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A REMARK ON HOMOGENEOUS CONVEX DOMAINS
SATORU SHIMIZU

§0. Introduction

In this note, by a homogeneous convex domain in R® we mean a
convex domain 2 in R" containing no complete straight lines on which
the group G(£Q) of all affine transformations of R" leaving £ invariant
acts transitively. Let 2 be a homogeneous convex domain. Then £
admits a G(£)-invariant Riemannian metric which is called the canonical
metric (see [11]). The domain £ endowed with the canonical metric is a
homogeneous Riemannian manifold and we denote by I(£2) the group of
all isometries of it. A homogeneous convex domain £ is called reducible
if there is a direct sum decomposition of the ambient space R* = R™ X R",
n; >0, such that 2 = 2, X £, with 2, a homogeneous convex domain in
R"; and if there is no such decomposition, then 2 is called irreducible.

The purpose of this note is to prove the following:

THEOREM. Let M be a homogeneous Riemannien manifold whose uni-
versal covering is isometric to a homogeneous convex domain 2 in R"
endowed with the canonical metric. If 2 is irreducible and not affinely

equivalent to a convex cone, then M is simply connected, that is, M itself
is isometric to 2.

It is already known in [2] that an analogous fact holds for a homo-
geneous bounded domain in C”.

We prove the above theorem along the same line as in [2] by using
results of Tsuji [9], [10].

The author would like to thank Professor Tsuji for his helpful advices.

§1. The center of a group of affine automorphisms of 2

First we discuss the connection between the irreducibilities of a homo-
geneous convex domain and the cone fitted onto it. For the purpose we
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need the notion of T-algebras. The details for it can be found in [11].
Let 2 be a homogeneous convex domain in R™ and V the cone fitted
onto it, that is,

V={(x, ) eR X R|xecQ, 1>0}.

Note that V is a homogeneous convex cone in R"*' (cf. the proof of
Proposition 2 in this section). By a theorem of Vinberg [11], we may
assume that 2 = Q) and V = V(¥), where ¥ = 3 ,.; <, ¥, is a T-algebra
of rank r (r = 2) and the notations V() and 2() bear the same meanings
as in [9], [10]. We put dim¥U,; = n,;. A criterion for 2 and V to be
irreducible can be given in terms of the T-algebra ¥ as follows:

(i) (Tsuji [10]) 2 = Q(¥) is irreducible if and only if, for every pair

(@,)) of indices with 1 < i < j < r — 1, there exists a series i, 1, ---,i, of
indices such that 1 =i, <r—10=Za<p), i,=1,i,=j and n,,_,;, +0
l1=a=p)

(i) (Asano [1]) V = V(%) is irreducible if and only if, for every pair
(#,j) of indices with 1 <i<j<r, there exists a series i, i, ---,i, of
indices such that 1 < i, Sr(0=a<p), i,=1i,i,=jandn,_, #01
a < p).

ProprosITION 1. In the above notation, if 2 is irreducible and not
affinely equivalent to a convex cone, then V is irreducible.

Proof. Since 2 = Q) is not affinely equivalent to a convex cone
by assumption, it follows from the definition of (%) that there exists an
index i such that 1 <i<r —1 and n;, # 0. By (i) and (ii), this implies
that V is irreducible. q.e.d.

Remark. If 2 is a convex cone, then the cone V fitted onto 2 is
reducible. In fact, one has V= Q2 X R,, where R, denotes the cone of
positive real numbers.

We fix notations. Let G be a group. For a subset H of G, C;(H)
denotes the centralizer of H in G, and the center of G is denoted simply
by C(G). When G is a topological group, the connected component of
G containing the identity element is denoted by G°. The unit element of
a group is denoted by e. The identity matrix of degree n is denoted by
1,. A(n, R) denotes the group of all affine transformations of R".

The aim of this section is to prove the following:

ProprosiTiON 2. Let 2 be an irreducible homogenzous convex domuain
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in R™ which is not affinely equivalent to a convex cone. If a subgroup G
of G(2) acts transitively on £, then one has C,u, g(G) = {e} and hence
C(G) = {e}. In particular, one has C(G(2)) = C(G(2)) = {e}.

For the proof, we need the following result:
(ii1)) (Rothaus [7]). Let V be an irreducible homogeneous convex cone

in R*. If a subgroup G of G(V) acts transitively on V, then one has
CGL(n,R)(G) = {Zln ! 2 € R}.

Proof of Proposition 2. Let V be the cone fitted onto £. Let p denote
the group homomorphism

Aln,R)sa+—> (f((‘)l) q(;)) eGL(n+ 1, R),

where f(a) and g(a) denote, respectively, the linear and the translation
parts of ae A(n, R). Then one has p(G(2)) < G(V). The pair (p, ¢) of the
group homomorphism p: G(2) — G(V) and the natural embedding ¢: 2 — V
given by «(x) = (x,1) is equivariant, that is, (ax) = p(a)c(x) for all a € G(2),
xe Q. Since G acts transitively on 2 by assumption, this shows that the
subgroup G’ = p(G)-{21,,,]2> 0} of G(V) acts transitively on V. By
Proposition 1, V is an irreducible homogeneous convex cone in R"*!
Therefore, using (iii), we see Cgr (.1, 2(GF) = {21,,.]2€ R}. Letae Cy, n(B.
Then one has p(a) € Csrm.1,r(G). Hence p(e) is a scalar matrix and this
implies a = e by the definition of p. g.e.d.

A homogeneous convex domain £2(n) in R* (n = 2) defined by
2n) ={(, -, x) e R |x' > () + -+ + (")}

is called the elementary domain. Every elementary domain is irreducible
and not affinely equivalent to a convex cone. The following result is
known:

(iv) (Tsuji [9]). Let 2 be an irreducible homogeneous convex domain
which is not affinely equivalent to the elementary domain. Then one has
Q)Y = G().

Combining (iv) with Proposition 2, we obtain

LemMMA. Let Q be an irreducible homogeneous convex domain which

is offinely equivalent to neither a convex cone nor the elementary domain.

If a connected Lie subgroup G of I(Q) acts transitively on £, then one has
C(G) = {e}.
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Remark. The above lemma remains valid for the elementary domain
(cf. the proof of our theorem in the next section and Corollary 2 in
Section 3).

§2. Proof of Theorem

First, suppose £ is affinely equivalent to the elementary domain 2(n).
Then, since 2(n) endowed with the canonical metric is of negative sectional
curvature (see, e.g., [8]), M is a connected homogeneous Riemannian mani-
fold of negative sectional curvature. Hence our assertion follows from
[6, Theorem 8.3, p. 105].

Next, suppose £ is not affinely equivalent to the elementary domain.
We set G = I(M)". Then one has a natural identification M = G/K, where
K is an isotropy subgroup of G at some point of M. Let  be the uni-
versal covering group of G and let = be the covering projection of G’ onto
G. Then one has M ~ ('/=~'(K) and Q ~ G'/K’, where K’ = z"/(K)". We
put

4, ={geG|g-y=y for all ye 2},
4={geG|g-x=x for all xe M}.

It follows that 4, 4. We note that, since G acts effectively on M, 4 is
a discrete subgroup of G'. Put G'/4, = G and K’/4,= K. Then Gis a
connected Lie subgroup of I(£2), and one has 2 =~ G/K. Moreover, one
has the following commutative diagram:

é/
/N
G= é’/do—-;—,-) Gld~G.

Since ker 7’ © C(G), we see by the lemma in the previous section that o’
is an isomorphism of G onto G. Therefore ='~%(K) is compact, because
so is K. Tt is easy to see K = n/"(K)", and hence K is compact. Since
2 is a cell (see [11]) and since 2 ~ é/K, K is a maximal compact subgroup
of G. Therefore one has K = 7’~'(K), and this implies 2 ~ G/K =~ G/K
= M. q.e.d.

§3. Corollaries and Remarks

An affine manifold M of dimension n is a manifold which admits an
atlas {(U,, ¢.)} such that each coordinate change ¢,o¢;" is an affine trans-
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formation of R® (cf. [5]). A diffeomorphism f of M is called an affine
transformation of M if it is affine with respect to the atlas {(U,, ¢.)}, that
is, if each transformation ¢,ofo¢;' is an affine transformation of R*, and
M is called homogeneous if the group G(M) of all affine transformations
of M acts transitively on it. Note that a domain £ in R" is naturally
an affine manifold and the group G(£2) defined in the introduction coincides
with the one defined above.

CorOLLARY 1. Let M be a homogeneous affine manifold whose universal
covering is affinely equivalent to a homogeneous convex domain £ in R".
If Q is irreducible and not affinely equivalent to a convex cone, then M is
simply connected, that is, M itself is affinely equivalent to 2.

Proof. Let I' be the covering transformation group of the covering
2 — M. By assumption, I" is a subgroup of G(2), and hence the canonical
metric of £ is [-invariant. With respect to the induced Riemannian
metric, M is a homogeneous Riemannian manifold. Indeed, since every
element of G(M) lifts to an element of G(Q) C I(2), G(M) acts as an iso-
metry group, and its action on M is transitive by assumption. Thus the
theorem shows that M is simply connected. q.e.d.

CoRrOLLARY 2. Let 2 be an irreducible homogeneous convex domain
which is not affinely equivalent to a convex cone. If a Lie subgroup G of
I(2) acts transitively on 2, then one has C(G) = {e}. In particular, one
has C(I(2))= {e}.

Proof. If 2 is affinely equivalent to the elementary domain, then this
is a direct consequence of [6, Theorem 8.4, p. 107] (cf. Proof of Theorem).
Otherwise, the proof goes as follows: Since C(G) — C(G), where G is the
closure of G in I(f), we may assume that G is a closed subgroup of I(%2).
The subgroup C(G) of I(2) is discrete. Indeed, using the lemma in Sec-
tion 1, we see C(G) C C(G") = {e}. The same reasoning as in the proof
of [6, Theorem 8.4] yields that C(G) acts properly discontinuously and
freely on £ and the quotient space C(G)\2 is a homogeneous Riemannian
manifold with respect to the induced Riemannian metric. By the theorem,
C(G)\2 is simply connected. Hence we conclude that C(G) = {e}. q.e.d.

Remark 1. In our theorem and Corollary 1, the assumption that 2
is not affinely equivalent to a convex cone can not be removed. Indeed,
let 2 be a homogeneous convex cone in R" and put M = I'\Q, where I" =
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{21,k e Z} C G(£2). Since I' C C(G(£2)), the transitive action of G(2) on
£ induces a transitive action of G(£) on M = I'\Q as an affine transfor-
mation group. This implies that M is a homogeneous affine manifold
whose universal covering is affinely equivalent to £. Therefore M is also
a homogeneous Riemannian manifold whose universal covering is isometric
to £ endowed with the canonical metric. However M is clearly not simply
connected.

Remark 2. Consider the following problem:

Let M be an n-dimensional homogeneous affine manifold which is
projectively hyperbolic in the sense of Kobayashi [4]. Then, is M a
homogeneous convex domain in R"?

This is an affine analogue of Kobayashi’s problem concerning homo-
geneous hyperbolic (complex) manifolds (cf. [3, Problem 12, p. 133]).

Since the intrinsic distance of M is complete, the universal covering
of M is affinely equivalent to a convex domain in R™ containing no com-
plete straight lines (see [5]). Therefore Corollary 1 shows that the answer
to the above problem is affirmative when the universal covering 2 of M
is irreducible (note that 2 is necessarily homogeneous) and not affinely
equivalent to a convex cone.
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