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ON THE PRIMITIVITY OF THE GROUP ALGEBRA 
ALAN ROSENBERG 

Let G be a group and F a field of arbitrary characteristic. In [4] Kaplansky 
asks under what conditions is F[G] primitive, where F[G] is the group algebra 
of G over F. We give some necessary conditions on G that F[G] be primitive 
and propose a conjecture. 

Definition. A ring R is primitive if it has a faithful irreducible right module. 

The above should really be considered as a definition of right primitive. 
One can analogously define left primitive and the two properties are not 
equivalent. For our purposes, the two concepts are equivalent, for the group 
algebra possesses a nice involution. 

If we assume that F[G] is primitive, there are some immediate restrictions 
on G. First of all G cannot be Abelian since the only primitive commutative 
rings are fields. (I exclude of course the case when G consists of one element.) 
Secondly, the group G cannot be finite since in that case the Density Theorem 
[2, Theorem 2.12] would imply that F[G] be simple, but the augmentation 
ideal belies that. (Again I exclude the trivial case.) Our first goals will be to 
strengthen these two results. 

I t is well known that a primitive ring is prime and [1, Theorem 8] tells us 
that F[G] is prime if and only if it has no nontrivial finite normal subgroups. 
This shows that if P is any property of G that makes F[G] primitive, that 
property is lost upon taking the direct product with Z/2Z. 

By the Density Theorem we know that if F[G] is primitive, there is a division 
ring A such that for every integer m there is a subring Sm C F[G] and an 
epimorphism am of Sm onto Am, the ring of m X m matrices over A. But by 
[2, Lemma 6.3.1], Am does not satisfy a polynomial identity of degree less 
than 2m. Since m is arbitrary and any polynomial identity satisfied by F[G] 
would also be satisfied by any subring, we see that F[G] satisfies no polynomial 
identity. But it is easy to show that if [G:Z(G)] = n, where Z(G) is the centre 
of the group G, then F[G] would satisfy a standard polynomial identity. One 
can also see this from a result in [7, p. 443] which says that if [G:Z(G)] — n 
then its commutator subgroup is finite. Theorem 1 and Theorem 2 strengthen 
this result in two directions. 

THEOREM 1. If F[G] is primitive, then G has no Abelian subgroup of finite index. 
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Proof. If G did have an Abelian subgroup H of finite index then it would 
have a normal Abelian subgroup, K, of finite index. For H must only have 
a finite number of conjugates and so we need only let K be the intersection 
of those conjugates. But then [5, Theorem 1] tells us that G satisfies the Pn 

condition for some integer n, i.e., for any n elements gu . . . , gn of G, the 
nl/2 products g^ga . . . g*„ obtained from all even permutations is identical 
with the n\/2 products obtained from the odd permutations. But the fact 
that G has property Pn is equivalent to the group ring F[G] (for F of char­
acteristic 0) satisfying the standard polynomial identity 

[_Xi, %2, . . . , Xn\ = U 

Passman has pointed out that if [G:H] = n, then F[G] can be embedded 
in En where E is the commutative ring F[H] and so K[G] satisfies a standard 
polynomial identity, regardless of the characteristic of F. This completes the 
proof. 

Again let us assume that F[G] is primitive. Then as a consequence of the 
definition there exists a maximal right ideal, p, of F[G] such that 

(p:R) ^ K R\Rr C P} = 0. 

Note that (p:R) is the largest two sided ideal contained in p. Let 

H= {ae G|erpCp}. 

THEOREM 2. H is a subgroup of G and [G:H] = oo. 

Proof. First we show that H is a subgroup. Clearly if c, r G H, then 
(TT G H. Now suppose <s G H. Hence 

<jp Ç p 

P Ç or-lp. 

But cr^p is a right ideal and thus p = 0*"̂ » by maximality of p. 
Now if H is of finite index, group theory tells us that there exists a K C H 

with X normal of finite index. Let j ^ } , l ^ i ^ i , be a set of left coset 
representatives of K. They will also be right coset representatives since K is 
normal. Let 

k 

A = n ^ r 1 

4̂ is clearly a right ideal contained in p. I claim that it is also a left ideal; 
for suppose a £ A and a G G is such that era G ^4. Then we can write 
a = kypu k G i£, and era $ ^jP&r1, for some i, j . Since a G ^4, we can also 
write a = ^ ~lrpjP^F1^i- Hence 

<ra = kipiypi-^jpypr^i = k\[/jp\f/f1^ t 

= tjk'p'tr1 = ^ ' V r \ M ' a 
£,/>',£" G P. 
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Hence aa £ ^jP^T1- H now we could show that A ^ (0), we would have 
a contradiction and we would be through, but the following result on group 
algebras, the proof of which was suggested by D. Passman supplies that result. 

LEMMA. / / pi, . . . , pn are maximal right ideals of the group algebra, F[G], 
and G is infinite, then C\t=i Pi ^ (0). 

Proof. Suppose (0) = OLi P*- Then as F[G] modules 

F[G] c e t F[G]/Pi. 

Since the module on the right is completely reducible, this implies that F[G] 
is completely reducible and hence, by a corollary in [1], G is finite. This 
completes the proof of the lemma, and the proof of Theorem 2. 

Note that if H is of finite index in G and F[H] is primitive, we cannot 
conclude that F[G] is primitive, because the group algebra of the trivial group 
is primitive, being a field, but the group algebra of any other finite group 
cannot be primitive as we have seen. Is this the only exception? Theorem 3 is 
a partial answer to this question. The following result is attributed to Pligman 
and a full proof appears in [6]. 

LEMMA. Let G be a group and H a subgroup of finite index. If an exact sequence 
of F[G] modules splits as a sequence of F[H] modules, then it also splits as a 
sequence of F[G] modules. 

Sketch of proof. Since H contains a normal subgroup of finite index we may 
assume without loss of generality that H is normal, and the result follows by 
the usual Maschke averaging process. 

THEOREM 3. If [G:H] < o° and F[H] is primitive and G has no nontrivial 
finite normal subgroups then F[G] is primitive. 

Proof. Let M be a faithful irreducible right F[H] module. Consider the right 
F[G] module 

W = M ®F[H] F[G]. 

Let {<Ti)ni=i be a set of right coset representatives of H in G. Now F[G] is a 
free left F[H] module with {o-i}

wi-i as a basis; so 

W = £ M ® at. 

Now M can be made into a left F[H] module by 

km = mk* m 6 M,k £ F[H] 

where * indicates the standard involution in the group algebra. I t is easy to 
see that M is also faithful and irreducible on the left. Hence M ® at is a 
left F[H] module. I claim that it is irreducible; for if Z is a nontrivial submodule 
of M ® <rit 

Z = {m € M\m ® <rt € Z) 
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can be seen to be a nontrivial proper submodule of M. 
Hence W is completely reducible as a F[H] module. Therefore, if U is a 

F[G] submodule of W, we know that the exact sequence 

splits as a sequence of F[H] modules. But now, by the above lemma, it splits 
as a sequence of F[G] modules. Thus the lattice of F[G] submodules of W is 
complemented, and so W is completely reducible as a F[G] module. 

W is also faithful as an F[G] module, for if ]T k^i annihilates W, kt Ç F[H], 
let m 7* 0 £ M. Then 

(m ® 1) Z ki<n = 0, 

Y, mki ® (?i = 0. 

But this means that rnki — 0 for all i, which in turn implies that kt = 0 for 
all i, since m was arbitrary and M is faithful. 

Hence W = 0 F ; , where the Vj are irreducible î [G] modules. Let 
Aj = Ann V .̂ Then the ^4;- are two-sided ideals of F[G] and C\ A3 — (0), 
since W is faithful. But since we are assuming that G has no nontrivial normal 
subgroups we must have that F[G] is prime. But then D A3 = (0) implies 
that some Aj = (0). But then Vj would be a faithful irreducible F[G] module 
and so F[G] would be primitive. This completes the proof. 

Again suppose that R = F[G] is primitive and let p be a maximal right ideal 
containing no nontrivial two-sided ideals. Let M — R/p. By Schur's Lemma, 
A = Endff (M) is a division ring and we can consider M as a right vector 
space over A. The Density Theorem tells us t ha tR is a dense ring of EndA (M). 
[3, Theorem I, p. 25] tells us what A looks like. Let S = {r G R\rp C p}. Note 
that pdS. Define a map from S into A by sending s £ S into left multipli­
cation by s. This is easily seen to be a homomorphism with kernel p. We will 
show that it is onto. 

Suppose ô Ç A and let (ï) ô = à. (Henceforth *" will denote congruence 
class modulo p). Then if x 6 M 

(x)ô = (Jx)ô = (ï)ôx = âx. 

I claim that a Ç S; for let p Ç p. Since ô is linear, 

Ô = (p)ô = (ï)ôp = âp = âp. 

That is, ap C p and so 

(x)ô = âx = ax. 

Let H" be as in Theorem 2, with {^} a set of right coset representatives 
of H in G. The following is an interesting result. 

THEOREM 4. Let e be the identity element of G. If ]£!Li h^i (z S> hi £ F[H], 
then either 
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(i) hi £ p, for all i, or 
(ii) {ë, $1, . . . , \iy ar£ linearly dependent over A. 

Proof. This is an easy consequence of the Density Theorem. If (ii) does not 
hold, the Density Theorem tells us that for any Xi £ R, 1 è i è n, there 
exists an r € R such that 

(1) er - 0 e P, 

(2) $ir — xt £ p, 1 ^ i ^ n. 
From (2) it follows that 

(3) L hiil/if — X) Ai*« € p. 
But since J^ h^i Ç 5, (1) and (3) allow us to conclude that 

E htXi € p. 

Appropriate choices for xt now give us (i). This completes the proof. 

It is a long standing conjecture, and a widely believed one, too, that the 
Jacobson radical of F[G] is trivial for all G. This in turn would imply that we 
can always express F[G] as a subdirect sum of primitive rings. This makes the 
following conjecture which the author proposes a somewhat surprising one. 

Conjecture. F[G] is never primitive if G is nontrivial. 
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