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SOME RESULTS ON SPIRAL-LIKE FUNCTIONS

TURKAN BAG§GZE

We begin with the following definitions.

DEerINITION. Let f(z) be regular near z=0 and let f(0)=0, f’(0)0. Let « and 4
be two real numbers such that |«|<w/2 and 0<A<I. Then R, , is the largest
value of r such that the following conditions are satisfied for |z| <r:

(i) f(z)isregular,
(i) f(2)#0 for z 0,
@)
(iii) # [exp(m) LECARNS
f(@
In particular with 4=0, R, , coincides with the radius of spiral-likeness; with

a=0, R, ; gives the radius of starlikeness of order 4; and with a=1=0, R, , gives
the radius of starlikeness.

DEerINITION. Let f{(z) be regular near z=0 and let f(0)=0, f’(0)70. Let « and 4
be two real numbers such that |«| <m/2 and 0<A<1. Then r, , is the largest value
of r such that the following conditions are satisfied for |z| <r:

(i) f(z)is regular,
@) f'(z) #0,
(iii) 2 [exp(ioc) (1+zf,—(z)ﬂ > A
'@
For =0, r, , gives the radius of convexity of order 4 and for a=1=0, r, , gives the
radius of convexity.

The purpose of this note is to determine R, ; and r, ; for certain classes of
analytic functions. To do this we will require the following lemmas.

LeMMA AW, Let z=r exp(ifl), z;=R exp(i¢) where 0<r<R, and let « be a real
number. Then
) _ (R4 cos ) <% |:exp(zoc)z:| < r(R—r cos &)
R2—r? z—z, R2—r?

Received by the editors October 28, 1974.

@) This result is an extension of the Lemma we obtained in [2, p. 140]. Without the con-
ditions under which the equality signs hold in (1) it is first proved in [1, p. 8-9]. The proof is
simplified in the above form by Professor F. R. Keogh.

633

https://doi.org/10.4153/CMB-1975-111-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1975-111-0

634 T. BASGOZE [December

Equality holds in the first inequality of (1) if and only if
r _ R+4rexp(ic)
=Ty
R " r+R exp(ie)
and in the second inequality if and only if
;=T R—r exp(io)
R r—R exp(ia)

Proof. The transformation w=exp(ix)z/(z—z;) maps the circle |z|=r onto a
circle in the w plane with centre (—r2cos oo/(R*—r?), —r? sin «/(R?—r?)) and
radius 7R/(R®—r?), which gives the required result.

In our proofs we also use the following two inequalities [1, p. 10], which we
state as lemma B.

LemMA B. For 0<r<1<R, we have
) R+rcosa _14rcosa

G R*—¢? 11—
.. R—rcosa _1—rcosa
ii .
(@) R2—7* < 1—r2

Equality holds in both inequalities if and only if R=1.

Now we can prove the following theorem.

THEOREM 1. Let P(2) be a polynomial of degree n>0 all of whose zeros are outside
or on the unit circle. Then for f(z)=z[P(z)]” /n, where B is real and non-zero, and for
o #0 we have

Ryo=cosa if f=—1,
R, , > ZIBIH 40 +fcos® a]
= 2(1+p)cos o
Equality holds in both inequalities if and only if all the zeros of P(z) are concentrated
at the same point on the unit circle.®

Proof. Let P(z)=a, [1r_1 (z—2z;); then

otherwise,

and since
#'Q) _ 8, PE)
f(2) n  P(z)
we have
2@ _ B <. exp(io)z
) 73 I:exp(loc) f(z):l = cos a+n% I:kgl e :l

2 For a=0 the inequalities given in Theorem 1 hold, but the distributions of zeros which
give the equalities are different and for those distributions R,,, gives the radius of univalence
[2, Theorem 1].
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Case 1. f>0. Let z=r exp(i0), z,=R, exp(i¢;), k=1, 2, ..., n By Lemma A
and by part (i) of Lemma B from (2) we obtain

#f'(z )] B L r(Ry+r cosa)

ex cos & —_—E——
[ Ry J 2 oS 2 e

B(r+r* cos &)
1—r?

and this gives R, o>(—p+[2+4(1+p)cos? «]*/#)/2(1+4p)cos «, with equality

if and only if all the zeros of P(z) are concentrated at the same point on the unit

circle.

Case 2. $<0. By Lemma A and by part (ii) of Lemma B fro m(2) we obtain

["”‘P(‘“) ’ff(())] > cosa+l 3 Re=rcosa)

n k=1 Rz—r

> cos a—

2

r(l r COS oc)

> cosa+f = B(r),

say. The condition that B(r)>0 gives the reqmred results.

The following theorem reduces to the theorem given in [3, p. 16] for a=1=0
and to Theorem 3 in [2] for a=0.

THEOREM 2. Let P(z) be a polynomial of degree n>0 all of whose zeros are
outside or on the unit circle. If cos a> A, then for f(z)=2zP(z) we have
n—[4224-n+(4n+4)cos® a—(4niA+82)cos ] /2

2[A—(n+1)cos «]
where equality holds if and only if all the zeros of P(z) are concentrated at the same
point on the unit circle.

Ra.). 2

Proof. Let z;, 2, . . ., z, be the zeros of P(z). Then
3) R [eXp(ioc) zf '(z):| — cos at %[ z" eXp(ioc)z].
f@@) k=1 Z—2Z

If z=r exp(i0), z;=R, exp(i¢;) then by Lemma A and by part (i) of Lemma B
from (3) we obtain

.\ zf'(2) _ < HRytrcosa)
z l:exp(ux) —f(z) ] > cosa kgl———-——Ri_rz

2 cos u—n '.‘._(_1_4-_1__0_.0_81) ;
1—r?

hence

I:ex (o) f(Z):i Aif r< n"'[412+"2+(4”+4)0052oc—(4nl+82)cos a]llz
’ 2[A—(n+1)cos «]
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with equality if and only if all the z, are concentrated at one point on the unit circle.

The next theorem reduces to the theorem given in [3, p. 16] for n=0=0 and
to Theorem 4 in [2] for a=0.

THEOREM 3. Let f(z)=zM(z)/N(z), where M, N are polynomials of degree
m21, n>0 respectively, all of whose zeros are outside or on the unit circle. If
n—m—1>0 then R, >r,, where 1, is the smaller root of the equation

@ F(r) = (hn—m—1)r%*cos a—(n+m)r+4cos « = 0,

If n—m—1<0 then R, >r,, where r, is now the positive root of this equation. In
both cases we have R, y=r, if and only if the zeros of M are concentrated at a point
exp(i0,) and those of N are concentrated at a point exp(i,) such that exp(i(6,—0,))=
(1—r exp(io)) (ro-+exp(ia))/ (1 +r exp(io)) (ro—exp(ic)).

Proof. Denoting the zeros of M by zy, 2, . . . , z,, and the zeros of N by z,,,,,
Zpmis + « « s Zmens WE have

! m . m+n .
P l: .\ zf (z):| _ gg[ exp(loc)z] _ @[ exp(loc)z]‘
) exp(io) f(@ cos «t ;g1 Z—2Z; k=%+1 zZ—2z,
If z=r exp(if), z;=R; exp(i¢;) then, by Lemma A and Lemma B from (5) we
obtain

’ m m+n
zf'(z :| > coso— S r(Ry+rcosa) r(R,—r cos o)

.%[ex io
LG S R—r w5a R-P

mr(14-r cos oc)_nr(l —7 COS o)

= G(r),
1—r* 1—r? )

> cosa—

say. The condition that G(r)>0 is equivalent to F(r)>0, so R, ,>7,. Now, if
R,,=r, then z,,z,,...,z, are concentrated at a point exp(i,) and z,,,,

Zpmias « - - » Zmyn @€ concentrated at a point exp(ify) such that

exp(i(6,—0s)) = (1—r, cxp(z:oc))(r0+exp(z:a))
(147, exp(io))(ro—exp(ia))

and the converse is also true. If «=0 then by (6), R, o=r, if and only if z;, z,, . . . ,
z,, are concentrated at one end of a diameter of the unit circle and z,,.1, Z 42, « - - »
Z,.+n are concentrated at the opposite end of this diameter. When R, o=r,, f'(2)
has a zero on |z|=r,, s0 R, gives also the radius of univalence.

©)

Now let f(z)=zg'(z) then r, ; for g(z) is the same as R, ; for f(z). Therefore from
the above theorems the following results can be deduced.
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THEOREM 1'. Let P(z) be a polynomial of degree n>>0 all of whose zeros are outside
or on the unit circle, and let f(2) be the function such that f(0)=0 and f'(z)=[P(2)]*/",
where B is real and non-zero. Then for f(z) and «.7#0, we have

Foo>cosa if f=-—1,
—|Bl+[B*+4(1+B)cos® «]
Tz0 2
’ 2(1+f)cos o

FEquality holds in both inequalities if and only if all the zeros of P(z) are concentrated
at the same point on the unit circle.

otherwise.

THEOREM 2'. Let f'(z) be a polynomial of degree n>0, f(0)=0, and suppose that
all the zeros of f'(z) are outside or on the unit circle. If cos a>A, then for f(z) we
have
.S n—[4224n2+(4n+4)cos? a—(4ni+84)cos ]2

wh = 2[A—(n+1)cos «]
with equality if and only if the zeros of f'(z) are concentrated at the same point on
the unit circle.

’

THEOREM 3'. Let f(z) be a function such that f(0)=0 and f'(z)=M(z)/N(z2),
where M, N are polynomials of degree m>1, n>0 respectively, all of whose zeros
are outside or on the unit circle. If n—m~—1>0 then r, o >r,, where r, is the smaller
root of the equation (4). If n—m—1<0 then r,  >r,, where r, is the positive root
of the equation. In both cases we have equality under the same conditions on M, N
as in Theorem 3.

By using arguments similar to those in the proofs of the preceding theorems we
can easily obtain results for R, ; and r, , for other cases considered in [1] and [2].
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