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ON THE DIMENSION OF CERTAIN GRADED LIE ALGEBRAS
ARISING IN GEOMETRIC INTEGRATION OF DIFFERENTIAL
EQUATIONS

ARIEH ISERLES AND ANTONELLA ZANNA

Abstract

Many discretization methods for differential equations that evolve
in Lie groups and homogeneous spaces advance the solution in the
underlying Lie algebra. The main expense of computation is the
calculation of commutators, a task that can be made significantly
cheaper by the introduction of appropriate bases of function values
and by the exploitation of redundancies inherent in a Lie-algebraic
structure by means of graded spaces. In many Lie groups of practical
interest a convenient alternative to the exponential map is a Cayley
transformation, and the subject of this paper is the investigation of
graded algebras that occur in this context. To this end we introduce
a new concept, hierarchical algebraa Lie algebra equipped with

a countable number a@t-nary multilinear operations which display
alternating symmetry and a ‘hierarchy condition’. We present explicit
formulae for the dimension of graded subspaces of free hierarchical
algebras and an algorithm for the construction of their basis. The
paper is concluded by reviewing a number of applications of our
results to numerical methods in a Lie-algebraic setting.

1. Graded algebras and Lie-group methods
1.1. Geometric integration and general Lie-group solvers

An increasing amount of attention has been paid in recent years to the discretization of ¢
ferential equations that evolve on smooth manifolds. The main reason is that the invarial
and conservation laws of a differential system can be phrased by restricting the config
ration space to a manifold. Discretization methods that respect the manifold structure ¢
an important example ajeometric integratorscomputational methods that preserve the
underlying geometry and qualitative attributes of the differential systdmPerhaps the
most ubiquitous (and arguably most important) type of manifold that occurs in practical a
plications is a.ie group.Thus, numerous differential equations of practical interest evolve
in Lie groups, and the conservation of this feature under discretization is often valuable a
sometimes crucial.

¢ Equations of classical mechanics, robotics and control theory often evolve on tf
special orthogonal group SQR). This is also the case with several processes of
interest in numerical algebra and computational dynamics.

* Many equations in special relativity evolve in the Lorenz group $@).
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Graded Lie algebras

¢ Much of quantum theory can be formulated as evolution in the unitary greug)J

¢ Conservation of volume, ubiquitous in equations of incompressible flow, corresponc
to evolution in the special linear group SR).

Detailed references can be found it].[The central role of Lie groups in geometric in-
tegration is underscored by the fact that, as long as we can discretize a flow evolving
a Lie group (G, say), we can also discretize differential systems evolving in an arbitrar
homogeneous space which is acted upo@lj¥8]. Thus, for example, a numerical scheme
that is guaranteed to respect af(R) structure can be easily adapted to evolve on a sphere
(say, a torus), an isospectral manifold, or a Stiefel or Grassmann manifold.

Below, we survey briefly a number of state-of-the-art Lie-group integrators. A majo
computational bottleneck of such algorithms is that they require substantial linear-algeb
computations. This important issue has been recently addresséd]jremploying tech-
niques of graded Lie algebras, and this has led to very substantial savings. The approac
[17], however, cannot be applied to the recently introduced Lie-group integrators based
the Cayley transform [67,11,13]. The purpose of this paper is to establish a mathematica
framework which uses a different type of graded algebras to extend the benefif§ t [
Lie-group integrators based on the Cayley transform. As in the caskrpfthe savings
implicit in our approach become increasingly apparent for high-order methods. Thus,
fourth-order Cayley expansion from]] requires four matrix products per step in either
a naive or a graded approach. In the case of a sixth-order method, the number of ma
products drops from 23 to 17 with the use of graded algebras, and the savings beco
considerably more pronounced for higher orders.

Although exceptions exist [#, 15,20], most Lie-group integrators follow a set pattern.
A flow in a finite-dimensional Lie grouf can be always written in the form

Y =A@t Y)Y, t>0, Y(to) = Yo € G, Q)

whereA is an adequately smooth map frém, co) x G to g, the Lie algebra corresponding
to G. Representing’(r) = exg 2 (r)]Yo, we can replace equation (1) with an equation
evolving in the Lie algebrayamely the so-called ‘dexpinv equation’

o0
B
Q’:dexpglA(t,eQYo)=Zk—"‘ad’§2A(r,e9Y0), t>to, Qo) =0, (2
k=0

where{By }x >0 are Bernoulli numbers, while agdis the adjoint operator ig,

m times
ady =[X,[X,....[X,Y]-- 1], m = 0.

Instead of solvingX) directly, we apply a numerical scheme &) @nd translate the out-
come toG with the exponential map. The reasoning underlying this approach is that, unlik
nontrivial Lie groups, Lie algebras aliaear spaces. Discretization methods that restrict
themselves, as most numerical algorithms do, to linear operations and commutation, -
guaranteed (within machine accuracy) to evolve in the Lie algebra! Although an imple
mentation of the exponential map calls for much care and algorithmic dext&fjtth[s
procedure nonetheless provides a convenient avenue toward Lie-group solvers.
Perhaps the most versatile example of a Lie-group solver that follows the above patterr
provided byRunge—Kutta—Munthe-Kaasethods [16]. The main idea is to apply &tage
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Runge—Kutta method

¢i|aii1 dai2 -+ dipy

C2|azi1 d4az2 -+ 42y

Cy | Ayl dp2 -+ Qyy
‘ b1 by - b,

(cf. [10] for Runge—Kutta formalism) to the Lie-algebraic equatigh Denoting the ap-
proximate value of the solution of) at timery by Yy and lettingh = ty+1 — ty, we thus
obtain a scheme of the form

v
D, =h Zam,lKl»
=1

Kn = dexpyt Aty + ch, €27 Yy),
v " 3)
A=h Z b K,
m=1

Yni1 =€ Yy.

Itis of the same order of precision as the original Runge—Kutta method, but it is guarante
to evolve onG.

Another important example of a Lie-group solver is Magnus expansiowhich, for
linear equationy”’ = A(r)Y, reads
t

t &1
Q) = / A@E)dg — 3 / / [A(£2), A(£1)]dE2dE
s} 9J 1o
1 t ré1 b2
41 / / / [[A(E), AE2)], A(ED)|desdidsy @
foJdto J1p

tré1Lré1
+3 / / / [A(83), [A(E2), A(E)]dEsdEdEL + - - -,
foJ10 J1g

originally introduced by Wilhelm Magnuslf]. Recently it has been cast by Iserles and
Ngrsett into a form amenable to numerical treatmé®].[ This has included recursive
generation of expansion terms, and an effective treatment of multivariate integrals ov
polytopes by numerical quadrature. A nonlinear version of the Magnus expansion, usi
collocation, is due to Zanna [21].

Yet another example of a Lie-group solver based on reducing the problemto a Lie alget
is theFer expansiorn8]

Y(I) _ eQ[O](t)eQ[l](t) L YO.
In the linear case the Lie-algebra functia@é! can be obtained recursivel§]f in addition,
this procedure can be generalized to nonlinear equations [21].
1.2. Quadratic Lie groups and the Cayley transform

Runge—Kutta—Munthe-Kaas schemes, as well as Magnus and Fer expansions, can be
plied to all finite-dimensional Lie groups, regardless of their structure. This is their strengtl
yet it also represents a potential shortcoming. Many Lie groups possess structures that
be exploited to construct more effective discretization methods. A case in point compris

https://doi.org/10.1112/51461157000000206 Published online by CaéhBridge University Press


https://doi.org/10.1112/S1461157000000206

Graded Lie algebras

quadratic Lie groupg11]: givenJ € GL,(RR), the set ofz x n real nonsingular matrices,
we let

G={YeGL,[R) : YJY T =J}. (5)

Note that SQ(R), Sp, and SQ 1(R) are all either quadratic Lie groups or connected
components thereof, while,\dC) and other complex quadratic groups can be obtained by
replacing equation (5) withY e GL,(C) : YJYH = J}. Thus, quadratic Lie groups ac-
count for four out of our five examples of matrix Lie groups that are relevant in applications
This emphasises the importance of this construct, and justifies special attention being p
to quadratic Lie-group methods.

The main structural feature of quadratic Lie groups that can be exploited in the conte
of Lie-group solvers is that we do not need to use (or approximate) the matrix exponenti
in order to magG to its Lie algebra

g={Xegl,R) : XJ+JX" =0} (6)
An alternative is to employ th€ayley transformigtting Y () = cay[Q2 (¢)]Yo, ¢ > to, where
cayX = (I — )71 + 3X). (7)

Thus, the evaluation of the exponential—a costly procedure—is no longer required, ai
can be replaced by the much cheaper matrix inversion. Moreover, in place of the dexpi
equation (2) one obtains the considerably simgtayinv equation

Q' = deay;'A(r, cayiQ1Yo) = A — 3[Q, Al - 1QAQ, =10, Qo) = 0. (8)

This has been recognized ihq] and further exploited in7, 6]. Recently, Iserles introduced
a Cayley-transform equivalent of a Magnus expansldnh.[Specifically, for linear equations
Y’ = A(1)Y, the functionQ2 is expanded in terms of integrals, commutators syrdmetric
productsPQR + RQP,

t t ré1
Q1) :/ A(§)ds — %// [A(§2), A(§1)]dg2081
1 o/ 1o

0

t ré1 &2
+1 / / f [[A(£3), A(&2)]. A(£1)]dEadéndEs ©)
toJtg J1o

tr&1 ré1
[ [ Acoaeoaeesdsads + -
1010 J1o
The Cayley expansion (9) has a number of advantages compared to the Magnus expan:
(4): the number of terms with any given number of integrals is smaller, the radius of cor
vergence is more generous and, as we have already mentioned, there is no need whatsc
to evaluate a matrix exponential. The general form of equafidings been investigated

in great detail in 11] by identifying each expansion term withbécolour rooted tree,
whereby expansion coefficients can be generated recursively and counted by combinato
arguments.

1.3. Quadrature and graded Lie algebras

Practical implementation of a Magnus or Cayley expansion requires the truncation
the infinite series and an approximation of integrals by quadrature. On the face of it, tt
latter task is likely to be prohibitively expensive, since each expansion term requires :
integration in a different multivariate polytope. Using a traditional cubature method woul
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have required a truly enormous number of function evaluati®p&prtunately, the structure

of the integrals featuring in either equatiat) pr equationg) can be exploited to very good
effect, and this leads to a remarkably efficient quadrature [12]. Assuming without loss
generality thaty = 0 and advancing the integration with time step- 0, all such integrals
are of the form

I(h) = /M L(AG), AG2), ..., A§))dé dE 1 - - - dEy,

whereL is a multilinear form, while$ c R is a polytope,
$§={ecR :0<§ <, i=12...r}

with &g = 1andg; < max{0,i —1},fori =1,2,...,r.Letcs, c2, ..., ¢, be arbitrary dis-
tinct quadrature point$n [0, 1], and letAy = A(cxh),fork = 1,2, ..., v. We approximate
Z(h) by the quadrature formula

QY =h" " > " > bl (Agy. Asy. - - - Ax,), (10)

k1=1kp=1 k=1

where the weight$, can be constructed explicitly by integrating cardinal Lagrange in-
terpolation polynomials [1112]. The crucial observation is that the order of accuracy of
equation (10) is precisely that of the univariate Gaussian quadrat{@elih(with constant
weight function) using the nodes, cz, ..., ¢,. In particular, letting the nodes equal the
zeros of thevth Legendre polynomial, shifted {0, 1], we obtain

Q) = T(h) + O (h*+1)

for all sufficiently smooth matrix functiond. Note that we use the very samdunction
values in all the many integrals occurring in the expansion!

Quadrature formulae (10) require a very small number of function evaluations to compu
a Magnus or a Cayley expansion, but this is traded off for a substantial number of matr
products: the number of combinations increases very fast as a functi@ndp, and each
such combination requires the computation of a multilinear fatay,, Ax,, ..., Ax,).
Fortunately, very significant savings in linear algebra can be obtained by exploiting thre
mechanisms. Firstly, combinations in one multilinear form might be identical (up to knowi
sign change) to different combinations of another multilinear fdr).[Secondly, expressed
in a suitable basis, many combinations can be disregarded since they are of magnit
O (h‘f“) whereg exceeds the order of the method. Thirdly, a Lie algebra possesses a wil
range of redundancies and symmetries which lead to numerous linear dependencies am
values ofL(Ag,, Ak,. - .., Ax,) for different combinationg. The last two mechanisms
have been analysed in great detail by Munthe-Kaas and Owrel¥]rirf the context of
Magnus expansions. The main purpose of the present paper is to extend their analysis to
realm of Cayley expansions and other algorithms specific to quadratic Lie groups. We nc
that, although our main purpose is to facilitate the computation of the Cayley expa®ision (
our construction lends itself to other applications, for example Runge—Kutta—Munthe-Ka:
schemes and the BCH formula in a Cayley setting.

The first crucial idea in [17] is to express the function val(és, Ao, ..., A,} using a
different basis, which renders the order of each term more transparent. Specifically, we (
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the basig By, B1, ..., B,_1}, where
v—1 1
Zﬁ(ck—%)lBZZAk, k=1,2,...,v.
1=0

The quadrature formula (10) assumes the form

v—1v-1 v—1

Ohy=h"Y "> byL(By. By .... B, (11)

11=0l,=0  1,=0
where

El l 1! / H(E/ )lj dg,dg, 1 - - - d&1.
1:t2-

Assuming thatt € C*°, itis trivial to verify thatB; = h' AV (3h); thereforeB, = 9 (h'),
forl =0,1,...,v-1.ConstructingC(By,, By,, ..., B;,) fromcommutators and symmetric
products, it follows at once that

,
h"L(Bly. By, ... B,) = O("*)  where  j1]=)"1.

We say that such a term is gfade|l| + r. Typically, c1, c2, ..., ¢, are taken as Gauss—
Legendre points, whence equatidtil) is an order2v) quadrature. In that case, wecan
throw away with impunity all terms of grade exceeding and replace equation (11) by

Oy =h" " biL(By. By,.....B,). (12)
1<2v—r

Inasmuch as this procedure gets rid of a very significant proportion of the expansic
terms, further savings take place by exploiting linear dependencies in the underlying L
algebra. In the context of ‘plain’ Lie algebras, the subjectlof]] the two dependency-
generating mechanisms are the skew-symnj@trx]+[ X, Y] = O and theJacobiidentity
[X, 1Y, Z11+[Y,[Z, X]]+ [Z,[X, Y]] = O,validforall X, Y, Z € g.

Given the generatoBo, Bj, . .., B,_1, We assign to eacB; agrade» (B;) € N. Grades
propagate naturally during the construction of afree Lie algehedXf) = w;,fori =1, 2,
X1 # X, thenw ([ X1, X2]) = w1 + wo. Let K, be the linear space of all words of length
m in a free Lie algebra, wherehy = ]_[m>lspan’Cm is agraded Lie algebraln the case
o (B;) = 1 the dimension of the linear space spannedlyis known and given by the
familiar Witt formula. Moreover, it is possible to form recursively a basis of this space
(for example, &Hall or aLyndonbasis). A major result of][7] is a generalisation of the
Witt formula and of Hall and Lyndon bases to the case when the grades are arbitrary natu
numbers. (Inthe present case we are interested ) = /+1,wherd =0,1,...,v—1,
but other choices of grades are of independent interest] ¢}.) [Further observing that
b; = 0 for terms of even grade, Munthe-Kaas and Owren were able to reduce the numk
of terms in a Magnus expansion by a remarkable factor. For example, an order-10 meth
requires just 73 terms, instead of 1256567 in a naive implementation!

The formation of a free algebrafor Lie algeb&éllows the use of both commutators and
symmetric products, while its special structure implies the existence of linear dependenc
which are absent in other Lie algebras. In Sectiome define hierarchical algebraan
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algebraic construct which encapsulates the special features of the Lie aelrad(prove
that every hierarchical algebra is an extension of a Lie algebra. This is followed in S&ction
by a determination of the dimension and construction of a basis of a linear space of
given grade within the realm of freely-generated hierarchical algebras. It is interesting
note that not just the method of analysis, but also the explicit form of our formulae, ar
very different from the Witt and Munthe-Kaas—Owren framework. Finally, in Sective
present a number of examples that implement our results, not just in the context of Cayl
expansions (9), but also for other computational constructs for quadratic Lie algebras.

2. Hierarchical algebras

LetF be a field of characteristic 0. We recall that an algebra B\isra triple(A, +, o),
whereby(A, +) is an abelian group ana”is an internal binary operation ovet which
is linear in both arguments. In particular, a Lie algepra an algebra whereby the binary
operation ‘o’ is usually represented by a bracket] and obeys:

1. skew-symmetryvX, Y € g,
[X, Y]+ [Y, X]= O; (13)
2. JacobiidentityvX, Y, Z € g,
(X, Y, Z]1+ Y. [Z, X1+ [Z,[X, Y]] = O. (14)

For the time being, lefi represent a set, not necessarily associated with a Lie algebre
Assume thatg, +) is an abelian group, and let us introduce the following family:efiary
operations,

.oy Dm:gx---xXg—g, m=12,.... (15)
—
m copies
Assume that the:-nary operation (15) obeys
1. alternating symmetry Xy, ..., X,, € g,
(X1, X2, ... Xl + D" [ X, Xpn—1, - ... X1llm = O; (16)
2. multilinearity:vX1, ..., X;—1, Xi+1, --- Xm, Y, Z, € gandVe, B € F,
[X1,....Xi—1,0Y +BZ, Xi41, .., XonIlm a7
=of[ X1, ..., X1-1, Y, Xpq1, oo, Xl + BIX1, -, Xi—1, Z, Xi41, -« o, Xinlim
forall 1 </ < m;
3. hierarchy condition: for every > 1, for every index 1< [ < m, and elements
X1,..., X1-1, Xi+1, ..., Xy € gand¥y, Yo, ..., Y, € g, then
[X1,..., X1, (Y1, Yo, .. .. Yulln, X512, - oo Xonllin
=[0X1,....X1—1, Y1, ..., Yo, Xiv1, .o, Xonllm4n—1 (18)
— (D" X1, - Xi—1, Yy o Y, Xog1, oo, X llinen—1-

We remark that the hierarchy conditiot8| links them-nary product with similar products
of higher order, thus establishing a hierarchy in the family:efiary operations.
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Definition 1. A hierarchical algebrais a family (g, +, {[[- - -1,x}5°_,), whereby(g, +) is

m=1

an abelian group and eaghinary operation obeys the alternating symmetry conditi@),(
the multilinearity (17) and the hierarchy conditidlBj.

The use of the symbal, usually reserved for Lie algebras, in a hierarchical algebra
setting is justified by the result below.

Theorem 1. If (g, +, {[[- - -1lm};_,) is @ hierarchical algebra, theqg, +, [ - -12) is a Lie
algebra.

Proof. Itis sufficient to prove that the binary product -] obeys the Jacobi identity, since
skew-symmetry is an immediate consequence of the alternating symmetry condition (1¢
Consider three arbitrary elemen{s Y, Z € g. Because of the hierarchy condition,

[X, 1Y, ZI20l2 = [[X, Y, Z]Is — [[X, Z, Y I3,

IY,[Z, XT2ll2 = Y, Z, XT3 — [[Y, X, Z]s,

[[Za [[Xv Y]]Z]]Z - [[Zv X? Y]]3 - [[Za Ya X]]S'
Furthermore, the alternating symmetry condition implies that

[X1, X2, X3ll3 = [ X3, X2, X1]l3
for everyXi, X2, X3 € g. Hence we deduce that
[X, MY, Zl20l2 + 1Y, [Z, XTl2ll2= X, Y, Z]I3— [[X, Z, YIIs+ [[Y, Z, X]Is— [IY, X, Z]I3
= []:Xv Yv Z]]3 - [[Yv Xv Z]]3 = _[[Za []:Xv Y]]Z]]Za

from which the Jacobi identity follows. O

Theorem 2. Every quadratic matrix Lie algebra is a hierarchical algebra.
Proof. Consider the operation
X1, ..., Xl = X1 X2 X — (_1)memel X1
with the usual matrix-matrix multiplication. Then, for eveny> 1,
(X1, ..., Xl + (_1)mIIva oo Xl
= X1X2--- Xy — (_1)memel - X1+ (_1)m(Xm e X1 — (_1)le T Xm)
=X1X2 X — (1" X Xpp—1--- X1+ (=1)"Xp--- X1 — X1+ Xp = O,

hence alternating symmetry. The multilinearity of the abaveary operation is immediate.
Next, let us prove the hierarchy condition. To this end, given{1, 2, ..., m} and the
elementsXy, ..., X;—1, Xi41, ... X,p @andYy, ... Y, € g, we have

[X1,....Xi—1, Y1, ..., Yullns Xix1, oo XonIlm
=X1--- XV VX X — (G X0 - XpaVy - VaXpgpa - X
—(=D"Xp - XppaV1-- YV X1 X1
G LA REED (TED ARRED CD (EERERD ¢¥
However,
X1 Xia¥1- - YaXpgn o Xow — ("X X1 Y - V1 X 1 - X
=[0X1, -, Xi—1, Y1 Yo, Xig1, -+ s Xinllm+n—1,
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and, by the same token, we observe that the two middle terms of the right-hand side of t
above equation compose into thenary product
_(_1)n[Ile e X, Yy, 1 Xl—i—l» T, X;n]]m+n—l-

Hence equation (18) follows.

It remains to prove thdf - - - 11, is an internal operation og, by induction orm: for
m = 1, we have[[X]l1 = 2X € g for any X € g. Next, let us assume that for every
k < m — 1 the assertion is true. We distinguish two cases: even and odd values of
Considering first the case whenis even, and letting be the same matrix as in equation
(5), we have

(X1, ..., Xm—1, Xl = (X1 X1 Xy — X Xp—1--- X1)J
=(=D"JX] - X] = xT o xD)
=JIXT, - X = —JOX] . X
= —J[X1,... X0,
by virtue of the alternating symmetry. Hence
MXa,...., Xm—1, Xmllm € 8.
Finally, whenm is odd,
(X1, ... Xpllnd = X1+ Xpu + X - - X1)J
=—J(X]---xT+xT.ox])
= —J[X1,.... XuD};
hence[[X1, ..., Xm—1, Xm]lm € g. A similar procedure is applied for complex groups,

whereby the transpose operator is replaced by the Hermitian operator. It follows th
[X1,..., Xn]ln € g forall values ofim. The proof is complete. O

The importance of hierarchical algebras is therefore self-evident: for quadratic matrix Li
algebras, elements of the forfiX4, ..., X,, 1, are precisely the building blocks of the
Cayley transform (9).

It is useful to introduce the following definitions.

Definition 2. If g, h are two hierarchical algebras, we say thatg — b is a hierarchical
algebra homomorphism if

(X1, ..., Xullm) = [7(X1), ..., 7(Xn)lm € b, VX1,....Xm €9,

foreverym = 1,2, ...

Similarly to the definition ofree Lie algebrag17], we can introduce the definition for
afree hierarchical algebra.

Definition 3. Let I be a finite or a countable set of indices. We say that the hierarchica
algebrag is freeover [ if
1. foreveryi e I there correspondg; € g, andX; # X; except when = j,

2. forany hierarchical algebtgfor which there exists afunction— Y; € b, there exists
a uniquer : g — b, a hierarchical algebra homomorphism, such th@;) = ¥;.
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Given a sef{X;};cs, denote byg the set obtained by the termig, and also by all the
possible combinations of those by means of eaatary operation. By constructiop,is a
hierarchical algebra, and, for any other hierarchical algblmantaining the term&;, itis
true thatg C h. Henceg, which is unique up to an isomorphism, is the smallest hierarchical
algebra containing the terns, and will be called a hierarchical algelyaneratedoy the
family {X;};<; Note that sucly is free overl.

The homomorphism is arepresentation of a free hierarchical algghiral). In concrete
terms, ifh is a quadratic Lie algebra, for a given set of indi¢egbe 7 (X;) terms might be
associated to some function evaluationgd ¢f) or to some linear combination of those. The
X, can be regarded dsttersof an alphabet, and the terfiX;,, ..., X;, T» is a word of
lengthm generated by;,, ..., X;, . In the next section we shall be interested in counting
the number of words of given length, as well counting the words of a given weight, whenev
a weight is initially associated to each of the generakfrs

3. The dimension and a basis of graded linear subspaces
3.1. Graded linear spaces

Let X = {X1, X2, ..., X5} be a set of generators of a free hierarchical alggbaad
suppose that we are given amap X — N. The natural numben(X;) is called thegrade
of X;. The definition of a grade is propagated in the free hierarchical algebra in a natur

manner: provided thab(Y;) = v;, j = 1,2,..., m, we set
m
w(l[Y1, Y2, ... Yoll) = ) vj. (19)
j=1

We assume without loss of generality thatX;) < w(X;) for k < [, and stipulate that
w(X1) = 1. The free hierarchical algebra splits into a direct sum of linear subspaces,

g=PK w),
r=1
wherew = [w(X1), w(X2), ..., w(X,)] andK}(w) is the linear subspace generated by
all the elements iy of grade equal te > 1. We pose the following two problems.
1. Whatis dimC} (w)?
2. How do we construct a basis &f (w)?

Theraison d’etrefor our interest in the dimension and in a basiggf(w) is implicit in
the discussion of Sectidn Thus, suppose that the function valugs Ao, ..., A, generate
a free hierarchical algebra, while the multilinear form in equatidi) bas been derived by
hierarchical-algebra operations. LettingA;) = 1, we deduce that

LAk, Aty -, Ar) € K (D)

forall 1 < ki1, k2, ...,k < v. This corresponds to the observation that= ©(1), for
1 <1 < v, implies that

h L(Aky, Akys -, Ar,) = O(R")

and the quadraturélQ) is composed of) (1") terms. Having evaluated a basis 6} (1),
we can construct all the terms in equati@) out of basis elements by linear combinations.
Therefore, itis the dimension of the basis, rather than the number of different combinatio
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in quadrature (10) and of differentdimensional integrals that determines the cost of the
calculation!

Considerably more important is the case when Ao, ..., A, are replaced with the
linear combinationsBy, B1, ..., B,—1. We letw(B;) = [ + 1, consistently with: B, =
Ot fori =0,1,...,v—1. Letw* =[1,2, ..., v]. Since

KY(w*) > k" L(By,, By, ..., B,) = O,

wherel|l| = > I;, we need to retain in equatiohX) only terms of grade less than or equal
to 2v. Therefore, the cost of all the quadrature formulae needed in the implementation
the Cayley expansion (9) is reflected in the dimensiok bfw*) for r < 2v.

We mention in passing that our construction is similar to the concept of graded line:
spaces in Lie-algebra theory. The dimension of a gradabspaceV,’ (1), say, of a Lie
algebra with initial grades (X;) = 1,1 = 1,2, ..., s, is given by the familiawitt formula

dimA? (1) = % > st (20)
ilr

wherep is theMdbius functionwhile a basis of\V (1) can be obtained by algorithms due
to Halland to Lyndon17,19]. The formula?0) and the Hall basis have been generalized to
arbitrary sets of weights by Munthe-Kaas and OwrEr][In particular, we note for future
reference that

: 1 = r/i
dim AN (w) = - G (Z ! ) , (21)
ilr k=1

whereiq, Ao, ..., Ay, n = Maxwy, are the zeros of
N
p(x)=7"— Zz”’w'}
i=1

3.2. A generating function

Letw; = w(X;),forl =1,2,...,s. In this subsection we explicitly construct a gener-
ating function of the sequendé;},>1, where

di =dimCY (w).

To this end, however, we first require a technical result relating to the form of the elemen
in the free hierarchical algebga

Definition 4. We say thatY € g, whereg is a free hierarchical algebra generated by
X1, Xo, ..., Xy, is primitive if there existm > 1 andi1, i2, ..., i, € {1,2,...,s} such
thatY = [[X;,. Xi,, . ... X; Iln. Moreover, we say that a badi# of I} (w) is primitive if

all its elements are primitive.

As an example of a non-primitive element, consider

[Xi, Xip, [Xig, XiyI2113.

Lemma 3. EveryY € g is a linear combination of primitive elements.
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Proof. The lemma is proved by induction on the grade. Cled[lya]]1 is a primitive
element. Suppose thus that the lemma is true for all elements of grade less than or ec
ton — 1, wheren > 2, and suppose that € £} (w) and |s non-primitive. Sincg is the
algebra generated by, .. ., X, there exist |nd|ce$1, ...ky, form < n, such that

Y = XG0 e Xig o D DG e X T i e X o T

wherel[Xikjvl, ,k X Tk, has grade; <nforall1 < j <mandvy+---+v, =n.
Note that[IX,kJ Lo lk & Tk is a primitive element for aly m. The lemma follows
by the multilinearity (17) and the hierarchy conditiar8. O

Definition 5. Given Y € g we say thatY is of lengthm if it is primitive and Y =
[Xi, ..., X, ln. If Y is non-primitive, its length equals the maximum of the lengths
of the primitive words that compose it.

As an example, the non-primitive wofi;,, X;,, [X;;. X;,1I21l3 has length four, since
it can be decomposed into

IIXilv Xlza Xl;g’ Xl4]]4 - [IXilv Xt'zv Xi4a Xig]]4

a linear combination of primitive words both having length equal to four.
It is a consequence of Lemn&athat there exists a primitive basty’ of I (w). For

everym > 1 we denote byzr[f,]n > 0 the number ofz-nary terms in3?; that is, of terms of
the form[[X;,, X;,, ..., X;, TIm. Clearly,

o
dl = Z v,[fm.
m=1
Hence, defining the generating functions
e.¢]
Om(2) = Z il m=1 W)=Y di

we obtain

W(z) = Z O (2).- (22)

Our intention is to obtain each functi@,,, form > 1, in a closed form. To this end we
commence by observing that

N
©1(2) = q(2) == ) 2", (23
i=1
The reason is tha®; contains precisely the contribution of all unary terms, and hence of
the generators themselves, and ef¢laddsz"i to the sum.
We next obtair®,, s recursively, distinguishing between even and odd indices

Case l: m = 2M.

EachtermX;,, X,. ..., Xi,,, ll2a inaprimitive basis contributes an expression of the form
ZWintWi Tt Wiay 10 @5y, We need to single out the indicas iy, . .., iop € {1,2, ..., s}

that are allowed in the basis; that is, those that do not interfere with linear independence
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Choose € {0,1,..., M — 1} and assume that
i1 =iy, i2=lom—1, ..., I =iopm41—s, D141 < i2M—s- (24)
In that case any choice ofg i;42, ..., i2p—;—1 < s leads to a linearly independent term.

Therefore the contribution t®2;, is

s s s—1 s s s

in=1  i;=lippa=lioy=irp1+Llipo=1  iay—r-1=1
s t s 2M—=2t-2 ¢ 1
i=1 i=1 k=11=k+1
s—1 s
2\t 2M—2t—-2
=[q1'q(2)] Yoy gt
k=11=k+1
Moreover,
s k=1
Z DR 3y SETE
Z Z
k=11=k+1 k=21=1
therefore
s—1 s s s k=1
3P SR 3D SRR 3 D
k=11=k+1 k=11=k+1 k=21=1
) S
1 2 l
=3 (ZZZ“”‘”’ ZZ ) g1 - g2},
k=11=1

We thus deduce that the contributions of all the terms for this valuasof

3T @12 g ()17 - ¢(z%)}
= 3{g ' [g@1P" ™ = g g1 272,
All possible candidates for elements in a primitive basis are obtained by allawiimg
assumption (24) to range acro$s 1, ..., M — 1}. Note that we can always assume that

ir+1 < i2pm—¢; Otherwise we use alternating symmethg) to obtain a linearly dependent
term. Therefore,,, can be obtained by summing uprinseries telescope and

M-1

O2m () =3 > g @I = [q*)]) T Hq(2))?M 272 25)
t=0

= Hlg@1PM — [q(1M).

Case 2: m =2M + 1.
This case is very similar, except for one important detail. We assemble all linearly inde
pendent terms ifi X;,, X;,, ..., Xi5),,,llom41. For everyt = 0,1,..., M — 1 we take,
similarly to assumption (24),

i1=loM+1, i2=lam, ..., It =i2M—r42, Q41 < 2M—r+1,
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whence the contribution t@2,.11 is

g @' TP 2+ — (g1 g (@12
the algebra is virtually identical to the previous case. However, if

i1=1i2M+1, 2=i2mM, ---5 IM =IiM+2
then the middle index,,;11 can be allowed to range across all{@f 2, ..., s}, and this
contributes
lq(z*1"q(2)
to ®2)711. Summing up irr leads at once to
O2m+1(2) = 3{lg @M + g (@g M), (26)

Note that this is consistent with equation (23), and therefore valid fdwatt 0.
We can now substitute equatior#s] and (26) in equation (22), and the outcome is the
generating function

lq (1M

WK

W@ =3 [a@1"+3q() ) lq1M =3
m=1 M=0
_1 4@ 9@ 4 4@
S fl-gq(@  l-q(z») *1l-q()
_q() — 39 — 3l
 [1-g@IL-q(?)]

S
I

1

1
2

(27)

3.3. The dimension of graded subspaces

We intend in this subsection to find explicitlf = dim /. The point of departure is
the explicit formula 27) for the generating function. To expafid(z) in a Taylor series,
we need to invert polynomials 4 ¢(z) and 1— ¢(z?). This issue is explored in the next

lemma.
Lemma 4. Given any distinctq, 62, ..., 6, € C\ {0}, itis true that
n L 0 9k+n 1 L
A1-62) = z€C, 28
Il %[Z ) @

wherew, (z) = [Ti_1(z — 6k).

Proof. The expansion48) is a straightforward consequence of the residuum theorem. Th
poles of f(z) = [[/_1(1 — 6;z)~1 being simple, it is true that

H(l o) Zl oz’

where
,1,1
fi= lim (1 02) f(2) =
=6t W, (9 )
The lemma follows by expanding each-16;z as a geometric series. O
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Lettingn = wy, = maxwy be the degree of the polynomig) we use expansior28)
with ¢, (z) = [1— ¢(z)]~L. Therefore

wn(2) ="[1—qz Hl=7" =) "™ = p(2),

k=1

the polynomialp having already been encountered in equation (21). We again denote i
zeros byrq, Ao, ..., Ay, Whereby, by equation (28),

o h S )

g0

The expansion dfl — ¢(z%)]~* can be similarly obtained, replacingvith z2.

Theorem 5. Supposethatallthe zerasg, Ao, ..., &, of p away from the origin are distinct.
The dimensions of the graded subspaces are

d;R — 12 /(A_l) 2R+1_)‘IR+1+ 1)LR+l[q(X 1/2)+q( )\_1/2)]}, (29)

n
1 3/2 -1 —1/2
d§R+1=%Zm{A?R+2+ LR M) — g (a7 (30)
=1 [

Proof. Bearing in mind that(z) = 1 — []/_;(1 — A;z), we replace function (27) with

1 1-40) _;[ 1 _n7_1(1—xlz)}
Ve = [1 ) 1—q(zz)]_ g0 1-¢ | @Y
Let
H(l —Mz) = Z ujz’. (32)
=1 j=0
Then

1_[,1 1= 12) 00 n ) Li/2]
=1L = A2 j j
4 k=0 j— j=0 \k=[(j—n+1)/2]
1 Lj/2]

3> > wand |

S E AN S

where we set;; = 0 outside the range € j <n
We next consider the sum

Li/2]
gnj® = Y  wxEtL o j>0 £eC
k=[(j—n+1)/2]

By straightforward computation

J N
gan2s(E) = Y uz gt =&Y une

k=J—N k=0
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J N-1
k1 _ 41 —k
gan2r11E) = Y g1 aE =Y ugaE Tk,
k=J-N+1 k=0
J N
k+1 J+1 —k
gony12/(E) = Y uz aE =Y une
k=J—-N k=0

J N
k41 _ £J+1 —k
gon+1,27+1(8) = E upj o1&t =€ E uzx+18 ",
k=J—N k=0

We thus deduce from equation (32) that

n

)»i n )ki
gn2s(€) = 3671 []‘[ (1 - W) +[1 (1+ W)} ’
i=1

i=1
_ 12| T 1 N . 14 N
8n.27+1(2) = 52 ljl T2) q + E1/2
and, if we letsé = »; and]_[;?:l(l —X;z2) = 1 —q(2), the explicit formulae (29) and (30)
follow from substitution in equation (31). O
3.4. Examples of graded subspaces
The simplest special case is when the grades of the generators arewequal 1,

1=1,2,...,s. Inthat case(z) = sz; thereforep(z) = z* — sz*~1, and we have = 1,
A1 = s. Substitution in formulae (29) and (30) affirms that
dip_q =3R4 5By, a5y =36*F 5%, R>1 (33)

Tablel displays the dimensions of subspaces of graded Lie and hierarchical algebras w
s = 2 ands = 3. Note that equations (20) and (33) imply that

dmAP D)~ =, dimKS (1)~ r> 1, (34)
r

sr
Ev
consistently with Tabléd.

Table 1: The dimensions of graded subspaces of Lie and hierarchical algebzag..

Subspaces r
1 2 3 4 5 6 7 8 9 10
dmANZ [2 1 2 3 6 9 18 30 56 99
dmk? (2 1 6 6 20 28 72 120 272 496
dim N,3 3 3 8 18 48 116 312 810 2184 5880
dimk® |3 3 18 36 135 351 1134 3240 9963 29403

In our second example we let= 2 and consideiw; = 1, wo = n > 2. Therefore
q(z) = z+2z", an nth-degree polynomial, and the zex@siz, . . ., A, obeyA} —A;"l =1.
It is easy to verify that;’(kl_l) = 1—n + n);, that all the zeros are simple, and that

1 4 n even, 1 PR 4 n even,
7[q(z>+q(—z>]—{o’ nodd:  2l4@—aC z)]—{zﬂn, 1 odd.
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We deduce that for even

n
1
R 2 1 2R+1 R+1 R+1-n/2
dimKs = 3 m()\z —A Tt )
1=1
n
imKGey = 330 7= 032 4l
= 1—n+nn
while oddn yields
n
1
L2 1 2R+1 _ , R+1
d|mlC2R = Ezm()\l _)\41 ),
=1 !
n
, 1 R+1—(n—1)/2
MG = 3 g B g 0

~

1
It follows from the above formula and from equation (21) that

mmN%ﬂ]yvm“ dimKC2((1, n]) ~ M >1 (35)
P AR A ' ’
whereimax = max=12., |2l

.....

Our third and last example is probably the mostimportant within the context of geometri
integration (cf. the discussion in Subsection 3u)=1,/ =1,2, ..., s. Therefore

i . 7 — 7511
qx) =) 7 =—F——
et 11—z

andn = s. Moreover, ifg(A; %) = 1 thenr, "~ = 2, — 1; therefore

po =G+ T 25— (L)
q()"l )_ 712 _)"l .
A= 1-n

Thus,q'(%; %) = 0 (hence, a multiple root) may occur only for = [(s + 1)/2]*/* > 0.
This is impossible according to Lemrédelow, and we deduce that all theare distinct.
Letting s be even, we have

B Z2 _ Zs—&-2
=G

therefore, again letting* = [1,2, ..., s],

_ ZS+1

3q@) — (=21 = Zl—

39 +4 (=21 —

s —s5/2
. 14 w71
dim K3 (w*) = 3 —————i——(ﬁR—Af+foTrE—>

s —5/2
. . 1—x A
dim /3y, (@) = 33— (Af’”l Hf”ﬁ) |
Likewise, for odds,
_ ZS+2

"= z
12 %[Q(Z)—Q(—Z)]Zl—zz,
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and we obtain

@

—(s=1)/2
. 1—X A -1
dim 3w = 1 <fo Y A,Rl—> |

= 2s — (L+s)N 11—
s —(s=3)/2
. 1—N 2R RM -1
dim IC;R—}-l(w*) = % o (kl +A .
lZlZS—(l-l-S))u[ 11—

We have already observed in equatio&4)(and 85) that the asymptotic behaviour of
the sequencedsV,’},>1 and{K’}},>1 for larger is predictable, and that the former increases
somewhat more slowly. In the present case, letlingy be the largest zero, we have

Amax — 1 AT
(1 + S))\.max — 25 max:
To estimateimax we note that lim_. . ¢(z) = z(1 — z)~L. Therefore all the\; except

for one tend to zero, while, without loss of generalitjhax = A1 — 2. More precisely,
Ayt — 218 4+ 1 = 0 implies that

. 1 .
dimN (w*) & “Anae  diMAS (w*) ~ 3 r> 1
r

1
M=2——[1+0()], s> 1
§25

Therefore, approximately,

’

2
dimAS(w*) ~ =, dmKSw*) ~22  rs>1 (36)
r

3.5. Asymptotic behaviour

We have already observed in equatiod¥)( (35) and (36) that the dimension of a graded
subspace of a Lie algebra is consistently smaller for largean its hierarchical-algebra
counterpart.

Lemma 6. Lets > 2. The equation
)
q(x)=1, where q@)=) z", (37)
=1

possesses a unique positive rgpat (0, 1). This root is simple and all other roots of equation
(37)reside in the open disg| > 1.

Proof. Sinceq(0) = 0 andg(1) = s > 2, it follows thatg(z) — 1 changes sign i0, 1).
Moreover,g’(z) > 0 for z > 0; therefore this root, which we denote hyis simple, and it
is the unique positive root of equation (37).

Letn = maxw;. If n = 1theng(z) = sz for n = 1/s, and there are no other roots. The
lemma is certainly true in this case; hence we may assume in the remainder of the pre
thatn > 2. Leté = |£]€? be another root of equatioB7), and note that we have already
proved that € (0, 2rr). Sinceg(z) is a linear combination of at least two different powers
of z, itis true that

@)1 =Y 161" < > IE" = q(g]).
=1 =1
Sincet is a root of equation (37), we deduce thaft |) > 1. Because of the monotonicity
of ¢ in [0, c0), we conclude tha| > n, and the lemma follows. O
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Theorem 7. Suppose that the roofs, A2, ..., A, are distinct. Forr > 1itis true that
dmiKi(w)  r
dimAS(w) — 2ng(n)

wheren is the positive root of equatiof37).

[1+0(D)], 38)

Proof. Since 1/ndominates the other roots, we deduce from equationgX), (29) and
(30) that, forr > 1,

Ln™" 1
dimN (w) ~ OV =
rn”
—r—1
. n 1
dim K (w) =~ = .
2'(m)  2q'(pyrtt
The estimate (38) follows easily. O

3.6. Multiple roots

Much of the analysis of Subsections 3.3 and 3.5 is based on the assumption that all
roots of the equatiog(z) = 1 are simple. It is easy to construct as example of a gradec
hierarchical algebra with multiple roots by taking= 9 and

wX) =1, wX2)=--=wXe) =2, w(X7)=w(Xg) =w(Xg) =3.
Thereforeg (z) = z 4 572 + 3z° and
q() —1=(z+1)>?@Bz-1),

with a double root at = —1. The generating functior2{), of course, remains valid and
we have

74472 - 23184 — 1572 — 655

W& = AP a-sna+ 0ra—-32)
1 1 +£1+21 +§1+3z_i5—3z
8(1“1‘2)2 321+Z 321—3Z 161—3Z2 161+Z2
1342z — 372
8 14222

— 7 +52 4984234+ 725+ 2145 + 6307 + 18588 + 55792 + - ...

This particular example is of little independent interest except that it indicates how t
generalise our analysis to the case of multiple roots. The explicit expres&@rand (30)

are no longer valid, but they can be generalised with moderate effort. Moreover, note tr
Lemma6 remains valid, and it is easy to confirm that the asymptotic estind&ei¢ true
also for multiple roots.

3.7. Abasis ofC} (w)

Our method for the formation of a basis of the graded linear subspace) is noth-
ing but an algorithmic rendering of the argument in Subsection 3.2 which has led to tt
generating function (27). In essence, we choose a basis of primitive elements, removi
all elements that are linearly dependent by virtue of the alternating symnigtyyNote
that this is, in a manner of speaking, the exact opposite of the standard procedure for:
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formation of Hall or Lyndon bases of graded subspaces in Lie algebras. The basic buildi
blocks in the latter are iterated commutators of generators, terms of the form

[Xi, [Xip, [0 [ X, ) X, 1 <111,
whereiy, io, ..., i, € {1,2,...,s} and linear dependencies occur by virtue of skew-
symmetry of the commutator and of the Jacobi identity [17].
Henceforth, we denote our basis/of (w) by B; .
Algorithm 1. Looping throughr

Step 1. We initially let Bﬁl consist of all the generatops; such thatw; = r. If there are
no such generators, we IBf ; = .

Step 2. For every evem: = 2M < r we add to5;,,, all the elements

[[Xilv Xiza ce XizM]]ZM

with the (2M)-tuplesi formed according to the following rule:
foreveryt = 0,1, ..., M — 1 we takei such that

ij =im41-j=1,2,...,5, j=12....2M —t—-1, j#t+1,
1<imy1 <iom— <5,
provided tha®y 2" w;, = r.
Step 3. Forevery odd 3< m = 2M + 1 < r we add to3},,, ., each element
[Xiy, Xipy s Xigy g lom+1
for which the(2M + 1)-tuplei is either of the form
ij =iom42—j =1,2,...,5, j=12,....2M —t, j#tr+1,
1<ippr <iopmy1+ <8
forsomer € {0,1,...,M —1}or
ij=lom4o—;=1,2,...,s, j=1,2,...,M, ivr1=1,2,...,s

and, in either case,_?M

j=1 w,-j =r.

The algorithm above is wasteful, since it forms the samtiples time and again, and
discards the great majority of them since they do not lead to eleme#ig(m). An al-
ternative algorithm, which avoids this pitfall and forms eactiuple just once, is ideally
suited to generate the badgSforall r = 1,2, ..., r*, wherer* > 1 is given.

Algorithm 2. Looping throughn
Step 0. LetB! =0, r =1,2,...,r".
Step 1. Foreveryl = 1,2, ..., s, provided thaty; < r*, addX; to B{:}['
Step 2. For every evem = 2M < r*,
t=01,...,M—1,
ilviZ’ "-7ilail‘+27‘-'5i2M7t71 = 1725 e S,

1<irpa <ioy— <
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evaluate
2M—t
piz%+z%
j=t+1
If p <r* letiogyy1—; =ij,forj=1,2, ... ¢, and placd[X;,, Xi,, ..., Xip, lom
in Bg.
Step 3. Foreverym =2M +1<r*, M > 1,
t:o,l,...,M—l,
ilviZ’"'7ilvil+2"-7i2M—f = 172""7S1
1<iryr <iomy1+ <8
evaluate
2m+1—t
p —22“’1/““ Z Wi -
Jj=t+1
Provided thatp < r*, letiopy4o—; = ij, for j = 1,2,...,¢, and place the term
[[Xilv Xizr e Xi2M+1]]2M+1 in B,;
Likewise, for every
1,12, ..., iy+1=1,2,...,5,
if
M
o= ZZw,-j +wiy,, <7”
j=1
then letizy 12— =i;, j =1,2,..., M, and placd[X;;, Xi,, ..., Xipyqlop41in
the setB;‘.

The output of Algorithm 2 consists of the badgSforr = 1,2, ..., r*. We illustrate it
by the example = 3 andw = [1, 2, 3]. Lettingr* = 5, we commence by settirﬂgﬁ;3 =
wherer = 1,2, ..., 5. Next, we execute the following steps.

m=1: X1—>Bf’, X2—>B§’, X3—>B§’.

m = 2: The only possibility i = 0, and this corresponds to teriX;,, X;,1l2. Since
1<i1 < iz <3, we obtain

(X1, X2D2 — B3, [X1, Xzl — B3, [X2, Xzl — B2.

m = 3: Again, the only possible value is= 0, corresponding tf X;,, X;,, X;;1l3 with
i =1,2,3and 1< i1 < i3 < 3. Retaining just elements of grage5, we have

[X1. X1, Xolls — BE, X1, X2, Xolls > B3, [X1, X1, Xzlls —> B2
The remaining case BX;,, X;,, X;, 113, whence1, i = 1,2, 3. We have

(X1, X1, X103 — B3, [X2, X1, X2lls — B3, X1, X2, X1lls — B3,
[X1. X3, X113 — B3.
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m = 4. We need to consider= 0 ands = 1. In the first case the terms have the form
(X, Xiy Xis. Xigllawithip, iz = 1,2, 3and 1< iy < i4 < 3. There exists just one
such term of grade less than or equal to 5, namely

[X1. X1, X1. X2lla — BE.

Fort = 1 our terms have the forriX;,, Xi,, Xi5, X;;[la with i1 = 1,2, 3 and
1< iz < i3 < 3. Again, just one term survives,

[X1. X1, X2, X1]la — BE.

m =5: Fort = 0 we have terms of the foriX;,, Xi,. Xi,. Xi,, Xislls for ip, i3, is =
1,2,3and 1< i1 < i5 < 3. No term of this form has grade less than or equal to 5. A
similar situation pertains to the case= 1; the terms ar§ X;,, X;,, Xi,, Xi,, Xi; 15
with i1, i3 = 1,2,3 and 1< i2 < is < 3. The remaining case results in the term
[Xi,, Xip» Xis. Xip. XipIls With i1, ip,i3 = 1,2, 3. One such term is of grade less
than or equal to 5, namely

(X1, X1, X1, X1, X11l5 — B3.

The outcome is the bases
B = {X1};
B3 = {Xa};
B3 = (X3, [ X1, X2ll2, [ X1, X1, X1ll3}:
B3 = (X1, X3ll2. [X1, X1. X2ll3. [X1, X2, X1]l3);
B = {[[X2, X3ll2, [[X1, X2, X21l3, [ X1, X1, X3ll3, [ X2, X1, X2l3,

[X1, X3, Xalls, [ X1, X1, X1, X2lla, [ X1, X1, X2, X1ll4, [ X1, X1, X1, X1, X1]l5}.

4. Applications to Cayley-transform methods
4.1. The Cayley—BCH formula

The purpose of this subsection is to present an application of the formalism of hiera
chical algebras to the derivation of the Cayley—BCH formula, a relation which in a Cayley
transform setting corresponds to the famous Baker—Hausdorff—~Campbell formula.

Let X,Y € g, a quadratic algebra aff, (R). Throughout our analysis, we identify
with a free hierarchical algebra. For a given sufficiently sma# 0 we wish to derive a
function Z (k) so that the equation

cay Z(h)] = cayh X)cay(hY) (39)

holds. We refer to equation (39) as the Cayley—BCH formula.
Introducing the inverse function cay of the Cayley transform (7),

cay tW =2(W - H(W+ 1)1,

we deduce that the function

o0
Z(h) = Z Zih*
k=1
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complies with the equation
Z(h) = 2[cay(hX)cay(hY) - 1] x [cay(hX)cay(hY) + 1]_1
Consequently,
Z(h) =2[(1 = 303071 + 300U = 307 + §AY) + 1]_1
x[(l — X)X + 3hX) (T = Lny) "N + Lny) — 1]
= [ = 3n30721 + §2x¥)(1 - %hY)_l]_l
x[(l — L)y M X + 1)U - %hyrl]
=h(l - V) + 12XV 72X + V) - Shy)Th

Multiplying both sides on the left by7 — 3#Y) and writing(Z + 242X Y)~! as a geometric
series, we infer that

(=1
Z(I — hy) = (I — 3hY) (Z (X +7).
k=0
hence the recursions
(— )"
Zoes1 = 3ZaY + XX +1),
. k=0,1,2, ..., (40)
(— )
Zoyz = 3Za1Y — g VXN (X 4 Y).
(with starting conditionZp = 0), that determine th&;.
Theorem 8. With the same notation as above, it is true that
(—1f
Zok+1 = Py sy Ix,y,....X, Y, Xlls1 + IV, X, ... Y, X, Yt1),
(1)

Zoky2 = SxiL (XY, ....X, Y2,
fork=0,1,2,....

Proof. This is achieved by induction dn For k= 0 we obtain
1
Z1= E([IX]]H- (Yl =X+Y,
1
Zo = E[[X, Yo = XY - YX,

which is clearly in agreement with the recursiod8); Next, let us assume that the assertion
is true for all integers up tb. We deduce from the recurrence relations (40) that

Zoay1 =3 ZZkY+( k) XX +Y)

(— 1)k 1 '
—([[X Y,.... X, Y[laY — (XY)' (X +7))
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(1)
- %
(-1}

= S (IX. Yoo ¥ Xkt + Y. X XL Y Tk).

(XY - YX+YX - XY)

By a similar token,

Zopio =17 Y—ﬂY(XY)k(X—i-Y)
2k+2 = 5 L2k+1 22k+1

(—DF
= 22k+2([IX’Y’-'5Y9X]]2k+1+[[Y5Xa"7X7Y]]2k+l)
(—1F
T o2+1
(—DF
= 22k+1(XYX-~-YXY+YXY~-~XYY
—YXY---XYX-—-YXY..-XYY)

(-1
= 22k+1 [[X5 Y5 Xa ceey Y’ X]]2k+25

Y(XVEX +7)

and hence the assertion is true alsokfar 1. The proof is complete. O

In passing, it is worthwhile to mention that, in variance from the case of the exponenti
mapping, whereas

exphX) exphX) = exp(2hX),
one has
cay(hX)cayhX) = caf(Z(h)),

for the Cayley map, where

> 4.2 [inx\ &+ h2x2\ -1
Z(h):lCZ_%ZZk+1h2k+l=TZ<—> =2hX<I+ 4) .

i 2

4.2. Adjoint operators in a Cayley-transform setting

As above, we consider two generators, agndY in g. We wish to derive a formula
for the hierarchical-algebra element

cay(hX)Ycay—hX)

in terms of primitive elements of a hierarchical algebra. To this end, we observe that
o0 h k
cayV) =1+2 —| V& Veg
W) =1+2Y(5) cg
k=1
hence we obtain by direct computation

00 k
cayhX)Ycay(—hX) =Y +2% <g> (xXky + (—1fy xK
k=1

00 h k k—1
o i
+4k§2<§> § l(—1) ixTyx*=i,
= j=
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which, using hierarchical-algebra primitive elements, translates to
1 AN
cayhX)Ycay(—hX) = =[[Y]1 + 22 ) 0X, ..., X, YTkg1
2 = \2

« L)

o0
h k ;
— _ Sy
+4Z(2> DV elX XY X X,
k=2 j=1 i s
wherea; = - - - = a|k-1)/2) = 1 anday 2 = 1/2 whenk is an even index. Hence, for each

k, the terms are precisely the primitive elements of lertgidith a single occurrence df.

Assume thatv(X) = wy andw(Y) = wy. Then, the grade of a primitive word of length
k andk — 1 occurrences oX is (k — 1)wy + wy; therefore, identifying grades with order
of accuracy, in order to truncate the above formula to an akdeve require that the above
summation be carried up to the least indesuch that

K +wx —wy <k
wy
holds.

We have mentioned above that the adjoint operator in a Cayley setting is a sum
primitive elements of the hierarchical algebra, with a single occurrendé &f greater
generality, denote byg.; the number of primitive words of lengtR and/ occurrences of
the letterX. Clearly,

YRl = VR;R—I» [=0,1,..., R,
and, furthermore,

R
2
dR = Z VR;I,
1=0

whered,% is the dimension of the spa@ﬁ(l).

Lemma 9. With the same notation as above, it is true that

R
Y2R+1:20 = V2R:21—-1 + V2R:21 + <1) l=0,...,R, (41)
R
Y2R+1:24+1 = V2r:2l + V2R 2141 + ;) 1=0,...,R, (42)
R+1
Y2R+2:21 = V2R+1;21—1 + V2R+1:2 — ( } > l=0,....,R+1, (43)
R
VeR+2:21+1 = Ver+1:2 + V2R4t2+1 — | | 1=0,...,R. (44)

Proof. We proceed by induction on the length of the primitive word. Let us consider the
index R = 0 and words of length one. The only possible primitive words[a¥é; and
[[Y1l1; hencey1.o = 1 andy1.1 = 1, which is in accordance with equatiorElf and (42)
respectively, given thaty,; = 0. For words of length 2, we observe thaty = 0 = y».»,
sincethere are npy, Y2 and[ X, X2 words. Insteady.1 = 1, corresponding thX, Y12,

and equations (43) and (44) are obeyed.
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Next, let us assume that the result is trueffoe 1,2,...,2R. If [ X, Y ..., Y, X]r
is a primitive word of length R with L occurrences ok, then[[X, Y, ..., Y, X, Y]l2g+1,
obtained by appending B, is a primitive word of length  + 1 with L occurrences of
X. Similarly, we can take a primitive word of lengtiR2vith L — 1 occurrences oX, and
obtain one of length 2 + 1 with L occurrences ok by appending a to it. However, by
doing so, we do not obtain all the primitive words, because there are no symmetric wor
of length 2R. All the missing words can be obtained by choosihglots (for instance the
first R) and letting| L /2] lettersX occur in them. Hence

R
V2R+1;L = Y2R;L—1 T+ V2R,L T <LL/2J>’
which gives equations (41) and (42). A similar procedure applies for equations (43) ar

(44), except that in this case we have to remove symmetric words which do not appear
the set of primitive elements. O

In other words, the number of words with a given number of occurrencEsaoidY obeys
a generalized version of the binomial coefficient relation. Taldkows the values gig.;.

Table 2: A tabulation of/g.;

R|d2

0|0 0

1|2 1 1

211 0 1 O

3|6 1 2 2 1

416 o 2 2 2 0
5/20 1 3 6 6 3 1
6|28 0 3 6 10 6 3 O
7|72 1 4 12 19 19 12 4 1

Each entry can be obtained as the sum of the two entries directly above, plus the cor
sponding entry of thalternating Pascal trianglén Table3.

Table 3: The alternating Pascal triangle

R

0 0

1 1 1

2 -1 -1 -1

3 1 1 1 1

4 101 -2 -1 -1

5 1 1 2 2 1 1

6 -1 -1 3 -2 -3 -1 -1

7 1 1 3 3 3 3 1 1

https://doi.org/10.1112/51461157000000206 Published online by Ca@®ridge University Press


https://doi.org/10.1112/S1461157000000206

Graded Lie algebras

Theorem 10. The generating function

o R
Fx,y) = Z Z yrax 7y

R=01=0
for the coefficientgr.; is

x+y—xy—(x%+y?)
QL-—x—yA—-x2-y%’

Proof. Lettingyg.; = 0 for/ > R, we extend the range of second summatioh}o0. We
have

[lx,y) =

[lx,y) = ZVROX +ZZVRIX

R=11=1
+ZZJ/RIX ,
R=1/=1

sinceyxo = 0 andyx+1.0 = 1,k = 0,1,2,.... Next, we rearrange the second sum
separating even and odd values of the first and of the second index and use Redmma
obtain

oo
2(R-1),,21+1
Y voryrapax® YA

K

I'x,y) = . n
1 * R=01=0
oo o0
+ Z Z V2R+1;21+2x2(R—1)—1y21+2
R=01=0
oo o0
+ Z Z Vori2.o1 41 x 2RO+ y2HL
R=01=0
o e ]
+ Z Z Vori2.0112x 2R y2+2
R=01=0
X o % .
— 1-— x2 + Z Z |:VZR;21+1 + Y2R:2] —+ (l)] x2(R—[)y2[+1
R=0 l=0
o0 o0 R
+ Z Z Y2R:21+2 + V2R;21+1 + (l N l)} $2R=D=1,21+2
R=0/=0"“
o0 o0 R
+ Z Z V2R+1;214+1 + V2R+1:20 — (l >i| xz(R*l)+1y21+1
R=0/=0"“
o0 00
R+1 B
+ Z Z V2R+1:242 + Y2R+1:214+1 — (l + 1):| KDY,
R=0/=0"“
Note that
[celNe]
Z Z [VZR;leZ(R 1 ,2+1 + Vor:2ls 1x2(R71),1y21+2
R=01=0
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+ yor 1. gx2BDFLYHL iy, 21+1XZ(R_1))’2[+2] =yI'(x,y),
and that
o0 o0
Z Z [VzR;21+1x2(R_l)y21+l + yar;arpox 2 RD A2
R=01[=0

+ yor 1.2 x 2 REDFLAFL 4 p o2 R Z)YZHZ] =x(x,y) —

Furthermore,
ZZ K2R=D 241 Z(x + 2R =
2
x—oi—o \ (x +y%)
o0 o
R\ or—p-1_242 _ x _
ZZ 1+1)* y T 124y 1-x2
R=01=0
o0 o0
R\ or-n+1 241 _ Xy
ZZ l X y _1_(x2+y2)
R=01=0
00 00 2 2 2
55 (R Dy
=T 2.2 — 2
P [+1 1—-(xc+y4) 1—x

Subsituting above and collecting terms, we deduce that
x+y—xy—(Z+y?)
1-@2+y?)

A—x—-I'x,y) =

’

and hence the theorem follows.

2

X2

We note that, setting(x, y) = x + y, the above generating function becomes

q(x, y) = 342, y%) = 3lq(x, )12
[1—q(x, »IL—q(x2 y?)]
a two-variable counterpart of equation (27).

[lx,y) =

)

Theorem 11. With the same notation as above, it is true that

e -3(E)- (1))

Y2R;21+1 = E(Zl + 1)
1[/2R+1 R
s =275+ (7))
1[/2R+1 R
Y2R+1;2+1 = §|:<21+1> (l)jl’

forall R,1 > 0.
Proof. The generating functiof (x, y) can be written as

1 X +y-— 1
1—(x4+y) 21—(x24+y2)
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We observe that

e mn )

k=0 1=0
is the generating function of the binomial coefficients. Similarly,

e EE 0

k=0 1=0
Multiplying the latter byx 4+ y — 1 and matching powers yields the desired result. [

4.3. Cayley expansions

The most important application of the counting results presented in Section 3 is |
numerical methods based on a Cayley expansldn for the solution of the differential
equation (1). Recall that the solution of teayinv equatiori8) can be written as

Q) =Y Tu),

m=1

where the functiong,, (1) obey the recurrence relation [11]:

1 ! 1 m— t
1,0 = 3 [ Zaa@. 4@ - 3 3 [ Loa@a@ne . m >3
2 Jo 4 = Jo

(45)
with starting condition

t
Tt = /0 A®) de.

The sum on the right-hand side of equation (45) should be considered null when the range
indices is empty. As observed in Section 1, e3gly) features commutators and symmetric
products of the fornPQR + RQP = [P, Q, R]l3. We invoke the hierarchy condition of
them-nary operator and claim that

In(h) = Zotk /M[[A(Skl), covs Ak, ) Ay - - - dé,,
k n

where the integration is performed over some polytép&hem-nary product is linear in
each of its components! Therefore, given quadrature points. , ¢, in [0, 1], and denoting
A = A(crh), we can approximate each of the terms

/M[[A(Skl), ooy A, )i &, - - - d&g,,,,

with a quadrature formula

Q(h) = h" Z Z billAky, - - Ak, T,
k1=1
the weightsh being obtained by mtegratlng products of cardinal Lagrange polynomials
over the polytopes. In such a case all the terms, , . . ., Ax,, are representations of some

m

free hierarchical algebra symbaty, ..., X,,, and, for each degree we are required to

https://doi.org/10.1112/51461157000000206 Published online by CaghBridge University Press


https://doi.org/10.1112/S1461157000000206

Graded Lie algebras

evaluate a number of terms that is bounded by the dimension of the badSjybj. As an
example, let us consider two Gaussian nodes= % — %é andcy; = % + */Tg in [0, 1],
which we can use to generate a method of order four. Taking into account further simplifyir
assumptions such as time-symmetry, a bound on the number of terms is given by the s
of the dimensions of graded subspalﬁfg(l), form =1,...,3(thatis, nine; see TablB.

The required primitive terms are

[A1llx [A2]l1 [A1, A2]l2 [A1, A1, A1ll3  [[A1, Az, A2]l3
[A1, A2, Axlls [[A2, A2, A1llz [[A2, A1, A2llz  [[A2, A2, A2]l3.

Considerable savings occur when we choose graded algebras. Assufip tiag is a
base equivalent tpA1, A2}, but with weightsw = [1, 2]. Such a basis can be obtained by
means of a Vandermonde transformation, as described in Section 1. Since the polynom

p(z)zzz—z—l

has two distinct roots, namely= %[5 according to Theorem 5,

2
1
dim Kx[1, 2] = %Z —()LIZRJrl Y Y
=1 —1+25
2
1.2 =3 g0

l

Il
N

and we deduce that difdZ(w) = dim £2(w) = 1 and dimC2(w) = 2, yielding a total of
four terms, corresponding to

[Boll1, ([Balla, [[Bo, Bill2, [[Bo, Bo, Bolls.

4.4. Runge—Kutta—Munthe-Kaas schemes in a Cayley-transform setting

As a last example, we will consider the application of our results to Runge—Kutta-
Munthe-Kaas methods when employing the Cayley transform as a map from the Lie alget
to the corresponding Lie group. For the more general setting of homogeneous manifol
we refer the reader to [7].

The numerical methods in question consist of solving the differential equat)jadmy(
obtaining a numerical solution to tlikeayinv equatior§8) in g by means of a Runge—Kutta
method, and mapping back the result to the Lie gréupy means of the Cayley transform
(7). Given av-stage Runge—Kutta scheme, defined in terms of the tableau

¢i1|aii1 d4ai2 -+ dipy
Cy | Ayl dp2 -+ Qyy
‘ b1 by --- b,

to advance the solution by a single step fropto ty41 = ty + h we compute

v
D, =h Zam,lkla
=1

Apm = AlN + hey), m=1,2,...,v;
K = dcay, (An).
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hence,
v
Qi1 = h Z buKm,
m=1
and, finally,
Yni+1=cayhQn+1) Y.
The matricesAs, ..., A, are a representation of generatais . .., X, of the free hierar-
chical algebra, with grades(X;) = 1,fori = 1,2, ..., v. Thus, an expansion in primitive

words requires

J
Z cardW € B, (1)| W has length< 3}

m=1
terms, wherep < 2v is the order of the numerical method in question. Again, one can ust
agraded algebra generatedR®y; . .., B,_1 with gradesw = [1, 2, ..., v], and reduce the

number of required primitive words to

i
Z cardW € B, (w)| W has length< 3}.
m=1
The savings occur by virtue of the fact that usudly(w) has a cardinality substantially
smaller thar3, (1).

We should mention that for this particular example, it is not necessarily true that th
introduction of primitive words would lead to a significantly cheaper computation, due t
the fact that, unlike the dexp equation, the dcay* formula is finite and consists of a very
small number of terms.
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