the choice of h̃.

Thus, li′ > 0 and

h′ = h′′
i′∏

j=1

tlj
j + (h′ − h′′

i′∏
j=1

tlj
j ) ∈ I{1,...,i′,i} ∩ (ti′) + I{1,...,i′,i} ∩ (ti) = Ĩ ′

i′,i.

Conversely, we assume that Ĩi′,i = Ĩ ′
i′,i holds. To prove that S satisfies (∗{1, . . . , i′, i}),

it is enough to show that, for any degi-homogeneous h ∈ mini(J), there exists
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h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I , degi (̃h) > degi(h), and degj (̃h) ≥ degj(h) for
j = 1, . . . , i′ by Lemma 4.7.

Since S satisfies (∗{1, . . . , i′ − 1, i}), there is h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I ,
degi (̃h) > degi(h), and degj (̃h) ≥ degj(h) for j = 1, . . . , i′ − 1. Let h′ = (h − h̃){1,...,i′,i} ∈
I{1,...,i′,i}. If h′|ti′=ti=0 �= 0 in �[X1, . . . , Xk], then degi′ (̃h) ≥ degi′ (h) and thus we
are done. So we assume otherwise. Then, h′ is in Ĩi′,i = Ĩ ′

i′,i, and we can write
h′ = h′

1tl
i′ + h′

2ti for some h′
j ∈ I{1,...,i′,i} and l ∈ �>0, such that ti′ � h′

1. Therefore, one

sees that (h′
1|ti=0)|t=1 = (h′|ti=0)|t=1 = h and h′

1|ti′=ti=0 �= 0. Then, the new h̃ := (h′
1 −

h′
1|ti=0)|t=1 ∈ �[X1, . . . , Xk] satisfies the desired condition. �

To show that Step (i ′, i ) (i′ �= 0) terminates, we introduce a subset of the polynomial
ring as follows. Consider the situation where one has obtained Sp+j from Sp+j−1 for
j = 1, . . . , c by performing Step (i ′, i ) (i′ �= 0) and assume that Sp � Sp+1 � · · · � Sp+c.
For j = 1, . . . , c, define Bp+j,i′,i ⊂ �[X1, . . . , X|Sp+j−1|] as the set{

h ∈ mini(I) | h is degi -homogeneous and does not satisfy (∗A, i, p + j)
}
,

where I is defined with respect to Sp+j−1 and A = {1, . . . , i′}. Note that any element of
Bp+j,i′,i does not satisfy (∗A, i, p + j − 1), either.

LEMMA 4.11. Assume that Sp satisfies (∗{1, . . . , i′ − 1, i}). Then, there are integers
m1 < m2 < · · · < mc such that the inequality degi′ (h) > mj holds for any h ∈ Bp+j,i′,i and
j = 1, . . . , c.

Proof. Take any element h ∈ Bp+1,i′,i. Since Sp satisfies (∗{1, . . . , i′ − 1, i}), there
is h̃ ∈ �[X1, . . . , Xk] such that h − h̃ ∈ I , degi(h) < degi (̃h) and degj(h) ≤ degj (̃h)
for j ∈ {1, . . . , i′ − 1}. Then h′ := (h − h̃){1,...,i′,i} is in Ĩi′,i since h does not satisfy
(∗{1, . . . , i′, i}, i, p). Therefore, we can write h′ = h′′ +∑l

j=1 ajhj with h′′ ∈ Ĩ ′
i′,i and

aj ∈ R{1,...,i′,i} where hj’s are ones in Step (i ′, i ). We may assume that h′′ and each aj are
degj′-homogeneous for all j′ ∈ {1, . . . , i′, i}. As we saw in the ‘only if ’ part of the proof
of Proposition 4.10, we can take h̃′′ ∈ �[X1, . . . , Xk] such that mini(h′′|t=1) − h̃′′ ∈ I ,
degi(mini(h′′|t=1)) < degi (̃h

′′) and degj(mini(h′′|t=1)) ≤ degj (̃h
′′) for j ∈ {1, . . . , i′}.

On the other hand, let Xk1 , . . . , Xkl ∈ �[X1, . . . , X|Sp+1|] be the new variables
associated to Sp+1 corresponding to h1, . . . , hl, respectively. Then, mini(hj|t=1) − Xkj

is in I , degi(mini(hj|t=1)) < degi(Xkj ), and degj′(mini(hj|t=1)) ≤ degj′(Xkj ) for j′ ∈
{1, . . . , i′}. Moreover, we can show that the inequality

degj′(h) ≤ min
j=1,...,l

{degj′(mini((ajhj)|t=1))},

for j′ ∈ {1, . . . , i′ − 1} holds. Indeed, otherwise h′ would be divisible by tj′ for some
j′ ∈ {1, . . . , i′ − 1} by the degj′-homogeneity of hj’s. However, this is contrary to the
construction of h′.

Similarly, by the degi-homogeneity of h′′ and ajhj’s, the following inequality

degi(h) = degi(mini((h′′ +
l∑

j=1

ajhj)|t=1)) < degi (̃h
′′ +

l∑
j=1

aj|t=1Xkj )

holds. (Otherwise it would be contrary to the construction of h′.)
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If degi′(h) ≤ m1 := min
j=1,...,l

{degi′(mini(hj|t=1))} holds, then

degi′ (h) = degi′(mini((h′′ +
l∑

j=1

ajhj)|t=1)) ≤ degi′ (̃h
′′ +

l∑
j=1

aj|t=1Xkj ).

This is contrary to the fact that h does not satisfy (∗{1, . . . , i′}, i, p + 1) and hence
degi′(h) > m1.

Since Sp+1 � Sp+2, there are hl+1, . . . , hl′ ∈ �[X1, . . . , X|Sp+1|] such that Ĩi′,i =
Ĩ ′

i′,i + (hl+1, . . . , hl′ ) as in Step (i′, i) for S = Sp+1. By construction hl+1, . . . , hl′ come
from elements in Ĩi′,i \ Ĩ ′

i′,i. Therefore, the elements mini(hj|t=1) with j = l + 1, . . . , l′

do not satisfy (∗{1, . . . , i′}, i, p + 1). The same argument as above shows that m2 :=
min

j=l+1,...,l′
{degi′(mini(hj|t=1))} > m1. The integers m3, . . . , mc are defined similarly and

the claim about the inequality for j = 2, . . . , c follows from the same argument as the
case j = 1. �

The following proposition shows the termination of Step (i′, i).

PROPOSITION 4.12. Assume that Sp satisfies (∗{1, . . . , i′ − 1, i}). Then, Step (i′, i)
ends in finite time (i.e. the equality Ĩi′,i = Ĩ ′

i′,i holds for Sq with q � p).

Proof. It is enough to show that Sq satisfies (∗{1, . . . , i′, i}) for q � p by Proposition
4.10. By Lemma 4.8, we only have to check the condition (∗{1, . . . , i′, i}) for each f ∈
{f1, . . . , fs}. Similarly to the ‘if ’ part of the proof of Lemma 4.7, take h′ ∈ �[X1, . . . , Xk]
and h = mini(h′) ∈ mini(J), such that α(h′) = f . By Lemma 4.11, h is not in Bq,i′,i for
q � p. Therefore, h satisfies (∗{1, . . . , i′}, i, q) for q � p. �

COROLLARY 4.13. The algorithm ends in finitely many steps, that is, S∞ :=⋃p Sp

is a finite set. Moreover, the subset {φ ⊗ tD̄φ }φ∈S∞ ∪ {tĒ1, . . . , tĒm} of �[V ][G,G] ⊗�

�[Cl(X)free] is a generating system of Im 	.

Proof. The first claim follows from Propositions 4.9 and 4.12. As we see that
S∞ satisfies (∗{1, . . . , m})(=(∗)) by Proposition 4.10, the second claim follows from
Proposition 4.4. �

This theorem makes it possible for us to calculate Cox rings of minimal models
of any quotient singularities at least theoretically. Before we try concrete examples, we
state one application of the above construction of Cox rings.

In the previous section, we showed that the simply-connectedness of the regular
part of a minimal model is determined by whether G is generated by junior elements.
By using the embedding of the Cox ring above, we can show that the torsion-freeness
of the divisor class group of the minimal model can also be read from the property of
G.

PROPOSITION 4.14. The divisor class group Cl(X) of the minimal model X of V/G is
torsion-free if and only if G is generated by [G, G] and junior elements.

Proof. Let H be the subgroup of G generated by [G, G] and junior elements.
First, assume H �= G. Then, there is an element f ∈ �[V ]H \ �[V ]G ⊂ �[V ][G,G] that
is homogeneous with respect to Ab(G)-action. Let D̄f ∈ Cl(X)free be the divisor class
associated to f . Then, by Lemma 4.3, one has D̄f = −∑m

i=1
1
ri
νi(f )Ēi ∈⊕m

i=1 �Ēi. This
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implies that the integral effective Weil divisor D = Df +∑m
i=1

1
ri
νi(f )Ei is torsion in

Cl(X). We can show that D is nonzero in Cl(X) as follows. Assume D were linearly
trivial. Then, D would be defined by a regular function f ′ ∈ H0(OX ) = �[V ]G, and we
could write D = Df ′ +∑m

i=1
1
ri
νi(f ′)Ei (cf. the proof of Lemma 4.3). Therefore, π∗Df

and π∗Df ′ (both of which are the same as π∗D) would give the same classes in Cl(V/G).
This is contrary to the choices of f and f ′.

Next, assume that H = G. Let D be any Weil divisor which is a torsion in Cl(X).
Let f ∈ �[V ][G,G] ∼= Cox(V/G) be the defining section of π∗D and let D′ be the strict
transform of π∗D on X . Clearly, one can write D − D′ =∑m

i=1 aiEi for some ai ∈
�. By Lemma 4.3, we have D̄′ = −∑m

i=1
1
ri
νi(f )Ēi in Cl(X)free. On the other hand,

we have D̄′ = D̄ −∑i aiĒi = −∑i aiĒi in Cl(X)free since D is a torsion. Therefore,
−∑m

i=1
1
ri
νi(f )Ēi = −∑i aiĒi. As {Ei}i is a �-basis of Cl(X)�, the condition νi(f ) ≡

0 mod ri (∀i) must be satisfied. This is equivalent to f ∈ �[V ]H = �[V ]G = Cox(V/G)0.
Hence, the class of D in Cl(X) is contained in

⊕m
i=1 �Ei. However,

⊕m
i=1 �Ei is torsion-

free and thus D must be 0. �

Now, we calculate Cox rings for several examples. For this, consider the Laurent
polynomial ring R := �[V ][G,G][t±1

1 , . . . , t±1
m ] over �[V ][G,G]. By Proposition 4.4, we can

regard Im 	 as a subring of R by identifying f ⊗ tD̄f ∈ Im 	 with f tν1(f )
1 · · · tνm(f )

m . Most
of the calculations in the examples below are done with a computer making use of
the softwares ‘Macaulay 2’[18] or ‘SINGULAR’[17]. See Appendix 7.1 for how to
perform the algorithm above and see Appendix 7.2 for how to calculate the relations
of the generators of the Cox rings efficiently.

REMARK. In the following examples, a finite group G is realized as a subgroup of
the matrix group SLn(�)(= SL(V )). The letters x, y, . . . denote the dual basis to
the standard basis of V = �n. Originally, we should let G act on V∗ as the dual
representation of G on V . However, for convenience, we will let G act on V∗ by
identifying the dual basis of V∗ with the standard basis of V . This difference will
not produce any effect on the result since one representation and its dual give rise to
isomorphic quotient singularities.

EXAMPLE 1. Kleinian (or ADE) singularities
Case 1. Am-singularity (m ≥ 1)

� Cyclic group G = 〈g1 = ( ζ 0
0 ζ−1 )〉, ζ = exp(2π i/(m + 1)).

� Representatives of junior elements: gk := gk
1 (k = 1, . . . , m).

� x (resp. y) is a ζ (resp. ζ−1)-eigenvector of g1.

The order rk of gk is given by rk = m+1
gcd(k,m+1) , and the valuations are given by

νk(x) = krk

m + 1
and νk(y) = rk − krk

m + 1
.

Since xt
r1

m+1
1 · · · t

mrm
m+1
m , yt

r1− r1
m+1

1 · · · t
rm− mrm

m+1
m , t−r1

1 , . . . , t−rm
m ∈ R clearly have no relations, the

algorithm trivially means that these are the generators of the Cox ring of the minimal
model (or the crepant resolution) of V/G.
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Case 2. Dm-singularity (m ≥ 4)

� Binary dihedral group G =
〈
g1 =

(
ζ 0
0 ζ−1

)
, gm−1 =

(
0 1

−1 0

)〉
,

ζ = exp(2π i/2(m − 2)), [G, G] = 〈g2
1

〉
,

Ab(G) ∼=
{

(�/2�)×2 if m is even

�/4� if m is odd.

� Representatives of junior elements: gk := gk
1 (k = 1, . . . , m − 2), gm−1, gm :=

gm−1g1.
� x (resp. y) is a ζ (resp. ζ−1)-eigenvector of gk (k = 1, . . . , m − 2).
� x + iy (resp. x − iy) is a i (resp. −i)-eigenvector of gm−1.
� x + iζy (resp. x − iζy) is a i (resp. −i)-eigenvector of gm.

The order rk of gk is given by rk ={
2(m − 2)/gcd(k, 2(m − 2)) if k = 1, . . . , m − 2

4 if k = m − 1, m.

In this case, we can take xm−2 + (iy)m−2, xm−2 − (iy)m−2, and xy as homogeneous
generators of �[V ][G,G]. We can directly calculate the valuations as follows.

νk(xm−2 + (iy)m−2) =

⎧⎪⎨⎪⎩
krk/2 if k = 1, . . . , m − 2

m − 2 if k = m − 1

m if k = m

νk(xm−2 − (iy)m−2) =

⎧⎪⎨⎪⎩
krk/2 if k = 1, . . . , m − 2

m if k = m − 1

m − 2 if k = m

νk(xy) =
{

rk if k = 1, . . . , m − 2

2 if k = m − 1, m

Now, we apply the algorithm to S = {xm−2 + (iy)m−2, xm−2 − (iy)m−2, xy}. We use
the notations in the algorithm above. First, the kernel of α : �[X1, X2, X3] → �[V ][G,G]

is a principal ideal I = (X2
1 − X2

2 − 4(iX3)m−2) and one sees that

mink(I) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(X2

1 − X2
2 ) if k = 1, . . . , m − 3

(X2
1 − X2

2 − 4(iX3)m−2) if k = m − 2

(X2
1 − 4(iX3)m−2) if k = m − 1

(−X2
2 − 4(iX3)m−2) if k = m.

On the other hand, one sees that

mink(xm−2 + (iy)m−2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xm−2 if k = 1, . . . , m − 3

xm−2 + (iy)m−2 if k = m − 2
1

2m−1 (x + iy)m−2 if k = m − 1
m−2
2m−1 (x + iζy)m−3(x − iζy) if k = m,
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mink(xm−2 − (iy)m−2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xm−2 if k = 1, . . . , m − 3

xm−2 − (iy)m−2 if k = m − 2

m − 2
2m−1

(x + iy)m−3(x − iy) if k = m − 1

1
2m−1

(x + iζy)m−2 if k = m,

and

mink(xy) =

⎧⎪⎨⎪⎩
xy if k = 1, . . . , m − 2
1
4i (x + iy)2 if k = m − 1
ζ−1

4i (x + iζy)2 if k = m.

From these, one can check that mink(I) = mink(J) for all k. One can also check
that each Step (i′, i) ends at one try. Therefore, by Corollary 4.13, we obtain a generating
system of the Cox ring

(xm−2 + (iy)m−2)tm−2
1 · · · tm−2

m−1tm
m, (xm−2 − (iy)m−2)tm−2

1 · · · tm−2
m−2tm

m−1tm−2
m ,

(xy)tr1
1 · · · trm−2

m−2t2
m−1t2

m, t−r1
1 , . . . , t−rm

m .

If we rename these elements as X1, X2, X3, Y1, . . . , Ym in order, then they have a
single relation

X2
1 Ym − X2

2 Ym−1 − 4(iX3)m−2
m−3∏
k=1

Y m−2−k
k = 0.

Case 3. E6-singularity

� Binary tetrahedral group G =
〈
g1 =

(
i 0
0 −i

)
, g2 = 1√

2

(
ζ ζ

ζ 3 ζ 7

)〉
,

ζ = exp(2π i/8), [G, G] =
〈
g1,

(
0 1

−1 0

)〉
, Ab(G) ∼= �/3�.

� Representatives of junior elements: g1, gk := gk−1
2 (k = 2, . . . , 6).

� x (resp. y) is a i (resp. i)-eigenvector of g1.
� x + (

√
2ωζ 3 − 1)y (resp. x + (

√
2ωζ 7 − ζ 2)y) is a (−ω)k−1(resp. (−ω)−k+1)-

eigenvector of gk, (k = 2, . . . , 6), where ω = exp(2π i/3).
We can take x4 + y4 + 2

√−3x2y2, x4 + y4 − 2
√−3x2y2 and x5y − xy5 as

homogeneous generators of �[V ][G,G]. The information of the valuations are
summarized as follows.

k 1 2 3 4 5 6

νk(x4 + y4 + 2
√−3x2y2) 4 4 4 4 5 8

νk(x4 + y4 − 2
√−3x2y2) 4 8 5 4 4 4

νk(x5y − xy5) 8 6 6 6 6 6
� 〈gk〉 4 6 3 2 3 6
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By applying the algorithm to S = {x4 + y4 + 2
√−3x2y2, x4 + y4 −

2
√−3x2y2, x5y − xy5}, one sees that

(x4 + y4 + 2
√−3x2y2)t4

1t8
2t5

3t4
4t4

5t4
6, (x4 + y4 − 2

√−3x2y2)t4
1t4

2t4
3t4

4t5
5t8

6,

(x5y − xy5)t8
1t6

2t6
3t6

4t6
5t6

6, t−4
1 , t−6

2 , t−3
3 , t−2

4 , t−3
5 , t−6

6

in R are generators of the Cox ring.
If we rename these elements as X1, X2, X3, Y1, . . . , Y6 in order, then they have a

single relation

X3
1 Y5Y 2

6 − X3
2 Y 2

2 Y3 − 12
√−3X2

3 Y1 = 0.

Case 4. E7-singularity

� Binary octahedral group G =
〈
g1 =

(
ζ 0
0 ζ−1

)
, g5 = 1√

2

(
ζ ζ

ζ 3 ζ 7

)〉
, ζ =

exp(2π i/8),
[G, G] = 〈g2

1, g5
〉
(=binary tetrahedral group), Ab(G) ∼= �/2�.

� Representatives of junior elements: g1, g2 := g2
1, g3 := g3

1, g4 := g4
1, g5, g6 := g2

5,

g7 = 1√
2

(
i 1

−1 −i

)
.

� x (resp. y) is a ζ k (resp. ζ−k)-eigenvector of gk, (k = 1, . . . , 4).
� x + (

√
2ωζ 3 − 1)y and x + (

√
2ωζ 7 − ζ 2)y are (−ω)k−4(resp. (−ω)−k+4)-

eigenvectors of g5 and g6, where ω = exp(2π i/3).
� x − (1 − √

2)iy (resp. x − (1 + √
2)iy) is a i (resp. −i)-eigenvector of g7.

We can take x12 − 33x8y4 − 33x4y8 + y12, x8 + 14x4y4 + y8 and x5y − xy5 as
homogeneous generators of �[V ][G,G]. The information of the valuations are
summarized as follows.

k 1 2 3 4 5 6 7

νk(x12 − 33x8y4 − 33x4y8 + y12) 12 12 36 12 12 12 14
νk(x8 + 14x4y4 + y8) 8 8 24 8 12 9 8

νk(x5y − xy5) 12 8 20 6 6 6 6
� 〈gk〉 8 4 8 2 6 3 4

By applying the algorithm to S = {x12 − 33x8y4 − 33x4y8 + y12, x8 + 14x4y4 +
y8, x5y − xy5}, one sees that

(x12 − 33x8y4 − 33x4y8 + y12)t12
1 t12

2 t36
3 t12

4 t12
5 t12

6 t14
7 , (x8 + 14x4y4 + y8)t8

1t8
2t24

3 t8
4t12

5 t9
6t8

7,

(x5y − xy5)t12
1 t8

2t20
3 t6

4t6
5t6

6t6
7, t−8

1 , t−4
2 , t−8

3 , t−2
4 , t−6

5 , t−3
6 , t−4

7

in R are generators of the Cox ring.
If we rename these elements as X1, X2, X3, Y1, . . . , Y7 in order, then they have a

single relation

X2
1 Y7 − X3

2 Y 2
5 Y6 + 108X4

3 Y 3
1 Y 2

2 Y3 = 0.

Case 5. E8-singularity
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� Binary icosahedral group

G =
〈
g1 =

(
ε 0
0 ε−1

)
, h = 1√

5

(
ε2 − ε8 ε4 − ε6

ε4 − ε6 ε8 − ε2

)
, g8 =

(
0 1

−1 0

)〉
,

ε = exp(2π i/10), [G, G] = G.
� Representatives of junior elements: g1, g2 := g2

1, g3 := g3
1, g4 := g4

1, g5 := g5
1, g6 :=

−g1h,

g7 := g2
6, g8.

� x (resp. y) is a εk (resp. ε−k)-eigenvector of gk, (k = 1, . . . , 5).
� x + (ε3 − ωε2 − ε2 − ωε − 1)y (resp. x + (ε3 + ωε2 + ωε + ε − 1)y) is a (−ω)k−5

(resp. (−ω)−k+5)-eigenvector of gk, (k = 6, 7), where ω = exp(2π i/3).
� x + iy (resp. x − iy) is a i (resp. −i)-eigenvector of g8.

We can take x30 + y30 − 522(x25y5 − x5y25) − 10, 005(x20y10 + x10y20), x20 +
y20 + 228(x15y5 − x5y15) + 494x10y10 and xy(x10 − 11x5y5 − y10) as homogeneous
generators of �[V ][G,G]. The information of the valuations are summarized as follows.

k 1 2 3 4 5 6 7 8

νk(x30 + y30 − 522(x25y5 − x5y25)

− 10005(x20y10 + x10y20))
30 30 90 60 30 30 30 32

νk(x20 + y20 + 228(x15y5 − x5y15) + 494x10y10) 20 20 60 40 20 24 21 20
νk(xy(x10 − 11x5y5 − y10)) 20 15 40 25 12 12 12 12

� 〈gk〉 10 5 10 5 2 6 3 4

By applying the algorithm to S = {x30 + y30 − 522(x25y5 − x5y25) −
10005(x20y10 + x10y20), x20 + y20 + 228(x15y5 − x5y15) + 494x10y10, xy(x10 −
11x5y5 − y10)}, one sees that

(x30 + y30 − 522(x25y5 − x5y25) − 10005(x20y10 + x10y20))t30
1 t30

2 t90
3 t60

4 t30
5 t30

6 t30
7 t32

8 ,

(x20 + y20 + 228(x15y5 − x5y15) + 494x10y10)t20
1 t20

2 t60
3 t40

4 t20
5 t24

6 t21
7 t20

8 ,

xy(x10 − 11x5y5 − y10)t20
1 t15

2 t40
3 t25

4 t12
5 t12

6 t12
7 t12

8 , t−10
1 , t−5

2 , t−10
3 , t−5

4 , t−2
5 , t−6

6 , t−3
7 , t−4

8

in R are generators of the Cox ring.
If we rename these elements as X1, X2, X3, Y1, . . . , Y8 in order, then they have a

single relation

X2
1 Y8 − X3

2 Y 2
6 Y7 + 1728X5

3 Y 4
1 Y 3

2 Y 2
3 Y4 = 0.

REMARK. By taking linear changes of coordinates, one can check that these results
agree with the results in [16] and [13].
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EXAMPLE 2. A group of order 32 acting on a four-dimensional vector space cf.
[10],[15]

• G =
〈

g1 =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ , g2 =

⎛⎜⎜⎝
0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

⎞⎟⎟⎠ , g3 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ ,

g4 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠
〉

, [G, G] = 〈−Id〉 , Ab(G) ∼= (�/2�)×4

� Representatives of junior elements: g1, g2, g3, g4, g5 := g1g2g3g4

We can take φ12 = −2(xw + yz), φ13 = 2i(−xw + yz), φ14 = 2i(xy + zw), φ15 =
2(−xy + zw), φ23 = 2(xz − yw), φ24 = −x2 − y2 + z2 + w2, φ25 = i(x2 + y2 + z2 +
w2), φ34 = i(−x2 + y2 − z2 + w2), φ35 = x2 − y2 − z2 + w2 and φ45 = 2(xz + yw)
as homogeneous generators of �[V ][G,G]. The information of the valuations are
summarized as follows (cf. [15, 3.13]).

k 1 2 3 4 5

νk(φ12) 1 1 0 0 0
νk(φ13) 1 0 1 0 0
νk(φ14) 1 0 0 1 0
νk(φ15) 1 0 0 0 1
νk(φ23) 0 1 1 0 0
νk(φ24) 0 1 0 1 0
νk(φ25) 0 1 0 0 1
νk(φ34) 0 0 1 1 0
νk(φ35) 0 0 1 0 1
νk(φ45) 0 0 0 1 1
� 〈gk〉 2 2 2 2 2

By applying the algorithm to S = {φ12, . . . , φ45}, one sees that each step ends at
one try and thus

{φi,jtitj}1≤i<j≤5 ∪ {t−2
i }i=1,...,5

in R are generators of the Cox ring as stated in [15]. The relations of these elements are
calculated in [15, Proposition 3.17].
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EXAMPLE 3. The complex reflection group G4 cf. [5], [24]

• G =
〈

g1 = −1
2

⎛⎜⎜⎝
(1 + i)ω (1 + i)ω 0 0

(−1 + i)ω (1 − i)ω 0 0
0 0 (1 − i)ω2 (1 − i)ω2

0 0 (−1 − i)ω2 (1 + i)ω2

⎞⎟⎟⎠ ,

g2 = −1
2

⎛⎜⎜⎝
(1 + i)ω (1 − i)ω 0 0

(−1 − i)ω (1 − i)ω 0 0
0 0 (1 − i)ω2 (1 + i)ω2

0 0 (−1 − i)ω2 (−1 + i)ω2

⎞⎟⎟⎠
〉

,

ω = exp(2π i/3),

[G, G] =
〈⎛⎜⎜⎝

i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠
〉

: the quaternion group

� Representatives of junior elements: g1, g2

The homogeneous minimal generators of the invariant ring �[x, y, z, w][G,G] are
listed as follows: φ1 = xz + yw,

φ2 = x5y − xy5,

φ3 = z5w − zw5,

φ4 = x4 + (4a − 2)x2y2 + y4,

φ5 = z4 − (4a − 2)z2w2 + w4,

φ6 = xw3 + (−2a + 1)yzw2 + (2a − 1)xz2w − yz3,

φ7 = x3w − (2a − 1)xy2w + (2a − 1)x2yz − y3z,
φ8 = x2yw3 − x3zw2 − y3z2w + xy2z3,

φ9 = 3ax2w2 − (a − 2)x2z2 + (4a − 8)xyzw − (a − 2)y2w2 + 3ay2z2,

φ10 = z4 + (4a − 2)z2w2 + w4,

φ11 = x3w + (2a − 1)xy2w − (2a − 1)x2yz − y3z,
φ12 = 5x4yw − x5z − y5w + 5xy4z,
φ13 = xyz4 + 2x2zw3 − 2y2z3w − xyw4,

φ14 = 3(a − 1)x2w2 − (a + 1)y2w2 + 4(a + 1)xyzw − (a + 1)x2z2 + 3(a − 1)y2z2,

φ15 = x4 − (4a − 2)x2y2 + y4,

φ16 = xw3 + (2a − 1)yzw2 − (2a − 1)xz2w − yz3,

φ17 = xz5 − 5xzw4 − 5yz4w + yw5,

φ18 = 2x3yw2 − x4zw + y4zw − 2xy3z2,
where a denotes exp(2π i/6).

The information of the valuations are summarized as follows.

ν1(φi) =

⎧⎪⎨⎪⎩
0 if 1 ≤ i ≤ 8

2 if 9 ≤ i ≤ 13

1 if 14 ≤ i ≤ 18
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ν2(φi) =

⎧⎪⎨⎪⎩
0 if 1 ≤ i ≤ 8

1 if 9 ≤ i ≤ 13

2 if 14 ≤ i ≤ 18

� 〈g1〉 = � 〈g2〉 = 3.

We apply the algorithm to S = {φ1, . . . , φ18}. In this case, min1(J) is strictly bigger
than min1(I) and one can check that there is h = X3

1 + (−6a + 3)X8 ∈ �[X1, . . . , X18]
such that

min1(J) = min1(I) + (h).

Thus, we should add

φ19 := α(h) =x3z3 + (−6a + 3)xy2z3 + 3x2yz2w + (6a − 3)y3z2w + (6a − 3)x3zw2

+ 3xy2zw2 + (−6a + 3)x2yw3 + y3w3,

to S and try Step (0, 1) again.
One can check that each step ends at one try for S = {φ1, . . . , φ19} and thus

φ1, . . . , φ8, φ9t2
1t2, . . . , φ13t2

1t2, φ14t1t2
2, . . . , φ18t1t2

2, φ19t3
1t3

2, t−3
1 , t−3

2

are the generators of the Cox ring.
REMARK. This result shows that the conjecture in [14, Section 6] is negative and

one more generator is necessary. Note that we have a relation (6a − 3)φ8 = φ3
1 − φ19 ·

t−3
1 · t−3

2 in R. This shows that, in general, the resulting generating system of the Cox
ring by the algorithm is not minimal even if we take a minimal generating system
of �[V ][G,G] as the original S and choose minimal generators in each step of the
algorithm.

5. GIT chambers and ample cones. In this section, we summarize the basic
notions and results about GIT for the case of the Cox ring of a minimal model X
of the quotient singularity V/G.

As stated in Section 2, the algebraic group T = Hom(Cl(X), �∗) (which is a torus
when Cl(X) is free) acts on the spectrum X = Spec(Cox(X)), and every divisor class
D ∈ Cl(X) can be considered as a character of T . Now, we introduce the notion of
(semi)stability. Consider the following vector space

R(D) := {f ∈ H0(X,OX) | t · f = D(t)f for all t ∈ T}(= H0(X,OX (D))).

DEFINITION 5.1. We say that a point x ∈ X is D-semistable if there exist i ∈ �>0

and f ∈ R(iD), such that f (x) �= 0. If moreover x has a finite stabilizer and the T-orbit
of x is closed in {x ∈ X|f (x) �= 0}, we say that x is D-stable. XD−ss (resp. XD−s) denotes
the subset of D-semistable (resp. D-stable) points in X. We call a divisor class D in
Cl(X) generic if XD−ss = XD−s.
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We define the GIT quotient of X by T with respect to D as

X//DT := Proj
∞⊕

i=0

R(iD).

Note that there is a natural map from X//DT to X//0T = V/G for each D. GIT
quotients of X by T have the following property.

PROPOSITION 5.2 [26, Theorem 1.10]. The morphism q : XD−ss → X//DT induced
by the inclusion R(iD) ↪→ H0(OX) is a categorical quotient. Moreover, there is an open
subset U of X//DT such that q−1(U) = XD−s and q|XD−s : XD−s → U is a geometric
quotient (i.e. each fibre is a single T-orbit).

If two divisor classes in Cl(X) give the same semistable loci in X and hence give the
canonically isomorphic GIT quotients, we call them GIT equivalent. It is known that
GIT equivalence classes give a chamber structure on the finite dimensional real vector
space Cl(X)� := Cl(X) ⊗ � (cf. [29, 2.3]) i.e.

(i) there are only finitely many GIT equivalence classes

(ii) for every GIT equivalence class C, the closure C is a rational polyhedral cone in
Cl(X)� and C is a relative interior of C.

We call C a GIT chamber if C is not contained in any hyperplane in Cl(X)�. The
fan on Cl(X)� given by the closures of all GIT chambers is called the GIT fan. It is
known that D ∈ Cl(X)� is generic if and only if D is in a GIT chamber.

GIT chambers in Cl(X)� are closely related with the birational geometry of X . To
see this, we introduce (π -)movable line bundles for the morphism π : X → V/G.

DEFINITION 5.3. A line bundle L on X is (π -)movable if codim Supp(Coker α) ≥ 2
where α : π∗π∗L → L is the natural map of sheaves on X . The (π -)movable cone
Mov(π ) in Pic(X)� := Pic(X) ⊗� � is the cone generated by the classes of π -movable
line bundles.

Let π ′ : X ′ → V/G be another minimal model. Then the birational map π ′ ◦ π−1 :
X ��� X ′ is an isomorphism in codimension 1 over V/G (see e.g. [33, Lemma 3.3]).
Therefore there is a natural isomorphism Pic(X ′)� → Pic(X)�, and we call the image
of Amp(X ′) by this map the ample cone of π ′. The fact that the Cox ring of X is
finitely generated implies that X is a (relative) Mori dream space introduced by Hu and
Keel [19, 1.10, 2.9]. Although Mori dream spaces were originally defined for projective
varieties in [19], the definition can naturally extend to varieties which are projective
over affine varieties (see e.g. [3, 2.5]). Since X is a Mori dream space, X has finitely
many ample cones and they satisfy the following properties.

(1) Amp(X ′) and Amp(X ′′) are disjoint for different minimal models X ′ and X ′′, and
their closures are rational polyhedral cones.

(2) The movable cone is also a rational polyhedral cone and is covered with the closures
of all ample cones

Mov(π ) =
⋃
X ′

Amp(X ′),

where X ′ runs through all minimal models.
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Note that we can regard the movable cone and the ample cones as the subset of
Cl(X)� since minimal models are �-factorial. In [19, Theorem 2.3], it is proved that each
ample cone Amp(X ′) coincides with some GIT chamber and that the corresponding
GIT quotient is X ′. Therefore, every minimal model is realized as the GIT quotient
X//DT for some divisor D on X .

To describe the on structure of the GIT fan on Cl(X)�, we introduce results in
[7] and [8]. Let ψ1, . . . , ψk be homogeneous generators of the Cox ring. Consider the
�-linear map Q : �k → Cl(X)� defined by ei �→ deg(ψi) where ei is the ith canonical
vector. For a face γ of the positive orthant �k

≥0, let X(γ ) ⊂ X be the open subset
{x ∈ X | ψi(x) �= 0 for any i such that ei ∈ γ }. Let � be the set of faces γ of �k

≥0 such
that there is a point x ∈ X satisfying ei ∈ γ ⇐⇒ ψi(x) �= 0. Berchtold and Hausen
proved the following.

THEOREM 5.4 ([7, Lemma 2.7 and Proposition 2.9] and [8, Proposition 7.2]). For
D ∈ Cl(X)�, the GIT equivalence class containing D is described as⋂

D∈γ∈�

Q(γ ) ⊂ Cl(X)�

and the D-semistable locus XD−ss is described as⋃
D∈γ∈�

X(γ ) ⊂ X.

Moreover, the movable cone of X is described as⋂
γ⊂�k

≥0:facet

Q(γ ) ⊂ Cl(X)�.

From this theorem, we can determine the location of the movable cone in the case
of minimal models of quotient singularities. Let φ1, . . . , φk ∈ �[V ][G,G] be elements
which are homogeneous with respect to Ab(G)-action such that {φj ⊗ tD̄φj }j=1,...,k ∪
{tĒ1, . . . , tĒm} ⊂ �[V ][G,G] ⊗� �[Cl(X)free] is a generating system of the Cox ring of X
(cf. Proposition 4.4). Taking the forms of the generators into account, one sees that
the movable cone is generated by {D̄φj }j=1,...,k ⊂ Cl(X)� by Theorem 5.4.

Now, we apply the above results to a minimal model X of V/G, where G is the
binary tetrahedral group treated in Section 4, Example 3. According to the results in
the previous section, the degrees of the generators of the Cox ring of X are (0, 0), (2, 1),
(1, 2), (3, 3), (−3, 0) and (0,−3). Thus, Figure 1 gives a refinement of the GIT fan on
Cl(X)�

∼= �2.
One can check that this fan itself is the GIT fan by Theorem 5.4. One also knows

that the cone generated by (2,1) and (1,2) is the movable cone.
We can also investigate the smoothness of X . It was already proven by Bellamy

[5] that V/G admits a symplectic resolution. We now try to prove the same thing
using the Cox ring. To do this, let us consider two �∗-actions on V∗ defined by
(x, y, z, w) �→ (tx, ty, tz, tw) and (x, y, z, w) �→ (x, y, tz, tw) for t ∈ �∗. Since these
actions are compatible with the G-action on V , they induce the actions of �∗ on
V/G. Kaledin showed that these actions on V/G lift to X and the common fixed point
sets consists of finitely many points [22, Proposition 6.3]. In our case, these actions
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•
•

•

(2,1)

(1,2)
(3,3)

•

•(0,−3)

(−3, 0) •
(0, 0)

Figure 1. Fan structure on Cl(X)�.

also lift to X := Spec Cox(X), and the fixed point set on the semistable locus of X with
respect to the movable chambers is a single T(= (�∗)2)-orbit

F = {ψ1 = · · · = ψ14 = ψ16 = · · · = ψ19 = ψ21 = 0, ψ15 �= 0, ψ20 �= 0} ⊂ X,

where ψi is the ith generator of the Cox ring in the previous section regarded as the
coordinate of X. If the semistable locus of X has a singular point p, we see that the limit
q of p obtained by t → 0 with respect to the first �∗-action is also singular in X and
contained in the central fibre π−1(0). Moreover, since the second �∗-action preserves
π−1(0), we also see that the limit of q obtained by t → 0 with respect to the second
�∗-action is singular in X and contained in F . Therefore, to prove the smoothness of
X , it suffices to show that X has no singular points contained in F .

As we already know the explicit generators of the Cox ring, we can obtain their
relations by a computer calculation, see Appendix 7.2. Then, the Jacobian criterion
shows that X is nonsingular at any point in F . One can check that each point of the
semistable locus has a nontrivial stabilizer subgroup T ′ ⊂ T of order 3 and that the
quotient torus T/T ′ acts freely on it. Therefore, by Luna’s étale slice theorem, one can
conclude that X is also smooth.

6. (Non)smoothness of the minimal models of some symplectically imprimitive
quotient singularities. In this section, we investigate the smoothness of the minimal
models for several cases. Now, we are particularly interested in symplectic cases. By
Verbitsky’s result, we only have to check the groups that are generated by symplectic
reflections. Such groups are classified by Cohen [12]. In his original paper, he considered
quaternion reflection groups rather than symplectic reflection groups, but one sees that
these two kinds of groups can be identified.

To explain the classification, we introduce some terminology. Let V be a finite
dimensional symplectic �-vector space, and let ω be its symplectic form. Let Sp(V, ω)
(or simply Sp(V )) be the group of linear automorphisms of V that preserve ω and
let G be a finite subgroup of Sp(V ). We say that the subgroup (or the representation)
G ⊂ Sp(V ) is irreducible if there are no nontrivial decomposition of V into G-invariant
symplectic vector subspaces. Note that, for every representation G ⊂ Sp(V ) which is
generated by symplectic reflections, the quotient singularity V/G is the product of
quotient singularities for irreducible representations (see [11, Section 1]). Thus, we will
only consider irreducible ones from now on.
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An irreducible G is called improper if there is a G-invariant Lagrangian subspace
L of V with respect to ω and otherwise we call G proper. If G is improper with
L ⊂ V , the symplectic reflection group G can be regarded as a complex reflection group
via the natural inclusion GL(L) ⊂ Sp(V ). Complex reflection groups are classified by
Shepherd-Todd [28] into three infinite families and 34 exceptional groups G4, . . . , G37.

Proper groups are also divided into two classes. We say that G is symplectically
imprimitive if there is a nontrivial decomposition

V = V1 ⊕ · · · ⊕ Vk

into symplectic subspaces such that for any g ∈ G and i ∈ {1, . . . , k} there is j such that
g(Vi) ⊂ Vj. Otherwise G is called symplectically primitive.

Bellamy and Schedler studied when quotient singularities by symplectically
imprimitive groups have projective symplectic resolutions [11]. They showed there
that if dim V > 4, then V/G has a symplectic resolution if and only if G is the wreath
product of a finite subgroup of SL(2, �) and a symmetric group. Four dimensional
(irreducible) proper symplectically imprimitive representations are classified up to
conjugacy by Cohen and listed in table I in [12]. However, one should note that Cohen’s
list contains mistakes. The list includes some improper groups and mutually conjugate
groups as we will see later. We call the groups in the Cohen’s list type (A), (B),. . . ,
(V) as in [11]. Bellamy and Schedler also determined which V/G has a symplectic
resolution except 6 cases: type (G), (K), (P), (Q), (U) and (V). The aim of this section
is to complete their work by studying these remaining cases.

Let V = �4 and ω = dx ∧ dy + dz ∧ dw, where x, y, z and w is the standard
coordinate on �4. Then any of the six groups is of the following form

G(K, α) =
{(

x 0
0 α(x)

)(
0 1
1 0

)i}
x∈K, i=1,2

,

where K is a finite subgroup of SL(2, �) and α ∈ Aut(K) is an involution.
The six cases are listed as follows.

type (G)l,r (l, r ∈ � such that r ≤ l, r is odd and l = gcd(l, r+1
2 )gcd(l, r−1

2 )):

K =
〈
g1 =

(
ζ 0
0 ζ−1

)
, g2 =

(
0 i
i 0

)〉
(ζ = exp(2π i/2l)) is a binary dihedral group

and α is defined by α(g1) = gr
1, α(g2) = −g2.

type (K): K =
〈
g1 =

(
i 0
0 −i

)
, g2 = 1√

2

(
ζ 5 ζ 5

ζ 7 ζ 3

)〉
( ζ = exp(2π i/8)) is a binary

tetrahedral group and α is defined by α(g1) =
(

0 −1
1 0

)
and α(g2) = 1√

2

(
ζ 3 ζ

ζ 3 ζ 5

)
.

type (P): K =
〈
g1 =

(
ζ 0
0 ζ−1

)
, g2 = 1√

2

(
ζ 5 ζ 5

ζ 7 ζ 3

)〉
(ζ = exp(2π i/8)) is a binary

octahedral group and α is defined by α(g1) = g−1
1 and α(g2) = 1√

2

(
ζ 3 ζ 7

ζ 5 ζ 5

)
.

type (Q): K =
〈
g1 =

(
ζ 0
0 ζ−1

)
, g2 = 1√

2

(
ζ 5 ζ 5

ζ 7 ζ 3

)〉
(ζ = exp(2π i/8)) is a binary

octahedral group and α is defined by α(g1) = −g1 and α(g2) = g2.
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type (U): K =
〈
g1 = 1

2

(
φ + iφ−1 1

−1 φ − iφ−1

)
, g2 = 1√

2

(
ζ 5 ζ 5

ζ 7 ζ 3

)〉
(φ = 1+√

5
2 ,

ζ = exp(2π i/8)) is a binary icosahedral group and α is defined by α(g1) = g−1
1 and

α(g2) = 1√
2

(
ζ 3 ζ 7

ζ 5 ζ 5

)
.

type (V): K =
〈
g1 = 1

2

(
φ + iφ−1 1

−1 φ − iφ−1

)
, g2 =

(
i 0
0 −i

)〉
(φ = 1+√

5
2 ) is a binary

icosahedral group and α is defined by

α(g1) = g3
1g2g1 and α(g2) =

(
0 i
i 0

)
.

Our main result in this section is the following.

THEOREM 6.1. Let G be one of the six types above. Then, the quotient singularity
V/G has a projective symplectic resolution if and only if G is of type (G)1,1.

Proof. We prove the claim by case-by-case analysis. First, consider type (P) and
(U). These groups are improper groups (with respect to ω). Indeed, one can easily
check that the Lagrangian subspace L = {x − w = y − z = 0} of V is preserved by
the actions of the two groups. The corresponding complex reflection groups to type
(P) and (U) are G13 and G22 in the Shepherd-Todd classification [28], respectively. By
Bellamy’s result [5], we know that V/G for each of G13 and G22 dose not have projective
symplectic resolutions.

Next, we consider type (K) and (V). To cope with these groups, we consider the
Cox rings of minimal models. Since direct computer calculations of the Cox rings could
not be done in a reasonable amount of time, we adopt another approach.

Let G be the group of type (K) and G′ the group of type (J). Then G′ is generated

by G and g2 =
(

I2 0
0 −I2

)
, and G is a normal subgroup of G′ of index 2. Let g1 be

a representative of the unique junior conjugacy class in G. The commutator groups
[G, G] and [G′, G′] are the same, and we let H denote this subgroup. By the results of
Section 4, the Cox ring of a minimal model X for type (K) and that of a minimal model
X ′ for type (J) are realized as subrings of R1 := �[V ]H [t±1

1 ] and R2 := �[V ]H [t±1
1 , t±1

2 ]
respectively. Let

ψ1 = φ1tν1(φ1)
1 tν2(φ1)

2 , . . . , ψk = φktν1(φk)
1 tν2(φk)

2 , T1 = t−2
1 , T2 = t−2

2 ∈ R2

be the generators of Cox(X ′) (see Proposition 4.4) that are homogeneous with respect
to G′/H(∼= �/4�)-action, where φ1 . . . , φk ∈ �[V ]H . By Proposition 4.4, we see that
ψ1|t2=1, . . . , ψk|t2=1, T1 ∈ R1 are generators of Cox(X). Since ψi’s are homogeneous
with respect to 〈g2〉-action, the G′/G-action on V/G lifts to Spec Cox(X). This action
descends to one on the GIT quotient X since the semistable locus is defined by the
homogeneous elements by Theorem 5.4. Note that the fixed point set of this action on
X is the common zero locus of ψi|t2=1’s such that ν2(φi) is odd.
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C1

D

C2

· · · ·

••

•E2

E1 •
O

Figure 2. The GIT fan for type (K).

By Theorem 5.4, the GIT chambers on Cl(X ′)�
∼= �2 are described as in Figure 2.

The divisor D = − 1
2 E1 in the figure is obtained, for example, as the degree of

the element in the Cox ring associated to the semi-invariant x5y − xy5 − z5w + zw5 ∈
�[V ]H . The half-line �≥0D lies on the boundary of the movable cone. Note that the
GIT quotient of the spectrum X′ := Spec Cox(X ′) with respect to D ∈ Cl(X ′)� is the
quotient of X by the 〈g2〉 (∼= �/2�)-action. The GIT quotient of X′ with respect to the
open chamber C2 in Figure 2 is the same as X′//DT . This is shown as follows. Since
the movable part of any divisor D′ in C2 coincides with D up to positive multiple, D
and D′ induce isomorphic rational contractions from X ′ (see [19, Lemma 1.6]). These
contractions are the same as the ones induced by GIT (see the last part of [19, Theorem
2.3]).

We may assume that X ′ is the minimal model which corresponds to the open
chamber C1 in Figure 2. The semistable loci on X′ with respect to C1, C2 and D have
the following inclusions:

X′C1−ss ⊂ X′D−ss ⊃ X′C2−ss.

By the definition of a stable point, we also see that X′D−s = X′C1−s ∩ X′C2−s. Recall
that the morphism π : X′//C1 T → X′//DT = X/ 〈g2〉 and the isomorphism X′//C2 T →
X′//DT of GIT quotients are induced from the inclusions of the semistable loci on
X′. Therefore, we see that π is an isomorphism on the image of X′D−s in X′//C1 T . One
can directly check by Theorem 5.4 that X′C1−s \ X′D−s = X′C1−s ∩ {T2 = 0} and X′C2−s \
X′D−s = X′C2−s ∩ {ψi = 0 | ν2(φi) > 0}. Therefore, π contracts the unique irreducible
exceptional divisor E2 defined by {T2 = 0} onto the set F ⊂ X/ 〈g2〉, which is defined
by ψi’s such that ν2(φi) > 0.

Now, we assume that X is smooth. Since the 〈g2〉-action is symplectic, the
singularities of X/ 〈g2〉 is analytically locally isomorphic to �2 × (�2/{±1}) or �4/{±1}.
Since the isolated singularity �4/{±1} is already terminal, the singularity of X/ 〈g2〉
along F is isomorphic to �2 × (�2/{±1}). (Note that X/ 〈g2〉 may have singularities of
type �4/{±1} outside F .) Thus, the blowing-up X ′ of X/ 〈g2〉 along F must be smooth
in a neighbourhood of E2. Therefore, in order to prove that X is singular, it suffices to
show that X ′ has singularities in E2.

In [11], the authors consider the minimal resolution Y of �2/{±1} and show
that some minimal model X ′′ → V/G′ factors through the quotient (Y × Y )/H ′ for
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H ′ = G′/
〈
g2,

(−I2 0
0 I2

)〉
. Note that the exceptional divisor of (Y × Y )/H ′ → V/G′

is associated to the symplectic reflection g2. One can directly check that (Y × Y )/H ′

has a singularity that is isolated (and hence terminal) using the argument in [11, 5.3].
Thus, X ′′ has a singular point in the exceptional divisor associated to g2. Since X ′

and X ′′ are connected by a sequence of Mukai flops [32, Theorem 1.2], X ′ also has a
singular point in E2. Therefore, X is singular. Note that the minimal model X is unique
since Cl(X)� is 1-dimensional.

For type (V), we can use the exactly same argument as one for type (K) by replacing
type (J) by type (T).

For type (Q), the group G is Sp(V, ω)-conjugate to another group in Cohen’s list.
Indeed, one can easily check that the matrix

g = i
2

⎛⎜⎜⎝
ζ −ζ 3 −ζ ζ 3

ζ ζ 3 −ζ −ζ 3

1 −1 1 −1
−1 −1 −1 −1

⎞⎟⎟⎠
is in Sp(V, ω) and that the group of type (J) is the g-conjugate of G where ζ =
exp(2π i/8). Therefore, V/G does not admit projective symplectic resolutions by [11].

Finally, we treat type (G)l,r. When r is 1, one can check that G preserves the
Lagrangian subspace L = {x + iw = y − iz = 0} of V and thus G is improper (with
respect to ω). The corresponding complex reflection group is G(2l, l, 2) in the Shepherd-
Todd classification [28]. By the result of Bellamy [5], we know that V/G with G =
G(2l, l, 2) admits a projective symplectic resolution if and only if l = 1.

When r �= 1, we use the similar method as type (K) and (V). The group G′ =〈
G, g =

(
I2 0
0 −I2

)〉
coincides with the group of type (B) (resp. type (F)) in Cohen’s

list if l is even (resp. odd). By the same argument above using the description of Cox
rings, one sees that g-action on V/G lifts to its minimal model X and that a minimal
model X ′ of V/G′ is obtained as the blowing-up of X/ 〈g〉. Similarly to the cases type
(K) and (V), it suffices to show that X ′ has a singular point in the exceptional divisor
E that corresponds to the symplectic reflection g.

Consider the same Y as above and H ′ = G′/
〈
g,

(−I2 0
0 I2

)〉
. In this case, Y × Y

has no isolated fixed points by the H ′-action but one can find a point x ∈ Y × Y in the
exceptional divisor such that the stabilizer subgroup StabH ′(x) ⊂ H ′ is not generated
by symplectic reflections by using the argument in [11, 5.3]. Since elements in StabH ′(x)

preserves the exceptional divisor of Y × Y → V/

〈
g,

(−I2 0
0 I2

)〉
, the minimal model

X ′ has a singular point in E. �

7. Appendix.

7.1. How to calculate mini(I), IA and mini(J). In this subsection, we give a
concrete method to perform the algorithm. We will usually need computer calculations
in practice.
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Let G ⊂ SL(V ) be a finite subgroup, and let g1, . . . , gm be a complete system of
representatives of the conjugacy classes of the junior elements in G. Assume that we are
given the generators φ1, . . . , φk of the invariant ring �[V ][G,G] that are homogeneous
with respect to Ab(G)-action.

Let I be the kernel of α : �[X1, . . . , Xk] → �[V ][G,G] (see Section 4). Recall that
for each i ∈ {1, . . . , m}, the variable Xj has degree νi(φj). Let �[X1, . . . , Xk, t] be the
new graded ring with one more variable t whose degree is −1. The ideal mini(I) (i =
1, . . . , m) is calculated by taking the following steps:

(1) Consider the ideal generated by the image of I by the inclusion �[X1, . . . , Xk] ↪→
�[X1, . . . , Xk, t], and let this ideal also be denoted by I by abuse of notation.

(2) Homogenize the generators of I with respect to the variable t, and let Ii be the ideal
generated by these elements.

(3) Compute the saturation Ĩi :=⋃∞
l=0 Ii : (tl) of Ii with respect to t.

(4) Evaluate t = 0 in Ĩi.

Then, the resulting ideal (regarded as the ideal of �[X1, . . . , Xk]) is mini(I). Note that
just homogenizing the generators is not enough and the saturation is necessary in
general.

In order to obtain IA ⊂ RA for a subset A ⊂ {1, . . . , m}, one should consider
RA = �[X1, . . . , Xk, {ti}i∈A] and perform the steps from 1. to 3. for each ti (i ∈ A).

Next, let us consider mini(J) (i = 1, . . . , m). Let g ∈ G and let r be the order of g
in Ab(G). As each φj is homogeneous with respect to Ab(G)-action, there is an integer
0 ≤ aj < r such that g acts on φj by multiplication of exp(2π iaj/r). Let �[X1, . . . , Xk, s]
be the graded polynomial ring where deg(Xj) = ai and deg(s) = 1. Let J be the kernel
of βi (see Section 4). We can calculate the ideal Jg generated by homogeneous elements
of J with respect to g by taking the following steps:

(1) Consider the ideal generated by the image of J by the inclusion �[X1, . . . , Xk] ↪→
�[X1, . . . , Xk, s], and let this ideal also be denoted by J by abuse of notation.

(2) Homogenize the generators of J with respect to the variable s, and let Ji be the
ideal generated by these elements.

(3) Compute the saturation J̃i :=⋃∞
l=0 Ji : (sl) of Ji with respect to s.

Then, the preimage of J̃i + (sr − 1) by the inclusion �[X1, . . . , Xk] ↪→
�[X1, . . . , Xk, s] is Jg.

If we apply the above procedure to Jg and another g′ ∈ Ab(G) instead of J and g,
respectively, we obtain the ideal generated by homogeneous elements of J with respect
to both g and g′. Thus, by repeating the same procedures over g’s which generate Ab(G),
we finally obtain mini(J).

7.2. How to calculate the relations of generators of a Cox ring. In this subsection,
we give a relatively easy way of calculation of the relations of the generators of the Cox
ring.

By the algorithm, we know that the generators of the Cox ring of the minimal
model X of V/G is of the following form:

ψ1 := φ1

m∏
i=1

tνi(φ1)
1 , . . . , ψk := φ1

m∏
i=1

tνi(φk)
k , T1 := t−r1

1 , . . . , Tm := t−rm
m
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where φi’s are the homogeneous generators of �[V ][G,G], g1, . . . , gm are the
representatives of the junior elements in G and ri := � 〈gi〉. Assume that we are
already given the ideal I ⊂ �[X1, . . . , Xk] of the relations of φi’s. Then, the ideal
Ĩ ⊂ �[X1, . . . , Xk, Y1, . . . , Ym] of the relations of ψi’s and Ti’s are calculated as follows:

(1) Compute I{1,...,m} ⊂ R{1,...,m} = �[X1, . . . , Xk, t1, . . . , tm] (see 7.1).
(2) Replace every tri

i by Yi in the Ab(G)∨-homogeneous generators of I{1,...,m} for each
i. (This is possible since homogeneity implies that ti’s appear only with powers of
multiples of ri.)

The resulting ideal is Ĩ . Indeed, the resulting ideal is clearly contained in Ĩ , and
conversely any Cl(X)free-homogeneous element f in Ĩ is obtained (up to multiplication
by Yi’s) by applying the homogenization to f |Y=1 ∈ I .
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