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Abstract

This work presents simple decision procedures for the propositional calculus and for a simple

predicate calculus. These decision procedures are based upon enumeration of the possible

values of the variables in an expression. Yet, by taking advantage of the sequential semantics

of boolean connectors, not all values are enumerated. In some cases, dramatic savings of

machine time can be achieved. In particular, an equivalence checker for a small programming

language appears to be usable in practice.

1 Introduction

In this paper we propose a simple, yet reasonably efficient decision procedure for the

propositional calculus and for a simple predicate calculus. By “simple” we mean a

technique inspired by the semantics of the propositional calculus, not a sophisticated,

resource aware, technique such as binary decision diagrams. Whereas, by “reasonably

efficient” we mean more efficient than the most naive decision procedures.

We first consider the evaluation of boolean expressions with variables. Given a

boolean expression e1 ∨ e2, if the evaluation of e1 yields true, there is no need to

evaluate e2: the answer is true regardless of the truth-value of e2. More generally it

seems wise to use such a sequential (or short-circuiting) evaluation of propositions:

it never hurts and may, in some circumstances, yield important savings over a direct

application of the definitions of the boolean connectors.

Starting from a function E for evaluating boolean expressions, it is possible to

solve more complex problems. For instance, one can check whether proposition e is

a tautology or not, by enumerating all the possible truth-value assignments of x1, x2,

. . . xn, where x1, x2, . . . xn are the variables of e. This simple idea can be expressed

by the following pseudo-code:

for x1 in true, false do

...

for xn in true, false do

if E(e, x1, x2, . . . , xn) = false then e is not a tautology
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The procedure sketched above does not take a significant advantage of sequential

evaluation of boolean connectors. Let for instance consider the case when e is

x1 ∨ e2. Then, the procedure will blindly perform 2n evaluations of e. However, when

x1 is true, the truth-value of x1 ∨ e2 is true, regardless of the assignments of the

remaining variables x2, . . . xn and all the inner loops are useless. More generally,

while enumerating all assignments for the variables of e1 ∨ e2, there is no need to

enumerate the assignments for the variables of e2, as soon as the truth-value of e1

is true.

Intuitively, taking advantage of sequential evaluation of boolean connectors in

such a context means mixing enumeration of variable assignments and evaluation

of boolean expressions. This combination can be achieved quite easily in a func-

tional language such as Objective Caml (Ocaml, 2003). The trick is to consider

a continuation-based semantics of the propositional calculus. First class-functions

then permit a straightforward implementation.

This paper is organized as follows. Section 2 recalls the definition of sequential

evaluation of boolean connectors, and gives simple Caml code for an evaluator.

Then, in section 3, we show how to turn this evaluator into an enumerator. Finally,

section 4 considers extending the propositional calculus with monadic predicates.

2 Evaluation of propositions

2.1 Church booleans

In the λ-calculus, one can express the booleans true and false as λtf.t and λtf.f.

let b_true kt kf = kt (* b_true : ’a -> ’b -> ’a *)

and b_false kt kf = kf (* b_false : ’a -> ’b -> ’b *)

The “if” construct being λc tf.c t f, one expresses the boolean connectors as follows:

let b_not b kt kf = b kf kt

(* b_not : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c *)

let b_and b1 b2 kt kf = b1 (b2 kt kf) kf

(* b_and : (’a -> ’b -> ’c) -> (’d -> ’b -> ’a) -> ’d -> ’b -> ’c *)

and b_or b1 b2 kt kf = b1 kt (b2 kt kf)

(* b_or : (’a -> ’b -> ’c) -> (’a -> ’d -> ’b) -> ’a -> ’d -> ’c *)

Then, a boolean expression is written by calling the appropriate functions.

let b = b_and b_false (b_or b_true (b_or b_false b_false))

(* b : ’_a -> ’_b -> ’_b *)

More generally, applying the functional boolean connectors yields a function, which

we call a functional boolean. One may remark that a functional boolean is either the

function b_true or the function b_false, and that the inferred type of functional

booleans tells us which they are – see also Mairson (2004) in this issue. However,

one may wish to recover more traditional truth-values:

let eval b = b true false (* eval : (bool -> bool -> ’a) -> ’a *)
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2.2 Variables

Let us now enrich our very basic calculus with variables. Environment lookup and

construction are implemented by two functions. Function find takes a variable

name x (of type string) and an environment env (of type ’a env) as arguments

and returns Some v if env binds x to v, or None when x is unbound, while function

add adds or updates a binding to an environment.

find : string -> ’a env -> ’a option

add : string -> ’a -> ’a env -> ’a env

Here, in the case of the propositional calculus, it is natural to bind propositional vari-

ables to machine booleans, and the following function b_var takes an environment

as an extra argument.

let b_var x kt kf env = match find x env with

| Some true -> kt env | Some false -> kf env

(* b_var :

string -> (bool env -> ’a) -> (bool env -> ’a) -> bool env -> ’a *)

Presently, the b_var function does nothing but translating machine booleans into

functional ones. The previous functional definitions of the boolean connectors remain

unchanged. Now, the proposition x ∨ ¬x can be written as:

let bx = b_or (b_var "x") (b_not (b_var "x"))

(* bx : (bool env -> ’_a) -> (bool env -> ’_a) -> bool env -> ’_a *)

When supplemented by the definition of b_var, the application of functional

connectors yields a variety of propositional functions. Notice that, in contrast to

functional booleans, propositional functions all have the same type.

The following function, eval, evaluates a propositional function b w.r.t. an

environment env; it returns a machine boolean.

let eval b env = b (fun _ -> true) (fun _ -> false) env

(* eval : ((’a -> bool) -> (’b -> bool) -> ’c -> ’d) -> ’c -> ’d *)

One can see the definitions of b_var and of the functional connectors as a denota-

tional, continuation-based, semantics of the propositional calculus. The evaluator

directly derives from this semantics.

3 Enumeration

3.1 Intuition

A slight modification of the b_var function will turn our evaluating propositional

functions into enumerating ones. It suffices to add a clause for unbound variables.

let b_var x kt kf env = match find x env with

| Some true -> kt env | Some false -> kf env

| None -> kt (add x true env) ; kf (add x false env)

(* b_var : string ->

(bool env -> unit) -> (bool env -> unit) -> bool env -> unit *)

https://doi.org/10.1017/S0956796804005155 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005155


650 L. Maranget

Intuitively, continuations kt and kf represent the computations still to be performed

when x is bound to true or false respectively. If x is unbound, then b_var considers

both possibilities. Notice that the sequence operator “;” is used, hence kf and kt

are meant to be called for their side effects.

We can now list “all” possible assignments of the variables of some proposition

by feeding b with the following two initial continuations.

let print_true env = print_env env ; print_endline " -> True"

and print_false env = print_env env ; print_endline " -> False"

let enum b = b print_true print_false empty

Where empty is the empty environment.

A run of enum on the functional proposition that encodes ((¬x∨y)∨z)∨x outputs

the following list:

x=t, y=t -> True

x=t, y=f, z=t -> True

x=t, y=f, z=f -> True

x=f -> True

As a consequence of the sequential evaluation of functional connectors, not all the 23

possible assignments for variables x, y and z are listed. However, the list is complete:

a line may stand for several assignments when it does not show some variables. For

instance, the first line above stands for the two assignments x=t, y=t, z=t -> True

and x=t, y=t, z=f -> True, while the last line above stands for four complete

assignments.

Function enum performs better on the equivalent proposition (x ∨ (¬x ∨ y)) ∨ z :

x=t -> True

x=f -> True

More generally, enumerating any disjunction of the four terms x, ¬x, y and z

will yield either two or four lines. Obviously, enum output can be understood as

disjunctive normal forms (take the disjunction of all lines seen as conjunctions),

however it is important to notice that no actual terms get built.

3.2 Correctness and completeness of enum

A precise statement of the properties of enum requires a few definitions.

First, a point on the truth-value of a proposition is worth mentioning. Such

truth-values are defined operationally (by the eval function of section 2.2). Hence,

saying “the truth-value of b w.r.t. env is true” in fact means:“evaluating b in envir-

onment env by using the sequential (left-to-right) semantics of boolean connectors

yields true”.

Then, given two environments env and env’, we say that env’ extends env when

env’ holds at least the same bindings as env. Observe that if the truth-value of b

w.r.t. env is fixed, then the truth-value of b does not change w.r.t. any environment

extending env.
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Now, we can state that enum is correct and complete. Given an expression b

(encoded as propositional function b) and an environment env, evaluating the

application b kt kf env will result in calling kt (resp. kf), if and only if there

exists an environment env’, such that

1. the environment env’ extends env,
2. and the truth-value of b w.r.t. environment env’ is true (resp. false).

Given the nature of this work, we shall omit the proof, which is by induction on the

structure of propositional functions.

3.3 Flexibility

Enumerating propositional functions can be used to decide various properties. For

instance, the following functions check for a proposition to be a tautology and to

be satisfiable.

exception Exit

let always_true b =

try b (fun _ -> ()) (fun _ -> raise Exit) empty ; true

with Exit -> false

(* always_true :

((’a -> unit) -> (’b -> ’c) -> ’d env -> ’e) -> bool *)

let maybe_true b =

try b (fun _ -> raise Exit) (fun _ -> ()) empty ; false

with Exit -> true

(* maybe_true :

((’a -> ’b) -> (’c -> unit) -> ’d env -> ’e) -> bool *)

The always_true function enumerates “all” the assignments of the variables of

proposition b. If the truth-value of b w.r.t. one such assignment is false, then b is not

a tautology and enumeration can stop. This is performed by raising exception Exit.

Otherwise, there is no assignment env such that the truth-value of b w.r.t. env is

false, and b is a tautology. The maybe_true function acts symmetrically. Moreover it

could have be written as not (always_true (b_not b)). The correctness of these

functions directly stems from section 3.2.

3.4 Avoiding side-effects

Imperative style can be avoided by considering different definitions of b_var for

different properties. For instance, we can replace the sequence operator “;” by the

conjunction operator “&&”.

let b_var x kt kf env = match find x env with

| Some true -> kt env | Some false -> kf env

| None -> kt (add x true env) && kf (add x false env)
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(* b_var : string ->

(bool env -> bool) -> (bool env -> bool) -> bool env -> bool *)

Then, a tautology checker simply is:

let always_true b = b (fun _ -> true) (fun _ -> false) empty

(* always_true :

((’a -> bool) -> (’b -> bool) -> ’c env -> ’d) -> ’d *)

Observe that, to check satisfiability, it would suffice to replace && by || in the

definition of b_var.

This solution for avoiding side-effects works independently of the implementation

language, either strict or lazy. However, as suggested by an anonymous referee, one

can take better advantage of lazyness. In a lazy langauge, one could write a new

function enum (cf. section 3) that would return a list of pairs of environment and

truth value: (bool env * bool) list, instead of printing this information. Then,

to test for tautology (resp. satisfiability), the list can be lazily reduced, returning as

soon as false (resp. true) is found in the second component.

4 Beyond the propositional calculus

Our technique easily extends to more complex calculi. For instance, we can extend

the propositional calculus with monadic (i.e., one-argument) predicates P (x), Q(x),

etc. Environments now bind a variable x to a list of atomic predicates, either positive

(P (x)) or negative (¬P (x)). This list represents the conjunction of its elements (a

constraint on x). And an environment represents the conjunction of its bindings.

4.1 A monadic predicate calculus

We consider a monadic predicate x = i where x is a variable and i is an integer. The

full syntax of the calculus is:

C ::= (EQUALS x i) (OR C . . . C) (AND C . . . C)

This calculus is the language of conditions of the small programming language of

1999 ICFP programming contest (Ramsey & Scott, 2000). Notice that disjunctions

and conjunctions take an arbitrary number of arguments. The corresponding abstract

syntax is:

type cond =

Equals of string * int | Or of cond list | And of cond list

During enumeration, variables do in fact not range over lists of atomic predicates.

Instead, they range over the interpretation of these lists as finite and co-finite sets

of integers (co-finite sets are sets whose complement is finite). We assume that such

sets are implemented by the module Ints, whose signature follows:

type t

val empty : t
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val universe : t

val singleton : int -> t

val is_empty : t -> bool

val inter : t -> t -> t

val complement : t -> t

This module provides the type Ints.t of sets, the usual functions on sets (inter,

is_empty etc.), the function complement of type Ints.t -> Ints.t for comple-

menting sets, and the value universe that represents the whole set of integers.

Using finite and co-finite sets slightly simplifies environments: the option type

is no longer needed. The role of None is taken by Ints.universe and the role of

Some v is taken by v. As a consequence, the function find now has the more simple

type string -> ’a env -> ’a.

Enumeration is in practice performed at the predicate level:

let b_equals x i kt kf env =

let vx = find x env in

let vt = Ints.inter vx (Ints.singleton i) in

if not (Ints.is_empty vt) then kt (add x vt env) ;

let vf = Ints.inter vx (Ints.complement (Ints.singleton i)) in

if not (Ints.is_empty vf) then kf (add x vf env)

(* b_equals :

string -> int -> (Ints.t env -> unit) -> (Ints.t env -> unit) ->

Ints.t env -> unit *)

The b_equals function is the analog of the b_var function of Section 3.1. The sets

vt and vf compactly express the previously mentioned constraints on variable x. As

an advantage of this technique, unsatisfiable constraints are detected and discarded

as soon as they appear, by using the Ints.is_empty function.

Conditions of type cond are turned into enumerating functions as follows:

let rec compile_cond c kt kf = match c with

| Equals (x, i) -> b_equals x i kt kf

| Or [] -> kf

| Or (c::cs) ->

b_or (compile_cond c) (compile_cond (Or cs)) kt kf

| And [] -> kt

| And (c::cs) ->

b_and (compile_cond c) (compile_cond (And cs)) kt kf

(* compile_cond :

cond -> (Ints.t env -> unit) -> (Ints.t env -> unit) ->

Ints.t env -> unit *)

It is important to notice that, in contrast to b_equals, the function compile_cond

has no “env” argument in last position. Indeed, the proposed compile_cond function

is η-reduced. As a consequence, calling compile_cond with all its three “static”

arguments yields some computations. More precisely, the connectors b_or and

b_and are reduced, and compilation produces partial applications of b_equals.
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Hence, compile_cond arguably performs a compilation from conditions to Caml

functions, provided the continuations kt and kf and known.

All functions of section 3.3 (always_true, etc.) are still working.

4.2 A program equivalence checker

The contest language for statements included an if construct, a case construct and a

final return statement. We consider a minimal language, although we implemented

the full contest language.

S ::= (IF C S S) (DECISION j)

The (DECISION j) construct is the return statement, an integer j is returned.

The Caml data type for statements S is standard, like their semantics. As a

consequence, the compilation function for statements is quite simple:

type stm = If of cond * stm * stm | Decision of int

let rec compile_stm s k = match s with

| If (c, st, sf) -> compile_cond c (compile_stm st k)

Compile_cond c (compile_stm st k) (compile_stm sf k)

| Decision j -> k j

(* compile_stm :

stm -> (int -> Ints.t env -> unit) -> Ints.t env -> unit *)

As shown by its type, continuation k takes two arguments, a decision and an

environment. Hence, by using a continuation that prints the current environment

and the decision made, one can write the analog of the enum function of section 3.1.

For instance on the simple following decision program:

(IF (AND (EQUALS x 0) (EQUALS y 1)) (DECISION 0) (DECISION 1))

We get:

x:{0} y:{1} -> 0

x:{0} y:~{1} -> 1

x:~{0} -> 1

That is, the program reaches decision 0 for x ∈ {0} ∧ y ∈ {1}, while it reaches

decision 1 for x ∈ {0} ∧ y ∈ � \ {1} or x ∈ � \ {0}.
Our program equivalence tester is almost written, it suffices to find the appropriate

continuations.

let equivalent_stm s1 s2 =

let c2 r1 env1 =

compile_stm s2 (fun r2 env -> if r1 <> r2 then raise Exit)

env1 in

let c1 = compile_stm s1 c2 in

try c1 initial ; true with Exit -> false
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Enumeration on s1 starts in some initial environment that binds all variables to

universe. Then, when a first decision r1 is reached for some environment env1, a

second enumeration on s2 is started in environment env1. That way, all decisions

that s2 can reach by extending env1 are compared to r1. For instance we can check

that the previous decision program is equivalent to this other program:

(IF (AND (EQUALS y 1) (EQUALS x 0))

(IF (EQUALS x 1) (DECISION 2) (DECISION 0))

(DECISION 1))

The equivalence of the two programs results from the commutativity of AND and

from the fact that (EQUALS x 1) occurs in a context where x value must be 0.

By slighty modifying equivalent_stm so that it prints the environment when both

decisions are reached and running this verbose version, we get:

x:{0} y:{1} -> 0, 0

x:{0} y:~{1} -> 1, 1

x:~{0} y:{1} -> 1, 1

x:~{0} y:~{1} -> 1, 1

Observe the the case x ∈ � \ {0} now produces two lines. This stems from the

opposite order of AND arguments in the two programs. However, our method still

saves some tests, since a naive enumeration method would consider the additional

condition x ∈ {1}.
The equivalence checker can be made more efficient in practice by a simple

improvement. The key idea is compiling statement s2 once to a Caml function. As

mentioned at the end of section 4.1 in the case of conditions, the continuation k in

compile_stm s2 k must be a fixed function. We achieve this with a reference cell.

let equivalent_stm s1 s2 =

let r = ref 0 in (* any integer fits *)

let c2 = compile_stm s2 (fun r2 env2 -> if !r<>r2 then raise

Exit) in

let c1 = compile_stm s1 (fun r1 env1 -> r := r1 ; c2 env1) in

try c1 initial ; true with Exit -> false

The use of a reference cell to convey the successive values of r1 is not that elegant.

However, it is easy to convince oneself that the reference r is set to the proper value

before c2 is called. And hence, r1 and r2 are indeed compared.

The implemented equivalence checker is an optimized version of the one presented

above. Optimizations consist in resolving references to variables at compile time (one

variable is associated with one reference cell), avoiding enumeration when a condition

can be found true or false by a simple scan (which is performed by another kind

of evaluating functions, compiled from conditions), and reordering the arguments

of connectors in order to present the most frequent variables first. In the case the

previous example, this technique indeed saves some final decision comparison, since

the arguments of the AND connector are scanned in some normalized order.

The equivalence checker has been tested on the contest inputs, by comparing

one input program with the output of one available optimizer. With optimizations
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enabled, the equivalence checker runs in no more than a few seconds on any of the

inputs. Note that contest inputs include one program with more than one thousand

variables and one other program almost three megabytes large. Without optimiza-

tions, runtime is prohibitive on the largest inputs. More information on this bench-

mark is available at http://pauillac.inria.fr/~maranget/enum/speed.html.

5 Conclusion

As demonstrated by the program equivalence checker, our decision procedure is

usable in practice. Of course, such a simple decision procedure cannot compete with

more elaborated ones. In particular, in the case of the propositional calculus, Binary

Decision Diagrams (Bryant, 1986) outperform it. However, the presented procedure

remains efficient enough to provide a serious reference implementation.

Functional programming is crucial to the method presented in this paper both as

a conceptual and implementation tool. First, the decision procedures directly derive

from continuation-based semantics of the calculi. Hence, they remain simple and

are likely to be programmed correctly. Second, performance partly relies on the

compilation of terms of the calculi into closures.

Imperative constructs such as exceptions or reference cells prove useful for

exploiting our enumeration technique for various purposes. However, we believe

that this aspect is not important and that our technique can also be implemented

in a lazy functional language such as Haskell.
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