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PLANAR SUBLATTICES OF A FREE LATTICE. I 

IVAN RIVAL AND BILL SANDS 

1. I n t r o d u c t i o n . There are three lat t ice-theoretic properties t ha t are 
generally used to open a discussion on sublatt ices of a free lat t ice: 

(W) for all a, b, c, d, a A b ^ c V d implies a A b ^ c, a /\ b g rf, 
a ^cVd,orb ^ c V d; 

(SDv) for all a, b, c, a V b = a V c implies a V b = a V (J A c ) ; 
(SD A ) for all a, b, c, a A b = a A c implies a A b = a A (b V c). 

(W) is one of the conditions present in P. M. W h i t m a n ' s solution [17] of the 
word problem for lattices while (SDV ) and (SD A ) were originated by B. 
Jônsson [8] (cf. R. A. Dean [21). I t is well known tha t each of these conditions 
holds in every sublatt ice of a free lattice. 

In the late 1950's Jônsson posed a conjecture (cf. B. Jônsson and J. E. Kiefer 
[9]) t ha t has in the intervening period a t t rac ted considerable a t tent ion . 

C O N J E C T U R E . A finite lattice is a sublattice of a free lattice if and only if it 
satisfies (SD V ) , (SD A ) and (W). 

W h a t is known? 
F. Gal vin and B. Jônsson [3] considered a special case of the conjecture in 

1961: they showed tha t any finite distr ibutive lattice t ha t satisfies (SD V ) , 
(SD A ) , and (W) is a sublatt ice of a free lattice. W h a t is more, they could 
essentially display all finite distr ibutive sublatt ices of a free lat t ice: a finite 
distributive lattice is a sublattice of a free lattice if and only if it is a linear sum of 
lattices, each of which is isomorphic to 1, 23, or 2 X nfor some n. (For a positive 
integer m, m denotes the m-element chain.) 

Call a lattice semidistributive if it satisfies (SDV ) and (SD A ) . Of course, 
every distr ibutive lattice is semidistr ibutive while a modular semidistr ibutive 
lattice is distr ibutive. Hence, Galvin and Jônsson had really settled the con­
jecture for all finite modular lattices. 

In 1962, B. Jônsson and J. E. Kiefer [9] proved t h a t finite sublatt ices of a 
free lattice have breadth a t most four; moreover, they showed t h a t the con­
jecture will hold for all finite lattices if it holds for finite lattices of breadth 
a t most three. Still, all efforts to settle even the breadth two case have been 
unsuccessful. 

T h e purpose of this paper is to settle the conjecture in the affirmative for a 
ra ther extensive class of breadth two lat t ices; namely, planar lattices, t h a t is, 
finite lattices with planar (Hasse) diagrams. 
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T H E O R E M . A finite planar lattice is a sublattice of a free lattice if and only if 
it satisfies (SD V ) , (SD A ) , and (W). 

In a companion paper [15] we construct a minimum listJ^7 of lattices such 
tha t a finite lattice is a planar sublattice of a free lattice if and only if it contains 
no sublattice isomorphic to a lattice in<f£\ 

Some words about the plan of this paper are in order. 
In §2 we shall elaborate on some basic facts concerning breadth, especially 

in the context of semidistributive lattices of breadth a t most two. 
One of the most interesting by-products of our investigations stems from the 

importance of the "finiteness" condition in the conjecture. R. Freese and J. B. 
Nat ion (cf. B. Jônsson and J. B. Nation [10]) have already exhibited a finitely 
generated (infinite) lattice tha t satisfies (SD V ) , (SD A ) , and (W) yet is not a 
sublattice of a free lattice. In §3 we shall construct a small family of finite 
partially ordered sets none of which can appear as a subset in a finite breadth 
two lattice satisfying (SD V ) , (SD A ) , and (W). This result contrasts sharply 
with the problem of characterizing those finite partially ordered sets t ha t 
generate a finite free lattice (cf. Yu. I. Sorkin [16] and R. Wille [18]). The 
prospect of enumerating, or at least characterizing, those finite part ial ly 
ordered sets tha t cannot appear as subsets in a finite sublattice of a free lattice, 
may be as illuminating about the s tructure of free lattices as the solution to the 
current conjecture itself. * 

In §4 we shall recall some elementary facts about planari ty for lattices. 
Our basic approach to the problem originates in the thesis of H. S. Gaskill 

[4] (cf. [5]) where the conditions (T v ) and (TA) were first formulated. A paper 
of H. S. Gaskill, G. Grâtzer, and C. R. P ia t t [6] continued the s tudy of ( T v ) 
and (TA) along the lines initiated by Gaskill. R. McKenzie had shown in [13] 
t ha t a finite lattice is a sublattice of a free lattice if and only if it is a bounded 
homomorphic image of a free lattice and satisfies (W). Gaskill and P ia t t [7] 
combined these results to prove tha t a finite lattice is a sublattice of a free lattice 
if and only if it satisfies ( T v ) , (T A ) , and (W). This criterion is likely the most 
practical characterization known for actually determining whether or not a 
part icular finite lattice is a sublattice of a free latt ice; it is the one tha t we shall 
use. The central ideas in this approach are ' 'minimal pa i rs" and "cycles" . 
These ideas will be developed in § 5 and § 6. (The substance of these ideas was 
also suggested by B. Jônsson in the early 1960's in private notes which were 
not widely circulated (cf. [10]).) 

T h e main body of the proof occurs in § 7 and § 8. 
Finally, for an obvious reason we prefer to include in the introduction some 

retrospective remarks about our proof. The proof of the main theorem of this 
paper is long and arduous. In some respects the proof amounts to an accumula­
tion of techniques which in concert enable us to carry a straightforward 
approach through to the end. We maintain a guarded optimism tha t this same 
approach may yet be extended to settle the complete breadth two case of the 
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conjecture. In any case, several of the techniques in our repertoire seem to be of 
quite independent interest. 

2. B r e a d t h . The breadth b(L) of a latt ice L is the smallest integer b such tha t 
every join V ? i } x7- of elements of L is equal to a join of b of the x / s . Of course, 
a lattice has breadth one if and only if it is a chain. 

W h a t would happen if we were to use meets instead of joins in the definition 
of b(L)? Notice t h a t this definition does not appear to be self-dual: actually, 
it is. 

LEMMA 2.1. Let L be a lattice with b(L) = b, and let bf be the smallest integer 

such that every meet f\ b ^ xt of elements of L is equal to a meet of b' of the xjs. 

Then b' = b. 

Proof. Suppose bf > b. I t follows t ha t there are elements xu 1 ^ i ^ b + 1, 
of L such t ha t /\\-J\ xt is not equal to the meet of any b of the x / s . Let 
Ji = A lx*|l = ^ = fr + 1> ^ 5^ J} for each j £ {1, . . . , b + 1} ; we have tha t 
Jj $ Xjj for each j . Now let zk = V {y3-\l ^kjtkb + l, j^k] for each 
k (z {I, . . . , b ~\- 1}. Note t ha t zk ^ xk for each k bu t t ha t V^=1 y3- ^ xk for 
any k; thus, zk ^ Vj=i yd- for any k, contradict ing b(L) = b. Hence b' ^ /;, 
and a dual a rgument shows equali ty. 

For any integer n ^ 3, a crown [1] of order "In is a subset 

C = {xi, yu *2, y*i • • • , xn, yn) 

of a part ial ly ordered set in which xi < yi, y± > #2, x2 < ^2, . • • , xn < y„, 
and ^rt > Xi are the only comparabil i ty relations t h a t hold in C (see Figure 1). 
The next lemma illustrates the usefulness of crowns of order six in a discussion 
of b read th two lattices. 

Xi X2 X3 X„ 

FIGURE 1. A crown of order 2n. 

L E M M A 2.2. A lattice has breadth at most two if and only if it contains no crown 
of order six. 

Call a finite lattice L dismantlable if we can write L = {xi, x2, . . . , xn] such 
t h a t {xi, x2, . . . , Xi) is a sublatt ice of L for each i = 1, 2, . . . , n. T h e notion 
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of dismantlabil i ty was first introduced by I. Rival in [14] and it has since 
played a major role particularly in the s tudy of planar lattices. Dismantlable 
lattices themselves have been characterized by D. Kelly and I. Rival [11]. 

LEMMA 2.3. A finite lattice is dismantlable if and only if it contains no crown. 

As a consequence, every dismantlable lattice has breadth a t most two. I t 
turns out tha t , in the presence of (SD V ) , the converse is t rue as well. 

LEMMA 2.4. Let L be a finite lattice satisfying (SD V ) . Then L is dismantlable 
if and only if b{L) ^ 2. 

Proof. Let b(L) ^ 2, and suppose tha t L is not dismantlable. By Lemma 
2.3, L contains a crown; let 

{xu yu x2, 3̂ 2, . . . , xn, yn] 

be a crown of minimum order in L. We may assume tha t xt V xt+i = yt and 
yt A yi+i = xi+u i = 1, . • . , n — 1, and xn V Xi = yn, yn A y\ = Xi hold in 
L. Fur thermore , since b(L) rg 2, Lemma 2.2 implies tha t n ^ 4. Now, if 
Xi V x3 > x2, {xi, yi, x2, y2, x3, X\ V x3} is a crown of order 6, which is impos­
sible; hence Xi V x3 > x2 and by duali ty y\ A yz < y2- Also, if Xi V x3 > x4, 
it is easy to see tha t {xi, Xi V x3, x3, y^, x4, 3/4, • • • , xn, yn) will contain a crown 
of order < 2n, which is a contradiction. Therefore x\ V x3 > x4, and we have 
by symmet ry t ha t 

Xi V x3 ^ x2 V x4 ^ x3 V x5 ^ . . . ^ xn V x2 ^ Xi V x3. 

Now 

3>i V y2 = Xi V x2 V x3 = Xi V x3 = x2 V x4 = x2 V x3 V x4 = y2 V ys, 

and hence (SDV ) implies tha t 3/1 V y2 = y2 V (yi A 3̂ 3) = y2, a contradiction. 
Thus L is dismantlable, and the lemma is established. 

In this paper we shall be primarily interested in finite lattices of breadth 
a t most two. Still, it seems worthwhile to prove the next two results in the 
framework of finite lattices of arbi t rary breadth. 

Recall t ha t for elements x and y of a lattice L, with x > y, x covers y (or y is 
covered by x, or x is an upper cover of y, or y is a lower cover of x) if x > z ^ y 
implies z = y. We write x > y or y < x. 

LEMMA 2.5. Let n* be the maximum number of elements covered by any element 
of the finite lattice L. Then n* ^ b(L). 

Proof. Let b = b(L). There are elements Xi, . . . , xb of L such tha t 

b 

yj = V {xt\l g i ^b,i?± j) < V xt 

for each j Ç { ! , . . . , & } . Hence for each j there exists Wj < \Zb
i=i xt such t ha t 
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y.j ^ Wj. Moreover y3 V ^ = V i = i xt if j 9e k; thus all the w/s are dist inct , 
showing t ha t W\=i xt has a t least b lower covers. 

The self-dual na ture of breadth has already been demonst ra ted in Lemma 
2.1. Let t ing n* be the maximum number of elements covering any element of 
L, we have n* g: b{L) by duali ty. 

L E M M A 2.6. Let L be a finite lattice satisfying (SD A ) and let n* be the maximum 
number of elements covering any element of L. Then n* = b(L). 

Proof. Let a £ L and let Xi, . . . , xn* be dist inct elements covering a. Since 
Xi A Xj = a whenever i ^ j , successive applications of (SD A ) show tha t 
xt A V {xj | 1 ^ j ^ n*, j ^ i) = a for each i £ {1, . . . , n*} ; t h a t is, 
Xt $ V {xj | 1 ^ j rg n*, j 9e i) for each i. I t follows t h a t 

n* 

V I*,-11 ^j ^ w*,j ̂  i} < V Xj 

for each i, and so 6(L) ^ n*. F rom Lemma 2.5 we conclude b(L) = n*. 

We conclude this section with some further results concerning bread th two 
lattices. 

L E M M A 2.7. Let L be a finite lattice satisfying (SD A ) such that b(L) ^ 2. Then 
(i) each element of L has at most two upper covers; 

(ii) if x, y, z are distinct elements of L and u = xAy = xAz = yAz then 
u Ç {x, y, z), that is, {x, y, z) is not an antichain. 

Proof, (i) This is immediate from Lemma 2.6. 
(ii) Let u = xAy = xAz = yAz, and suppose {x, y, z] is an antichain. 

Then x, y, and z are all greater than u, and we may choose upper covers xi, y\, 
z\ of u such t ha t x ^ Xi, y ^ y\, and z ^ z\\ since x A 3 > = x A s = : y A 2 
= w, Xi, ^ 1 , and Zi are distinct, contradict ing (i). 

LEMMA 2.8. (i) Let L be a finite breadth two lattice, and let {a, b, c} be a three-
element antichain in L with a V b and a V c noncomparable. Then a < b V c. 

(ii) If in addition L satisfies (SD A ) then, letting a' be a lower cover of a, either 
a' V b > a or a' V c > a. 

Proof, (i) If a < b V c then {b, a V b, a, a V c, c, b V c} is a crown of order 
six, contradict ing Lemma 2.2. 

(ii) Let us suppose t h a t a' V b > a and a' V c > a. T h e n a A (a' V b) = 
a' = a A (ar V c) whence, by (SD A ) a' = a A (a' V b V c). F rom (i), 
& V c > fl so t h a t a' = a, which is impossible. 

3. F i n i t e n e s s . T h e purpose of this section is to establish a result t h a t pro­
vides us with a powerful technique in applying the finiteness assumption of 
the conjecture. T h e result, which is due to I. Rival, also seems to be of consider­
able independent interest . 
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For noncomparable elements a and b of a partially ordered set we write 
a\\b. An element a of a lattice L, a 9e 0, is join irreducible if a = b V c implies 
a = b or a = c; a 9e 1 is meet irreducible if a = b A c implies a = b or a = c. 
J(L), respectively M(L), shall denote the subset of all join irreducible ele­
ments, respectively meet irreducible elements, of L. 

If P and Q are partially ordered sets, recall that a one-to-one map r? : P —> Q 
is a wm& embedding if both 77 and T?-1 are order-preserving. Consider the par­
tially ordered set MO of Figure 2, and construct partially ordered sets Ml and 
M2 (Figure 2) as follows: 

Ml = MO VJ {/*}, where h < f, h\\b, c, d, e, and g, and & may or may not 
be comparable with a; 

M2 = Ml U {i}, where i < g, i\\a, b, c, d, f, and h, and i may or may not 
be comparable with e. 

PROPOSITION 3.1. Let L be a semidistributive lattice satisfying (W) such that 
b(L) ^ 2. Suppose that 

(i) there is a weak embedding 77 : MO —» L swc/& /Aa/ /r? cm^ gr; are 70^ 
irreducible elements of L, or 

M l M2 

FIGURE 2 
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(ii) there is a weak embedding 77 : Ml —> L such that grj is a join irreducible 
element of L, or 

(iii) there is a weak embedding 77 : M2 —> L. 
Then L is infinite. 

Proof. We will give the proof, assuming that (ii) holds; it will be easy to see 
that similar proofs exist in the other two cases. 

Suppose (ii), and consider the set 

C = {CT)\T) : Ml —> L is a weak embedding, gr] Ç J(L)} Ç L. 

By assumption C is nonempty. Suppose that L is finite; then we can choose 77 
satisfying (ii) such that crj is a maximal element of C. Furthermore, letting 
xrj = x' for x G Ml , we may assume that a' V cf = b'f cf V ef = d', b' A df 

= c'', and /*' V b' = f. Let c* < c'. We have from Lemma 2.8(ii) that either 
c* V a' = V or c* V e' = d'. 

Suppose c* V a' = b'. By (W) we must have / ' A d' $ &'. If (/ ' A d') V 
6' < / ' then 

{a', (/ ' A df) V 6', / ' A d', d', e',f', g'} h'\ ^ Ml , 

and f f\ d' > c', contradicting the maximality of crj = c'. So (/ ' A d') 
V b' < f, which implies that (/ ' A d') V V = / ' . Since hf V b' = / ' and 
{/&', &', / ' A d') is an antichain, the dual of Lemma 2.7(ii) implies that 
(/ ' A d') V V < / ' . But now (/ ' A d') V h' % b', and hence 

{h', (/ ' A d') V h', f A d'f d'f e', / ' , gf, V] ^ Ml , 

and f A d' > c'j again contradicting the maximality of c'. 
Hence c* V e' = d', and by (W) we must have V A gr $ d'. Now (b' A gf) 

V d' ^ g', and since g' G / ( L ) we in fact have (bf A gf) V d' < gr. Thus 

{a', &', 6' A g'f (6' A g') V d', e', / ' , g', A'} ^ Ml , 

and &' A g' > c', contradicting the maximality of c'. 

For readers of a statistical bent, we remark that Proposition 3.1 will be 
applied no less than 18 times in the proof of the main theorem. 

4. Planarity. Planar lattices were investigated and characterized by 
D. Kelly and I. Rival [12]. Their characterization, while not needed here, will 
play a central role in a companion paper [15]. We shall assume familiarity with 
some of the more transparent concepts concerning planar lattices. 

Let e(L) be a planar embedding of the planar lattice L, and let x Ç L. It is 
intuitively obvious that the lower covers of x are linearly ordered from left to 
right. Hence we can define a relation X on the elements of L as follows: x\y if 
and only if x\\y and there are lower covers xf and y' of x V y such that x ^ x', 
y S yf, and x' is to the left of y' (with respect to e(L)). 

For the remainder of this section we let L be a planar (finite) lattice, and we 
suppose that X has been defined with respect to some planar embedding of L, 
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The first lemma, due to J . Zilber, sets out the basic properties of X (for a 
proof, see [12]). 

LEMMA 4.1. X is a strict partial order on L. Moreover, if x\\y, then xXy or yXx. 

I t follows tha t for x, y G L, exactly one of the following holds: x = y, x < y, 
x > y, xXy, yXx. Consequently, the expression "xXy" can be read, and thought 
of, as "x is to the left of y \ 

LEMMA 4.2 (i) If xXy and y < z, then xXz or x < z. 

(ii) If xXy and x < z, then zXy or z > y. 

Proof, (i) If x ^ z then x > y, contradicting x\y. If zXx then by transi t ivi ty 
zXy, contradict ing y < z. The conclusion follows from Lemma 4.1. The proof 
of (ii) is similar. 

Remark. Clearly there is a kind of dual i ty a t work here. Corresponding to X, 
we may define a partial order X' on L by: x\'y if and only if yXx (the expression 
"xX'y" of course could s tand for "x is to the right of y"). Then given any s ta te­
ment 5 valid for a particular planar embedding of a planar lattice L, we may 
replace "left" with " r igh t" and X with X' in S wi thout affecting its validity. 
The resulting s ta tement will be called the reflection of S. Wi th this terminology, 
Lemma 4.2(ii) is the reflection of Lemma 4.2(i). 

While we are on the subject, we may as well point out tha t the next lemma is 
"self-reflective". 

LEMMA 4.3. If xXyXz then xAz<y<x\/z. 

Proof. Suppose y < x V z. Since yXz and z < x V z, Lemma 4.2 implies t ha t 
yXx V z. But since xXy and x V z > x, Lemma 4.2 also implies tha t x V zXy, a 
contradiction. Hence y < x V z and, dually, x A z < y. 

COROLLARY 4.4. If xXyXz then xWyVz = xWz. 

I t follows, of course, t ha t a planar lattice has breadth a t most two. 
For a join irreducible element a of L we denote its unique lower cover by r/#. 

Similarly, if a G M(L) we denote its unique upper cover by a*. (Covering 
elements shall be separated in the figures by double lines when we wish to 
emphasize the fact.) 

LEMMA 4.5. Let L satisfy (SDV ) and let x, y, z be elements of L such that xXyXz, 
y G J (L), and y* < z. Then xXy V z. 

Proof. If x < y V z then by Corollary 4.4 x V z = y V z. By (SD V ) , 
y V z = (x A y) V z; but since y G J(L) and x\\y, x A y ^ y* < z and hence 
y V z = z, a contradiction. Therefore x < y V z, and by Lemma 4.2 (i) we 
conclude t ha t xXy V z. 

LEMMA 4.6. Let L satisfy SD 
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(i) If x, y, yi, y2 are elements of L such that xXy, y\ > y, y2 > y, and yiXy2. 
then x V y = x V yi. 

(ii) If xXyXz then x A y ^ y A z. 

Proof, (i) It is clear that x V y > y implies x V y ^ u for some u > y: 
from Lemma 2.7(i), u = yi or u ^ y2. In the first case, x V y ^ x V u 
= x V yi ^ x V y, so that x V 3> = x V yi as desired. If ÎJ ^ v2 then îXz/ 
from Lemma 4.2, and so Lemma 4.3 implies that x V y ^ x V u ^ x V yy 

^ x V 3>, showing that x V y = x V Ji in either case. 
(ii) Ifx A y = y A s then xAy = yAz = xAz from the dual of Corol­

lary 4.4. But this is impossible by Lemma 2.7(ii). 

Consider the right boundary B of L (of course, with respect to the planar 
embedding e{L)). B certainly contains at least one element of M(L), if 
\L\ > 1 ; for instance B will contain a dual atom of L. Therefore we can speak 
of the minimal meet irreducible element of B. The first part of the following 
lemma is due to K. A. Baker, P. C. Fishburn, and F. S. Roberts [1], and the 
second part (actually, its reflection) is Proposition 2.6 of [12]. 

LEMMA 4.7. Let B be the right boundary of L and let a be the minimal meet 
irreducible element of B. Then 

(i) a is doubly irreducible; 
(ii) if x (z L\B there exists y G B such that y is doubly irreducible and x\y; 

(iii) x < a implies that x G B. 

Proof of (iii). If x d B, choose y as in (ii). From Lemma 4.2, either a\y or 
a > y; since a G B, we have a > y. But y G M(L), contradicting the choice 
of a. 

This last result will reemerge to play an important role in § 6 and beyond. 

5. Minimal pairs. Let L be a lattice and let X, Y Ç L We shall write 
X <<C Y if, for every x G X, there exists y G Y such that x S y-

Let p Ç L and let / be a finite subset of L. The pair (p, J) is called a minimal 
pair if the following three conditions hold: 

(ii) p ^ V J; 
(iii) if / ' is a finite subset of L such that p ^ V / ' and J' « / , then J' 2 J. 

We begin this section with some well-known properties of minimal pairs. 

LEMMA 5.1. Let (p, J) be a minimal pair. Then 
(i) J is an antichain; 

(ii) p ^ x for any x G / ; 
(iii) J ç J(L); 
(iv) x G / implies that x* £ M(L); 
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(v) if (p, J) is a minimal pair and p < p' Ik V J for p' Ç L, (p', J) is also 

a minimal pair; 
(vi) b(L) = n implies \J\ ^ n. 

Proof, (i) and (vi) are true because otherwise V / = V J' for some proper 
subset J' of J; since J' « / , this is a contradiction. 

(ii) If £> < x for x G / then, letting x* £ L be such tha t p tk x* < x and 
setting 7 ' = (7\{x}) U {x*}, we have tha t J' «J,pS V / ' , and / ' ^ / , 
contradicting the assumption tha t (p, J) is a minimal pair. 

(iii) Let x = y V 2 G / , and set / ' = (J\{x}) \J {y, z}. Then p ^ V / ' 
and / ' « / , so we must have tha t / Ç / ' . This implies tha t x = y or x = z, 
as desired. 

(iv) Since | J | ^ 2 from (ii), we can find %' £ J with x' ^ x. If x* £ M(L), 
then x' V x* = x' V x; hence, letting J' = (J\{x}) U {x#}, we have tha t 
J' « / , \l J' = V / , and J' 2 ^ contradicting the assumption tha t (p, J) is 
a minimal pair. 

(v) This is obvious. 

As a consequence, there is an al ternate description of minimal pairs in a 
lattice of breadth two. 

LEMMA 5.2. Let p G L and J Ç.L with J finite, and assume b(L) = 2. Then 
(p, J) is a minimal pair if and only if the following conditions hold: 

(i) J = {a, b} for some a, b 6 L; 
(ii) P S a V b while p ^ a, p ^ b; 

(iii) if a\ ^ a, b\ ^ b are such that p S «1 V 61, //^w «i = a and b\ = b. 

We shall require some further techniques to assist us in our investigation of 
minimal pairs. 

LEMMA 5.3. Let b(L) = 2, let x (E J(L), and let y and p be elements of L such 

that x\\y, y < p ^ x V y, and p ^ x* V y. Then there exists yf tk y such that 
(Pi \x> j')) is a minimal pair. 

Proof. Let Y = {u £ L\n tk y, p Sx Vu). Since y G Y, Y is nonempty, 
and hence we can find a minimal element y' of Y. If Xi ^ x and y\ ^ y' are 
such tha t p S Xi V yi, then xi = x; for otherwise %\ ̂  x* and so Xi V y\ 
fk x* V y < p. But now y\ = y' by the minimality of y', hence by Lemma 5.2 
we are done. 

LEMMA 5.4. Let L be planar, and let (p, {x, 3;} ) be a minimal pair with x < p 
and p\y. Let p' £ L be such that x < p' < x V y and p'\p. Then (p' \x, y\ ) is a 
minimal pair. 

Proof. We need only check tha t (iii) of Lemma 5.2 holds. Let x' tk x and 
y' S y with p' S x' V y'. If y' < p then p' ^ x' V y' ^ p, which is impos­
sible. Since p\y, the dual of Lemma 4.2(i) implies tha t pf\p\yf. Now Lemma 
4.3 implies p < y' V p' ^ %' V yf, and we conclude t ha t x' = x and yr = y. 
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LEMMA 5.5. Let L be planar and let (pi, {xi, y\) ), (p2l {x2, y2\ ) be minimal 
pairs with Xi\yu y^ < pi, and pi = y2. Then either x2 < %i or Xi\x2. 

Proof. Let x2Axi or x2 ^ Xi. Then x2 V y2 = x2 V y\ although (p2, {x2, y2} } 
is a minimal pair. 

Now, let L have breadth two and satisfy (SDV) as well. We proceed to show-
that there are, in this case, just two kinds of minimal pairs, as illustrated ii\ 
Figure 3. Let (p, {x, y) ) be a minimal pair. If x < p, this is Figure 3(a) (except 
that p may equal x V y). If y < p a similar diagram results. Suppose, then, 
that x, y, and p form an antichain. Since x V y ^ p we have x V y = x 
V y V p. Suppose that x V p ^ y; then x V p = x V y V p = x *V y, so by 
(SDV) .x V (p A y) = x V y ^ p. But since p A y < y this contradicts the 
assumption that (p, {x, y) ) is a minimal pair. Hence x V £ ^ j> and by sym­
metry y V p ^ x. Thus we arrive at Figure 3(b) (of course, p need not equal 

x V y 

(a) 

x V y 

(b) 

FIGURE 3. Two kinds of minimal pairs. 
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the meet of x V p and y V p). Minimal pairs corresponding to Figures 3(a) 
and 3(b) will be said to be of type (a) and type (b), respectively. I t is impor tan t 
to note t ha t the minimal pairs constructed in Lemmas 5.3 and 5.4 are of 
type (a). 

We have shown tha t in a lattice of breadth two and satisfying (SD V ) , every 
minimal pair is of type (a) or type (b). Indeed, even minimal pairs of type (b), 
as we shall shortly see, may be ' ' replaced" by minimal pairs of type (a). 

PROPOSITION 5.G. Let L be a finite semidistributive lattice of breadth two and 
satisfying (W). Let (p, {x,y})bea minimal pair of type (b) with p G J{L). Then 
either 

(i) there is y' £ L such that y' < p and (p, {x, y'} ) is a minimal pair of type 
(a), or 

(ii) there are elements x', x" of L such that x" < %' < p, and (p, {xf, y}), 
(xf, {x, x"}) are minimal pairs of type (a). 

Remarks. In this proposition the pair {x, y) is to be read as an ordered pair, 
so the minimal pairs (p, {x, y}) and (p, {y, x}) are different. For example, 
the lattice of Figure 4, with the minimal pair (p, {x, y) ) as indicated, satisfies 
(ii) bu t not (i). 

FIGURE 4 
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T h e proof of Proposition 5.7 is comparat ively easy under the addit ional 
hypothesis t h a t L is planar. Indeed, let L be a planar latt ice satisfying the 
hypotheses of Proposition 5.7. By Corollary 4.4, either x\p\y or y\p\x, say the 
former. Since p ^ x* V y, Corollary 4.4 implies t ha t x* < p; symmetrical ly, 
y* < p- Now, either p ^ p* V x or p ^ £># V 3>. If ^ f* V x we readily 
obtain a minimal pair (p, {x, 3/}) with y' < p, whence (i) holds. Otherwise, 
p ^k P*\J y and we obtain a minimal pair (p, {%', y] ) with x' < p. If x*Xx' 
then x*\xf\y and f> < x' V y ^ x* V y, which is impossible; hence, x* < xf. 
According to the minimali ty of x', x'# V y ^ x', where x'* < x'. By Lemma 
2.8(h), x'* V x > x'. Finally, we choose x" minimal so tha t x" ^ xf* and 
x" V x > x', whence (x', {x, x"} ) is a minimal pair of type (a) . 

Proof. Let x# < x and let us suppose t h a t p > x*. If x* < p V y then 
p ^ x* V p V y = x* V y by Lemma 2.8 (i) ; hence, x# < p V ;y. Now, let 
a = (x V p) A (x* V 3/) and & = (x V p) A (y V £)• Then x* g a ^ /;. 
As (/>, {x, 3^ ) is a minimal pair and £ ^ x*, it follows tha t p\\a. In addit ion, 
x Va^xVb = xVp. If x V a = x V p then, according to (SD V ) , 
x \/ p = x V (a A p). From L e m m a 5.3 there exists y ^ a A P such t h a t 

(£, {x, y } ) is a minimal pair of type (a) . On the other hand, if x V a < x V p 
then x V a ^ p. Fur thermore , xAb = x*=xA (x* V y) so t h a t from 
Lemma 2.7(ii) a = b A (x* V y) > x* and a\\x. Applying L e m m a 2.8(h) we 
have t ha t either a* V x > a or a* V p > a, where a* < a. E i ther case is a 
violation of (W). We conclude t ha t p > x*. 

Let pu be the unique lower cover of p. Then p# ^ x#. By L e m m a 2.8(ii) 
either x V p* > p or y V p* > p. If x V p* > p, then by L e m m a 5.3 there 
exists y' ^ p# such t ha t (p, {x, y'} ) is a minimal pair of type (a), as claimed. 
Otherwise, x V p* ^ p while y V p* > p. Let v# < v. If y* V p* > p then 
* V ^ * | b * V £*, and by Lemma 2.8(i), ^ < y * V x ; hence, £ < v* V £* 
^ x V y*y contradict ing the fact t ha t (p, {x, y} ) is a minimal pair. Thus , 
y# V p* ^ />, and by Lemma 5.3, there exists x' ^ p# such t ha t (p, {xf, v} ) 
is a minimal pair of type (a). 

Let x r | | xv Set c = p A (1* V y ) ; then x* S c < p*. Since x A p = x* 
= x A (x* V 3/) we have t ha t c > x*; t ha t is, c||x. Also, c\\x' since x' V y > /;>. 
As x V x' S x V £*, (W) implies t h a t x V x ' ^ c. Let d = (x V xf) A 
(x# V y) ; then, by the dual of Lemma 2.8(i) , d < p and so d < c. We know 
tha t x V d g x V x'. If x V d < x V x' then x V d $ x'. Since (x V d) 
A (x* V 3/) = d = (x' V d) A (x* V 3/) we have t h a t e = (x V d) A 
(x' V d) > d and e ^ x# V y. Since d V x' ^ ^ we have g V 3> ^ £># V y 
= xf V y. H e V y = x' V y then x' V y = (e A #') V 3' and c A x' < x', 
which contradicts the minimali ty of x''. Thus , ^ V v < xr V 3̂  and ^ V 3; ^ x r. 
I t follows t ha t 

{xr, x ' V d, é7, e V c, c, x V x', e V y . x j ) ^ M2 

(see Figure 5). By vir tue of Proposition 3.1 L mus t be infinite which is a con­
tradict ion. I t follows t h a t x V d = x V x' whence, by (SD V ) x V (xf A d) > x r. 
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x V y 

FIGURE 5 

Since x# V (xf Ad) :g d, we may apply Lemma 5.3 to find x" ;g x' A d 
such t ha t (xf, {x, xfr] ) is a minimal pair of type fa). 

Finally, let x' > x*. In view of the minimality of x', xf* V y ^ xf, where 
x'# < x'. Now, Lemma 2.8(h) implies tha t x'* V x > xf. By Lemma 5.3 there 
exists x" S x'* such t ha t (x\ {x, x") ) is a minimal pair of type (a). 

6. Cycles . A finite lattice L is said to satisfy (T v ) if there is a linear ordering 
{xi, . . . , xn) of all the elements of L such tha t if (xi} J) is a minimal pair and 
Xj Ç / , then i < j . L is said to satisfy (TA) if the dual of L satisfies ( T v ) . 

For us, the significance of these concepts lies in the following result. 

T H E O R E M 6.1. (H. Gaskill and C. R. P ia t t [7]). A finite lattice is a sublattice 
of a free lattice if and only if it satisfies ( T v ) , (T A ) , and (W). 

I t is clear t ha t a finite lattice L will fail to satisfy (T v ) if and only if there is 
an integer n > 1 and minimal pairs (pi} Jt), i = 1, 2, . . . , n, such tha t 
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pi+i t Ji for 1 g i < n and pi Ç 7 n ; in this case we call C = {(pi, Ji), 
(p2, Ji), • • • , (pn, Jn)} a cycle of length n in L, and we write /(C) = n. 

The next result is essentially a corollary of Proposition 5.6. 

PROPOSITION 6.2. Let L be a semidistributive lattice of breadth two, and let L 
contain a cycle of minimal pairs. Then L contains a cycle, all of whose minimal 
pairs are of type (a). 

Proof. For each cycle C — {(pu J\) \ i = 1, . . . , n) in L, define 

/3(C) = \[i ! 1 ^ iS n, (pt, J,) is of type (6)}| , 

and let /30 = min {/3(C) | C is a cycle in L\. Choose a cycle C = {(pu J1) I 
i — 1, . . . , n\ such t ha t /3(C) = /30. If /3o = 0> we have nothing to do. Suppose 
/30 > 0, and, wi thout loss of generality, assume t h a t (pi, J\) is a minimal pair 
of type (b). Let t ing Ji = {xi, 3/1} and p2 = X\, we apply Proposit ion 5.6 with 
x = Xi, y = yi, and p = pi. If (i) holds, then 

Cl - {(pu {Xl,y'})> < ? 2 , / 2 > , . . . , <&,/n>} 

is a cycle in L with /3(Ci) < /3(C) = ^0, contrary to assumption. Similarly, if 
(ii) holds, then 

C2 = {(Pi, {xf, yi) ) , (x', [xi, x"} ), (p2, J2), . . . , (pn, Jn)} 

is a cycle in L with /3(C2) < /3(C) = /30, again contrary to assumption. 

Remark. Proposition 6.2 has also been proved by B. Jônsson and j . B. Nat ion 
[10, Corollary 6.4], their approach being quite different from ours. Immedia te 
use will be made of this result, bu t we will eventual ly require the full force of 
Proposition 5.6. 

We are ready to s ta te our main theorem and begin its proof. 

T H E O R E M 6.3. A planar lattice L is a sitblattice of a free lattice if and only if L 
is semidistributive and satisfies (W). 

Proof. T h e "only if" direction, of course, is well-known. 
The proof of the converse will be by induction on the order of L. Let L be a 

planar semidistributive latt ice satisfying ( W ) ; by Theorem 6.1 it is enough to 
show L satisfies ( T v ) and (T A ) . We assume we are given a fixed planar embed­
ding of L, and any ensuing references to X or other concepts associated with 
planar i ty will be with respect to this planar embedding. 

Let a be the minimal meet irreducible on the right boundary of L. By L e m m a 
4.7, a is doubly irreducible; hence L \{a} is a sublatt ice of L, and thus is a planar 
semidistr ibutive lattice satisfying (W) whose order is smaller than tha t of L. 
By the induction hypothesis, £ \ { a } satisfies Theorem 6.3. 

Suppose L violates (T v ) or (TA) ; by dualizing if necessary, we may assume 
tha t L violates ( T v ) . (Recently, A. D a y has shown t h a t for a finite semidis­
tr ibut ive latt ice ( T v ) is equivalent to (TA) (Can. J. Ma th . (1978)).) T h u s L 
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contains a cycle {(pu Ji) \ i = l} 2, . . . , n} of minimal pairs, and from 
Proposition 6.2 we may assume tha t every (pu Jt) is of type (a). Clearly 
a G Uni=iJi, for otherwise {(pu Jt) \ i = 1, 2, . . . , n\ will be a cycle in 
L\{a\, contradicting the induction hypothesis. 

Aside. By definition, pi+i G Jt for 1 S i ^ n — 1, and pi G / „ . For con­
venience, we wrill simply write tha t pi+i G / * for 1 ^ i f^ n\ t ha t is, the sub­
scripts are to be read modulo n. A similar convention will be adopted, usually 
without comment, throughout this paper. 

For each i G {1, 2, . . . , n\, define 

, iVz if Pi ^ a 
P* l a * iîpt = a 

and 

j / = \Ji it a & J i 
Ji \(Jt\{a})U{a*} iîae Jt' 

We first claim tha t pi+\ G 7 / for each i G {1, 2, . . . , w}. If ^>z+i = r/, then 
since p i + i G J^ we have pi+1' = a* G J/. Suppose pi+i 9^ a; then clearly 
Pi+i G Ji\J/, and since £*+/ = £*+i G / * we conclude £7-+i' G / / , as claimed. 

Notice also tha t U1=i JY Ç1 L\{a} ; therefore, if each (p/, J/) were a 
minimal pair in L\{a}y {(pi, J/) \i = 1, 2, . . . , n) would be a cycle of 
minimal pairs in L\{a], contrary to the induction hypothesis. Consequently 
we choose k such tha t (pk, Jk) is not a minimal pair in L\{a}. In particular, 
(pk, Jk) 7e (Pki Jk), and hence a = pk or a G Jk> If ^ = Pk, then a G Jk, and 
a ^ V Jk) but since a is doubly irreducible and a < a* = pk', it follows t ha t 
pk ^ V Jk = V / / / , and from Lemma 5.1 (v) (pk, Jk) is a minimal pair in 
L\{a}, contrary to assumption. Therefore let a G Jk, and let Jk = {xk, yk} 
where yk < pk. 

Suppose a = 3/*. Then ^ ^ a*, and since ^ G A—1, Lemma o. l ( iv) implies 
t ha t pk > a*. We have xk V a* = xk V 3^ > £*; also, if b ^ xA. is such t ha t 
/; V a* > £>A-, then since b V a* = b V yk and (£*, JA) is a minimal pair, & = xA-. 
Since (pk, Jk) = (£>/,, {a*, xA-}) is not a minimal pair in L\{c/}, we can find 
c < a*j c 5* a, such tha t xk V c > pk. But now xA- V c = x* V a* = xfc V a, 
and by (SDV) we have xk V a = xk V (c A a ) , contradicting the fact t ha t 
(Pk, Jk) is a minimal pair. Hence a = xA-. 

Let *$ denote the set of all cycles in L whose minimal pairs are all of type (a). 
For each C G ^ we have seen tha t we may choose a minimal pair (pc, Jc) 
of C such tha t (pc , Jc) (defined above) is not a minimal pair in L\{a) ; fur­
thermore, a G Je and a\\pc> For C = {(pi, Ji) \ i = 1, 2, . . . , n) G ^ we 
define 

a (C) = |{*|a G Ju l ûi^n)\, 

and we set a0 = min {«(C)|C G ^ } . 
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We now show t h a t there exists a cycle C Ç ^ and a choice for (pc, Jc) such 
t ha t a(C) = a0 and a* > pc. Choose C = {(pu J f) \ i = 1, 2, . . . , n] Ç ^ 
(where (pc > ^ c ) = (£*, A ) , say) such t h a t a (C) = a0, and assume tha t 
a* > £A.. Let /7, = {xk, yk} where yk < pk and xk = a. If u ^ 3̂ - is such t ha t 
u V a* > £A-, then since u V a* = w V xk and (p/:, A ) is a minimal pair, 
z£ = yk. Since ( £ / , A ' ) = (pk, {jn, a*}) is not a minimal pair in L\{a}, by 
Lemma 5.3 we can find x' < a*, x' 7^ a, such t ha t (pkl {yk, xf} ) is a minimal 
pair of type (a). If x'X«* then yk V «* ^ 3^ V x' > pkj contradict ing the fact 
t ha t (pk, Jk) is a minimal pair; since xf\a it follows t ha t x' > a*. Let x'# < x' . 
By the choice of x', 3^ V x'* ^ £A-, implying 3 .̂ V x'* ^ x', and so 
(}>* V x'*) A x' = x'*. If x '* V a $ x', then (x'* V a) A x' = x'* = 
(3^ V x'#) A x', and also yk V x'^Xx'Xx'* V a, contradict ing Lemma 4.6(H). 
T h u s x'* V a > x', and by Lemma 5.3 there exists x" ^ x'# such t h a t 
(xf, \x", a) ) is a minimal pair of type (a) . Hence 

C = {(Pu Ji),---, <^_i , A - i ) , <£*, {?*, *'} >, <*', {*", x*} >, 

is a cycle in ^ with a ( C ) = a0, (pc, ^ c ) = (x', {xn', xfc} ), and a* > pc , as 
desired. For future reference, we summarize this result in a lemma. 

LEMMA 6.4. If C £ tf and (pCj Jc) are such that a(C) = ao and a* ~$> pc, 
then there exists C £ ^ and (pc, Jc) such that a(C) = «o, KC) = /(C) + 1, 
and a* > pc-

We are now able to choose a specific cycle in L to be studied th roughout the 
remainder of the proof. Let 

cé = {C G ^ | a ( C ) = a0 and there is a choice of (pc, Jc) 

such t h a t a* > pc} 

and set /0 = min {/(C)|C G ^ } . Choose C0 = {<£*, 7 , ) | i = 1, 2, . . . , /0} G ^ , 
where /(Co) = /o, and suppose t ha t (pc0> ^c 0 ) = (ftk, Jk)- Let j % = {x^, y,\ and 

2 . = %. v yt for i = 1, 2, . . . , /0. Then we have t h a t yk < pk < zk = a* and 
x*; = a.. Fur thermore , let yk* < yk; then if 3^*1 |xA-, we see t h a t yk* V xk = 
a* > pkj contradict ing the fact t h a t (pk, Jk) is a minimal pair. Therefore 
yk* < xk = u, which implies 3^* rg a*. Figure 6 illustrates the minimal pair 
(Pk, Jk), with the unders tanding tha t ykWt may equal a*. 

We continue our explorations by locating pk+ï which, by assumption, is in 
Jk = lxk, yk}- Our goal now is to prove t h a t pk+i = xk. 

Suppose pk+1 = yk. Let t ing xk+] < pk+i, we have xk+i ^ yk* and hence 
yk+{hxk+i, since x^+i is on the right boundary by Lemma 4.7. If zk+i = 
xk+i V 3^+1 ^ ^-, then by Lemma 5.1 (v) (pk} Jk+i) is a minimal pair of type 
(a) , and 

C = { (pu Jl), - - - , (Pk-U Jk-l), (Pk, Jk+l), (Pk+2, Jk+2), . . . , (pu, J if)] 
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yk<\ Pa* 

Vyk* 

FIGURE 6 

is a cycle in ^ for which a(C) < a (Co) = a0, an impossibility. Also, since 
zk — a*j Lemma 4.5 shows tha t yk+i $ a*. Hence 2^+iH^- and zk+i\\a*. Since 
yk+i\xk+\, we deduce from Lemma 4.2 tha t yk+{kpk and hence zk+{kpk and 
zk+i\a*. Consequently zk+i < 3^+1 V a. 

We claim tha t xk+i = yk*. Otherwise, xk+i < yk*} and (W) implies t ha t 
zk+i = xk+i V yk+i ^ pk A a. Also, xk+i is meet reducible by the choice of a, 
and hence there exists u > xk+\ such tha t u\a#. Since yk G J(L) we have 
u\ykl and by Lemma 4.5 u\\a*. However, yk+i\xk+\ implies yk+i\u\yk, and so by 
Lemma 4.6(i) yk+i V u = zk+i = yk+i V yk. By Lemma 2.7(h), u V yk 

< zk+i. Therefore, as in Figure 7, 

{u, u V yk, ykJ pk, pk A a, zk+1, a*, yk+1, a} ^ M2. 

By Proposition 3.1 this is a contradiction, and hence xk+i = 3 -̂*-
Now let ^A-+I* < ^ + 1 , and suppose tha t yk+i*\xk+1. From Lemma 4.6(i) , 

3^+1* V xk+i ^ ^fc+i, contradicting the fact tha t (pk+u Jk+i) is a minimal pair. 
T h u s yk+Ut < xk+1. 

We use the same arguments to investigate (pk+2, A+2). Suppose xk+i = 
pK+2. If zk+2 ^ pk+ij then by Lemma 5.1 (v) (pk+i, Jk+2) is a minimal pair of 
type (a), and 

C = {(pl,Jl), • • • , (pk,Jk), (pk+l,Jk+2), (pk+z,Jk+z), . . . , (pJ^Jh)) 

is a cycle in ^ for which /(C) < I (Co) = /o, an impossibility. Therefore 
zk+2 $ pfc+u and hence 2^+2 $ «. But now zA:+2 = xk+2 V 3^+2 ^ Pk+2 = 
xk+i = ^ . + i A aj which is a violation of (W). Consequently we must have 
Pk+2 = yk+i, and we may assume xk+2 ^ 3^+1* and yk+2\yk+i. By Lemma 4.5, 
3^+2113^+1 V a, and zk+2 ^ pk+i as before. Suppose tha t xk+2 < yk+i*\ then there 
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FIGURE 7 

exists u' > xk+2 such t ha t u'\a*. I t follows t h a t yk+2\ur\yk+i and u' V yk+i 

< zk+2- Also u' ^ ^ + i V a, and therefore 

{**', w' V yk+u yk+i, zk+1, xk+i, zk+2, yk+i V a, ^ + 2 , a) ^ M 2 

which is impossible. Hence xk+2 = 3^+1*. Let t ing yk+2* < yk+2j we see t h a t 
yk+2* < xk+2, since (pk+2, Jk+v) is a minimal pair. 

If Pk+z = xk+2 then, as before, zk+z ^ pk+2 and sA:+3 J pk+i. Bu t 2fc+3 -
x^.+3 V yk+z è ^ + 3 = tf*+2 = ^ + 2 A £*+! is a violation of ( W ) ; hence pk+z = 
yk+2- By Lemma 4.6(i) , yk+2 V xk+\ > pk+i- By Lemma 5.3, there exists 
x' ^ xk+i such t ha t ( ^ + i , {3^+2, xr) ) is a minimal pair of type (a) . T h u s 

c = { < ^ i , / I ) , • • • , {Ph,Jh), (Pk+i, {yjc+2,xf}), (pk+z,JM),..., (Pio,Jh)} 

is a cycle in ^ with /(C) < /(Co) = /o, which is impossible. 
We conclude t h a t pk+i = xk = a, as claimed. An impor tan t consequence is: 

L E M M A 6.5. (i) a £ J i implies that i = k; in other words, a0 = 1. 
(ii) yk does not equal ptfor any t G {1, . • . , l-o}. 

Proof, (i) Suppose a £ Ju t 5* k; then 

c = \ (Pk+u Jk+i), • • • , (Pu Jt)) 

is a cycle in ^ with a(C) < a (Co) = a0, which is impossible, 
(ii) Suppose t h a t yk = Pt for some t\ then t ^ k + 1, and so 

C = {(pt,Jt),. . . , <£*,/*>} 

is a cycle in ^ with 1(C) < /o, which is impossible. 
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The following two lemmas will be useful in asserting the nonexistence of 

certain minimal pairs, and wTill be applied many times in conjunction with 

Lemma 5.3. 

LEMMA 6.6. Let 1 ^ / < h and let x' € Lbe such that (p(, {a, x') ) is a minimal 
pair of type (a). Then t = k or t = k — 1 (modulo / 0 ) . 

Proof. Suppose t ^ k — 1 or k and let 

C = {(pjc+i, Jk+i), • • • , (pt-i, Jt-i), (Pu {a, x'})}. 

Then C G <€ with a(C) = a0 = 1, 1(C) < h - 1. I t follows tha t C g Çf ;_that 
is, a* ^ ^ . But from Lemma 6.4 we can construct C £ ^ such t ha t /(C) = 
/(C) + 1 < /0; since this is impossible, we are done. 

LEMMA 6.7. Let 1 ^ t ^ /0 awd let z £ L be such that (pu {z, a] ) is a minimal 
pair. Then t = k, k — 1, or k — 2 (modulo / 0 ) . 

Proof. If (pj, {z, a} ) is of type (a), we are done by Lemma 6.6. Therefore 
let (pu {z, a} ) be of type (b), and let 

C = {(pu {z, a}), (pk+i,Jk+i), . . . , (pt-uJt-i)}-

Assume tha t t ^ k, k — 1, or k — 2, and apply Proposition 5.6 with x = a, 
y = z, and p = pt. H (i) holds, then there exists y' ^ L such tha t (p,, {a, y'} ) 
is a minimal pair of type (a), and 

d = {(pu {a,y'}), (pk+i,Jk+i), • • • , (pt-uJt-\)) 

is a cycle in ^ such tha t a(C\) = 1 and l(C\) < /0 — 2. On the other hand, if 
(ii) holds then there exist x', x" Ç L such tha t (£>,, {x;, z} ) and (x', {a, x"} ) 
are minimal pairs of type (a), and 

C2 = {(Pu {*', z] ), <*', {a, x") ), <pk+1, J , + 1 ) , . . . , </,,_!, / ,_!>} 

is a cycle in ^f such thata : (C 2 ) = 1 and_/_(C2) < /o — 1. In either case, Lemma 
6.4 again implies t ha t there exists C £ ^f such tha t /(C) < /0, which is impos­
sible. 

7. T h e case a* ^ pk. Before proceeding to the substance of this section, we 
prove a simple lemma. 

LEMMA 7.1. Let K be a lattice satisfying (SDA) , and let u, v, a, /;, and c be ele­
ments of K such that u < a < v, u < b < v, a\\b, and u < c < v. Then either 
c rg b or c ^ a. 

Proof. If c $ b and c ^ a, then c V b = v and c A a = u = b A a. By 
(SDA) , w = (c V fr) A a = v A a = a, a contradiction. 

Wi thou t loss of generality, we may let pk = yk_i. Assume tha t a* J pk\ 
we will eventually arrive a t a contradiction. For convenience, this will be 
accomplished in two parts . 
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A. Claim. yk-i\xk-.i. 
Suppose that x^—iX^-i; then xk-i\yk or xk-i > yk. If xk-i < ft*, Lemma 4.5 

implies that xA—i > yk; but by Lemma 5.1 (v) and Lemma 5.4 this would mean 
that (pk-ij Jk) is a minimal pair of type (a), and we can construct a cycle 
C Ç *$ with 1(C) < /0. This is a contradiction, and therefore xk-i\a*. If 
Zk-i > «*, then by Lemma 4.3 zk-i = xk-i V yk-i = xk-i V ft*, and by (SDV) 
zk-i = xA—i V (3̂ —1 A ft*)> contradicting the fact that (pk-\, Jk-i) is a minimal 
pair. Hence z^iXa* and zk-i\a* both hold. As a result, zk-\ < xk-\ V ft (see 
Figure 8). 

Let yk-\* < yk-i and set u = xfc_i V 3̂ —1*. Since (^._i, /*- i ) is a minimal 
pair, u ^ ^/c_i and hence n\yk-\. Since (pk, Jk) is a minimal pair, 3^ V ft* 
^ ^/: = 3^-1 and hence 3̂ —1X3̂  V ft*Xft. Now since ^._i V a = ft* = (^V ft*) 
V «, the dual of Lemma 2.7(h) implies that yk-i V ft* = yk-\ V (yk V a*) 
< ft*, and so ;y/._i V ft* ^ a. Moreover, from Lemma 4.6 (ii) yk-,\ A (yk V a*) 
T̂  3^-1*. It follows that yk < yk-\*. Now, letting v = zk-\ A ft*, we can choose 
2 such that z; < z ;§ ŝ —i. Of course z $ a*. If z < zk-i, then by (W) we deduce 

FIGURE 8 

z A it $ ft* = y*; V a; hence 

{z A w, ^, 3^-1, yk-i V a*, a*, ^ _ i , ft*, x^ i , a} ^ M2, 

which is impossible. Therefore v < zk-i. 
Either pk_x > xk-i or pk^ > yk_lm If yk_± < pk_± < zk-X then yk < pk_^ 

< ft* = s*.; but then_(pft_i, A ) is a minimal pair of type (a), and we can con­
struct a cycle C G ^ with /(C) < Z0. Hence we must have x^-i < ^ _ i < js^-i. 
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Assume that xk-i ^ u. Since {pk-u Jk-i) is a minimal pair, pk_\ ^ u. If pk-i\\u 
then pk-i J ^A:-I*, and 

{**_!, u, 3^-1*, ^ - i V a*, a*, ^ _ i V w, a*, ^ _ i , a} ^ M2, 

which is impossible. On the other hand, if pk-\ > it then (recalling that 
pk-\ G J(L)) we have 

{xk-U u, yk-i*, yk-i V a*, a*, ^._i, a*, a} ^ Ml, 

also an impossibility. Thus xk-i = w, that is, xfc_i > 3^-1*. 
Let X/.-i* < xk-i; either xk-i*\v or x^-i* < v. If x\-_i*Xz; then, since 

(pk-ij Jk-i) is a minimal pair, Lemma 4.2 implies that xk-i\xk-.i# V 3^-iXz;; 
but now fc_i* V yA-i) V v = s/,_i = ^ _ i V fe_i* V :y*-i), contradicting 
the dual of Lemma 4.6(h). Hence x^-i* < v. 

Since ^ _ i Ç A-2, we may let pk_i = 3^_2. Suppose that xk-2\yk-2; we pro­
ceed to show this is impossible. 

First assume that xk-2 < %k-i- Either xk_2\xk-i or xk_2 > xk-\\ Lemma 4.5 
shows that x/c_2 > xk-i. But now (pk-2, Jk-i) is a minimal pair of type (a), and 
wre can construct a cycle C Ç ^ with 1(C) < /0, which is impossible. Therefore 
x/t_2XsA:_i. Since (pk-2, Jk-2) is a minimal pair, x^o V x^-i =£ 3,/c-2, and so 
x^_2 V x^_i ^ yk_lm Hence 3^-1 A 3^-2 = 3V-i* = 3>*-i A (xk-2 V x^ i ) , and 
by (SDA) we get that zk-2 = fe-2 V x ^ ) V yk-2 $ 3^-1. 

Now since yk-i V «•* < a*, (W) implies that yA--i* V a* ^ v = 2^_i A a*. 
Also, since xft_iX^-_i and y^^Xa*, the reflection of Lemma 4.6 (i) shows that 
yk-i* V «* = 3^-1 V a*. Consequently, 3^1 < u, and 

{zk-2, yk-2, zk-i, v, a*, xk-u yk-u Xk-2 V xk-i, yk-i V a*} = (M2)d. 

Thus we conclude that yk_2Xxk-2. 
Since 3̂ —1* < #*-i < 3>*- 2, it is clear that x^-2 < yk-i. From Lemma o.5 

we have that xk~2\yk-i, and so z/c_2 ^ sA-i by Lemma 4.3. If xk-2 > xk_i, then 
(pk-2, Jk-i) is a minimal pair of type (a), and we can construct a cycle C £ ^ 
with /(C) < /o, which is impossible. Therefore, since yk-2\xk-2, we have 
xk-{hxk-2\yk-\. If XA_2XÎ/, then by Lemma 4.3 xk-\* = x^_i A v < xk-?. < 
xk-i V v, contradicting Lemma 7.L Thus xk-2 < v. Also, yk-2\xk-\ V xfc_2 
since (pk-2, Jk-2) is a minimal pair, and (xk-i V x ^ ) V v = ^—i = yk_2 V v\ 
Lemma 2.7(ii) implies that zk-2 = (xk-i V xk-2) V yk-2 < zk-\. We now have 

{xk-u xk-i V xk-2, x*_2, v, yk-u zk-2, a*, yk-2, a} ^ M2. 

This contradiction establishes that yk_{Kxk-i, as advertised. 

B. Claim. For all j < k, yk* < pj < yk V a* and yk* < xj, y5 < pk V a*. 
First notice that y^* < xk-i < a* and yk+ < pk^ < zk-i S a*, since yk* and 

a* are both on the right boundary. Also, it is easy to see that neither xk^i nor 
pk-i can equal a. By Lemma 7.1, either pk_x > yk or pk__i ^ a*. If ^-_i < yk 
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V e/#, then (pic-i, Jk) is a minimal pair of type (a), and we can construct a cycle 
C (z c€ with 1(C) < /0, which is impossible. Hence pk-\ < yk V a*, and it 
follows t ha t X/,_i < pk-i. We have shown tha t the claim is t rue for j = k — 1. 

Proceeding by induction, we assume tha t yk* < pj < yk V a* and yk* < x:h 

Jj < Pk V a* for all j such t h a t i S j < k, and we consider (pi-i, Ji-i). 
Withou t loss of generality, let x7 < pt = y{-\ (this means t h a t we 
get yk* < yt_i < pk V fl* gratis). Notice tha t , since xu yu and pi are all dis­
t inct from a, Lemma 7.1 implies t h a t each of xu yt and pf are either less than 
or equal to r/#, or greater than or equal to yk. 

Assume t h a t x7_i < pk V «*. Certainly x7_i $ yk*, since yk* < y^-i. If 
Xi-i\yk* then Xi-i\yk, and from Lemma 4.5 this is impossible. yk* is on the 
right boundary, so x7_i > yk*. Now pi-\ is greater than one of x^i and yt-i, 
and in either case y,.* < p7_i < 27_i ^ ^ V a* and £7_i ^ yk. If £*_i < 
3̂ - V «•*, then ^ f_i ^ a, and by Lemma 7.1 we have t ha t pt-\ > yk. T h u s 
(pi-i, Jk) is a minimal pair of type (a) , and neither y^i nor x7_i equals a = x/:, 
showing t ha t i — 1 ^ k (modulo / 0 ) . Hence 

C = {(Pi-u Jk), (Pk+i, Jk+i), • • • , (Pi-2, Ji-i)] 

is a cycle in *$ with /(C) < /o, which is impossible. Therefore pt-i < yk V a*, 
establishing the claim for j = i — 1. 

We now assume tha t x7_i < £>/c V a*. Since y{-i < yk V a* < £7. V «*, we 
have Xi-i ^ ^ V a*. If ^ V «#Xx/_i, then Lemma 4.3 and x7_]Xa imply 
3^* < «* = (pk V «•*) A a < Xi-i < (pk V a*) V a = a*. Hence from Lemma 
7.1 we infer xt-i ^ 3^., so x7_i ^ yk V a# > 3^-1, a contradict ion. Conse­
quent ly we let xt-i\pk V r/*. I t follows t h a t Xi-ikyt-i = £>z > x7, t h a t either 
Xi_iXXi or x7-_i > x7, and t ha t either x7_iX^7- or x7_i > yt. From Lemma 5.Ô 
we infer x^kyu and so xi-{Ky i-d^y %. Also 3^ < 3̂ - V «*, for otherwise 3 .̂ V a*\yi 
which implies (}'A- V a#) f\ y i — a* = )JjA a, contradict ing Lemma 4.6 (ii). If 
%i S u* then 3^ ^ u* also, contradict ing the fact t h a t x ^ ^ , . Hence by Lemma 
7.1, 3^ g x7 < pi = yi_i. If s,_i > yu by Corollary 4.4 s7_i = x7_i V 3^-1 = 
xt-i V 3^; by (SDV) , z7_i = x7_i V (3^-1 A yt), contradict ing the fact t ha t 
(pi-i, Ji-\) is a minimal pair. T h u s Zi-i\yi and s7_iXa*. 

Let yi-i* < y'i-i, and set b = x7__i V 3^1-1*. Since (pi-i, Ji-i) is a minimal 
pair, b ^ 3/^1 and so b\yt-i. We claim tha t ^z-_i* > yk. If 3;

7-i* = yk then 
^z = 3'k, and so from Lemma 6.5(h) yt = pi±\ ^ a*. Let ZJ > 3;^* such t h a t 
u ^ a*. From the reflection of Lemma 4.6(i) , xt V u ^ yx-\ = pu since 
(pi,Ji) is a minimal pair, w = yt = pi+i. Assuming x 7 + i < pi+i, we have 
%i+i = yk*- As i is not k — 1 (modulo / 0 ) , we have a contradict ion to the induc­
tion hypothesis. Thus 3^-1* > yk, as claimed. 

Now let c = s7_! A (pk V a*) ; by (W), c $ yk V a*. Also by (W), c A ^ 
$ yk V </*. Suppose tha t yt 9^ «•*. By Lemma 7.1, a* < 3^ V a*, so yt ^ a*. 

By (W) again, zf = x f V 3̂ z ^ a* = ( ^ V a*) A a, while 2^ > £< = y f_i. 
Hence 

{& A c, c, yi-u zu yu Zi-i, yk V a*, x*_i, a*} ^ Jlf2. 
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Therefore we must have y{ = (/#. Since {pu J\) is a minimal pair and zt = 
Jk V a*, we have xt = yk. Let v < «#; then 3>i_iXz; or ^z_i > z/. If y^Xv, then 
x^ V fl =£ p* since (p7-, Jt) is a minimal pair; hence p^Ax,- V zAa*. Now pt V 
^* = 3^ V a* = (x2- V z>) V f/#, and from Lemma 2.7(ii) p{ V v = p( V 
(Xi V ^ ) < 3̂ - V /̂*. Also,^ < Si-i would imply 2f_i = x,-_i V yt-\ = x t_i V z> 
by Lemma 4.3, and hence z*_i = xz_i V (3^-1 A z>) by (SDV) , contradicting 
the fact t ha t (pi-i, J\-\) is a minimal pair. Hence zt-i ^ z;, and 

{6 A c, c, yt_u p i V A, «/, Si_i, yfc V a*, x*_i, a*} ^ M2. 

We conclude tha t z; < yi-\. From Lemma 6.5(h), xt = yk ^ pi+i, and so 
«* = ?* = P m - Lett ing x m < pt+i, we get x m < yt-i < c; also 3>mAx*+i, 
since xi+i is on the right boundary. Certainly i + 1 ^ fe (modulo / 0 ) , so by the 
induction hypothesis yk* < yi+i < pA- V «*. I t follows tha t 3 ^ 1 < zf_i, 
implying 3^+1 ^ c. But this means «# = p7-+i < z i + i ^ c, a contradiction. We 
have shown tha t the claim is t rue for j = i — 1, and the proof of B is complete. 

Now, by going completely around the cycle Co, we conclude from B tha t 
y^ < Pk < yk V a*. This contradiction completes the case a* ^ pk, and this 
section. 

8. T h e case a* S pk. Gamely continuing with the proof of Theorem 6.3, we 
may now assume tha t a* ^ pk in L. First we rapidly show tha t xk-{kyk-i, 
where yk^i = pk. Suppose yk_i\xk-i. Since a* and a* are on the right boundary, 
we know tha t a* < x,,_i < a*. But xk-i ^ a, and hence xfc_i g: 3^ by Lemma 
7.1. Thus yk V rt* < ^--1 < ^*, and so 3̂ - V a* < pk-\ < 2^-1 ^ a* = zk. I t 
follows that_(pA_i, Jk) is a minimal pair of type (a), and we can construct a 
cycle C Ç ^ such tha t /(C) < /0, an impossibility. Therefore x ^ i X ^ - i -

If x^_i < a*, then xk-i ^ 3^ from Lemma 4.5, and (pk-i, Jk) is a minimal 
pair of type (a). This is impossible, so xk-i\a*. If 2^-1 ^ a*, then zA-_i = x^_i V 
3/̂ -1 = xfc_i V a from Lemma 4.3, and hence by (SDV) zk-\ = x^-i V (3;̂ —1 A a) 
= xk^i V a*, contradicting the fact tha t (pk-i, Jk-i) is a minimal pair. Thus 
zk-ika*. 

Set w = x/:_i V ft*. Since (PA--I, A - I ) is a minimal pair, w ^ pA._i and hence 
"̂  J 3;/,--i- However, we claim tha t w > 3^. If yk ^ c/* then yAXa#, and since 
x/t—1X3;̂  or xA:_i > yk we have w = xk-i V «* > yk by Lemma 4.3. On the other 
hand, if yk > a* then yk* = a# , and Lemma 4.6(i) implies t ha t w = xk-i V 
a* > }'*. 

A. In this pa r t we assume tha t pA._i > xk-i (later we will deal with the other 
case, pk-i > yk-i). If w\pk-i then a* < pk-i, implying tha t w = xk-.x V «* 
S Pk-i- I t follows tha t either pk_{kw or pk-\ > w. In either case, pk-i V yk-i = 

zk~i = w V 3^—1, so pk-\ V w < zk-i by the dual of Lemma 2.7 (ii). Since 
pk-i G Jk-2, we may assume t h a t pk-i = yk^2. 

Case (i). Let ^ - 2 X ^ - 2 . 
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From Lemma 5.5 we know t h a t x ^ A ^ - i or xk-2 < yk-i. In ei ther case 
Zfc-2 — xk-2 V jk-2 ^ 2A;-i follows. Since (pk-2, Jjc-z) is a minimal pair, xk-\ V 
xk-2 < zk-2 and yk-2\xk_i V xk-2kyk-i. Since yk_2 V 3^-1 = ZA:_I = ( x ^ i V 
xfc_2) V yk-i, the dual of Lemma 2.7 (ii) implies t h a t ^-_2 = yk-2 V fe_i V 

Xk-2) < Zfc-l-

We claim t h a t z^_2 > a*. Otherwise zk-2 ^ a*, from which we get yk-2\w 
and zk-<ikw. Hence either pk-2\w or ^ - 2 < w. If pk-2\w then from L e m m a 4.3 
^ - 2 > yk-2 A w ^ xk-i, whence xk-i < pk-2 < xk-i V a and pk-2 $ w = 
xk-i V a*. Thus from Lemma 5.3 there exists x' ^ xk-i such t h a t (^fc_2, {xr, a] ) 
is a minimal pair of type (a), cont rary to Lemma 6.6. Therefore pk-2 < w. 
Since pk-2 V xk-i $ yk-2 we have 

{s/c_2, pk-2 V x/c_i, w, yk V a*, yfc_i, x*_i, a*, 3^-2, a} ^ (M2) d . 

Hence 2^-2 > a*. 
Now either x7._2 ^ a* or yk-2 > a*, since otherwise xk-2 V 3^-2 = 2^-2 > 

a* = zk-i A a is a violation of (W). Since yk^2\xk-2, we have xk-2 ^ (/* in any 
case, and so X/._i V x7,_2 ^ u>. If ^ - 2 < w then x^_i V X/-_2 > pk-2, contra­
dicting the fact t ha t (pk-2j A—2) is a minimal pair; thus pk-2 ^ w. If ^ _ 2 > 
x/c_i then by Lemma 5.3 there exists x' rg xk-i such t h a t ( ^ - 2 , {xr, a}) is a 
minimal pair of type (a), cont rary to Lemma 6.6. Therefore pk-2 ^ xA—1, and 
so xk-{hpk-2, iv\pk^2, and pk^2 > xk_2. Since (pk-2, Jk-2) is a minimal pair, 
3^_2Àx/c_i V xk-2\pk-2. Since yk_2 V (xk-i V xA-2) = zk-2 = 3V-2 V pk-2, the 
dual of Lemma 2.6 (ii) implies t h a t xk-i V pk-2 = (xk-i V xk-2) V pk—2 < 
zk-2, implying x7,_i V pk-2 J ^ - 2 . 

Next we claim t h a t ^/v_2 V a ^ x^-i. Otherwise, pk-2 V a = x/c_i V a, and 
by (SDV) pk-2 V a = (xfc_i A pk-2) V a. However, (xk-i A ^ - 2 ) V a* ^ ^ 
which means ^>/0_2 ^ (x^-i A ^ - 2 ) V a*. T h u s by Lemma 5.3 there exists 
x' S xk-i A pk~2 such t h a t (^—2, {x', a} ) is a minimal pair of type (a) , con­
tradict ing Lemma 6.6. 

Therefore pk-2 V a ^ X/,_i and so 

{xk-U xk-i V ^ - 2 , ^/c-2, Pk-2 V 3^-1, 3^-i> 2*-2, Pk-2 V a, yft_2, a} = M2. 

We conclude t h a t Case (i) is impossible. 
For the remaining two cases, recall t h a t either yk_2 > w or yk-2\w. 

Case (ii). Let xk^2\yk-2 and yk-2 > w. 
Since xk-2\yk-2\a, we have pk^2 < zk-2 ^ xk-2 V a. Let v = xk~2 V w\ then 

pk-2 $ fl and yk-2% v, since ( ^ - 2 , A - 2 ) is a minimal pair. If pk_2 > xA._2, it 
follows from Lemma 5.3 t h a t there exists x' ^ xk-2 such t h a t (pk~2, {xr, a} ) is 
a minimal pair of type (a). This contradicts Lemma 6.6, and hence 
pk-2 > yk-2. 

Suppose t h a t pk-2 ^ xfc_i V a. Then , since xk-i V a* = w < ^ / c_i, we may 
apply Lemma 5.3 again to find x" S xk-i such t h a t (pk-2, {x", a} ) is a minimal 
pair of type (a) , which is another contradict ion of L e m m a 6.6. Therefore 
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pk-2\xk-i V a. Next, suppose tha t zk-2 ^ zk-\. Since xk-2\yk-2\yk-i we have 
zk-2 = xk-2 V yk-2 = Xk-2 V yk-i by Lemma 4.3; bu t now zk-2 = xk-2 V 
(yk-2 A yk-i) by (SDV) , and yk_2 A 3^-1 < 3^-2, contradicting the fact t ha t 
(pk-2, Jk-2) is a minimal pair. Thus we have shown tha t zk-2\xk-i V a and 
Zj^XZfc- i . 

If v A ^/c-2 > ff*_i, then w A £*_2 $ xk-i V a by (W), and 

{v A ^jt-2, ^ - 2 , 3^-2, zk-u yk-h zk-2, xk-i V a, xk_2, a*} ^ M2. 

Therefore v A ^ - 2 = xk-i, implying tha t xk-\ = w > a*. Also, we now have 
tha t y A pk-2 = v A (xk-i V a ) , and so pk-2 V a = ^ - 2 V fc-i V a) $ ^ by 
(SDA). 

We may let pk-2 = 3^L-_3. By Lemma 5.5, either xfc_3 < xk_2 or x^-2XxA:_3. 
Since «* < ^-_3 and ( ^ - 3 , Jk-z) is a minimal pair, x/c_3 V a* ^ ^ _ 3 . If 
^ _ 3 < ^ _ 2 or xk-2\xk-z\yk-.z, then ^ _ 3 < zfc_3 < xk^ V a; therefore from 
Lemma 5.3 there exists x' ^ x/c_3 such tha t (^—3, {x', a}) is a minimal pair. 
This contradicts Lemma 6.7, and we conclude tha t 3^_3AxA:_3. I t follows tha t 
v\xk^} and hence xk-2 V a* $ £*-3. Now, if xA_3 < x^_2 V a then pk_z < 
Zk-3 ^ x/c_2 V a\ from Lemma 5.3 there exists x' ^ x^_2 such tha t (pk-z, 
\x', a}) is a minimal pair, contradicting Lemma 6.7 once more. Thus it must 
be t ha t xk-2 V a\xk-3, and so x/c_3 > a*. Finally, if xk-2 V 3̂ —1 = x^-2 V a, 
then by (SDV) we have yk_x < xk-2 V yk-i = xk-2 V (yk-i A a) = xfc_2 V 
tf* ^ ^, a contradict ion; thus X£_2 V 3̂ —1 ^ a. Now if xk-z > yk^2 then 

{3^-3, 3^-3 V 3^-1, zk-.u yk-2 V a, a, xk-2 V 3^-1, x*-s, W = Ml, 

while if xA-_3 ^ 3^-2 then 

{^_2, ZA;-I, yk-i, a*, a, ^ _ 2 V 3^-1, xk-z, zk-2} = M l , 

showing t ha t Case (ii) is impossible. 

Case (iii). Let xk-2\yk^2\w. 
Suppose t ha t xA:_2 < ^ _ i . Then zk-i = xk-i V 3^-1 = xk-2 V 3^-1, and 

(SDV) implies t ha t zk-\ = (x*_i A xA:_2) V yk-\. Since (^--1 , A—1) is a minimal 
pair, xv-2 > xk-\. Now, xfc_i < ^ - 2 < zk-2 ^ ^ - 1 , and pk^Pk-i or ^ ._ 2 > 
^ / L _ I ; hence from Lemma 5.4 and Lemma 5.1 (v) (pk-2, Jk-i) is a minimal pair 
of type (a), which is impossible. Therefore xk-2Xzk-i. If zk-2 > w then 
zk-2 = xk-2 V yk-2 = xk^2 V w, and by (SDV) zk-2 = xk-2 V (yk-2 A w). 
Since (pk-2j A—2) is a minimal pair, this is a contradict ion; thus zk_2\w. Since 
S/:_2 > xk-i and w = xk^ V «*, it follows tha t s^Xrz*. Finally ŵ e have tha t 
x^_2 V xfc_iX^._2 since (pk-2j Jk-2) is a minimal pair. Therefore 

{zk-2, yk-2, Zfc-i, y*-i, «*, ^ - 1 , a*, ^ - 2 V xk-u a} ^ (M2) r f. 

Wi th this contradiction we have succeeded in showing tha t pk-\ > xk^i is 
impossible. 
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B. Finally we assume pk_i > yk-i. If pk-i ^ «* then (pk-\, Jk) is a minimal 
pair of type (a) , which is impossible. Hence pk-{ka*. 

Recall tha t pk-i = yk-2, and first assume t h a t xk-2hyk-2> By L e m m a o.o, 
xk-2 < xk-i or xk-!\xk-2, and so zk-2 ^ **-i V yk-2 = zk-i- If pk-2 > yk-2, 
then (pk-2, Jk-i) is a minimal pair of type (a) , which is impossible; therefore 
pk^2 > xk-o. Also, xk-2^yk-2^(i implies pk-2 < xk-2 V ft, bu t since (pk-2, Jk-2) 
is a minimal pair, pk-2 $ xk-2 V a*. T h u s by Lemma 5.3 there exists x' ^ X/-_2 

such t h a t (pk-o, {xf, r/} ) is a minimal pair of type (a) , contradict ing Lemma G.6. 
We conclude tha t yk-2\xk-2, and hence xk-2 > a*. 

We turn our a t tent ion briefly to Jk+\. Wi thou t loss of generali ty, 
let xk+i ^ a* < p/c+i] then xk+i is on the right boundary , so yk+i\xk+i. If either 
xk-i ^ ^-+1 or xk-ikyk+i, then a = pk+i < zk+i g x^+i V xA_i ^ zA-i, a con­
tradiction. Hence yk+i > xk-i or yk+i\xk-i, and it follows t h a t zk+i = 3 ^ 1 V 
£A;+I ^ %—1 V a > pk-\. If (pk-i, Jk+i) is a minimal pair, then we can con­
s t ruct a cycle C Ç ^ such t ha t a (C) < a0, which is impossible; hence, let t ing 
xk+i* < xk+i and yk+Ut < yk+1, we conclude t ha t either yk+1 V xk+Ut > pk_x 

or 3^+1* V xk+i > pk-\. Suppose the former; then, since (pk+i, Jk+i) is a mini­
mal pair, zk+i > yk+i V xk+lit = yk+i V xk+i* V pk-i ^ zk+u a contradict ion. 
Therefore yk+1* V xA.+i > pk_h and so 3^+1* V xk+i ^ xA-_i V pk-i = s/c_i. 
Clearly 3^+1*Aw, and we now have 3^+1* V xh+1 ^ 3̂ -1-1* V w ^ 3^-+i* V 
£7,_i = yk+1* V x/c+1, implying yk+1* V w = yk+1* V £*_i. From the dual of 
Lemma 2.7(h) we get t ha t zk-X = w V ^ - 1 < 3^+1* V **+i> whence ^+1*XzA_i. 
Since (pk+u Jn+i) is a minimal pair, we also have 3^+1* V xk+i ^ ^ + i . 

Suppose t ha t xk-2 > a*; then 

{xk-u zk-i, yk-i, a*, a, 3^+1* V xA.+i, x ^ , y*+i*î = Ml. 

Hence xk~2 ^ a*, and it follows by L e m m a 4.3 t h a t xk-2 < yk-2 V a ^ x\-_i 
V a. Fur thermore zk-2 < yk-2 V a, for otherwise zk-2 = xk-2 V 3̂ —2 = yk-2 
V a, and by (SDV) zk-2 = ^/-_2 V (xk-2 A a ) , contradict ing the fact t ha t 
(pk-2, Jk-2) is a minimal pair ; hence zA-_2Aa. If ^ - 2 > 3̂ —2 then by L e m m a 5.3 
there exists x' :g ^/c_2 such t h a t (pk-2, W, a] ) is a minimal pair of type (a) , 
which is a contradict ion to Lemma 6.6. Hence pk-2 > ^--2-

Let pk_2 = yk-z- If ^-3X3^-3 then by L e m m a 4.3 pk-z < sA._3 S xk-Z V a, 
while ^A-_3 $ xA_3 V A* since (̂ A—3, A - 3 ) is a minimal pair; by Lemma 5.3 
there exists x' g xfc_3 such t h a t (pA-3 , {xf, a} ) is a minimal pair, contradict ing 
Lemma 6.7. T h u s yk^\xk-^. If ^ _ 3 > a* then 

{a*-!, zA._i, ^ _ i , a*, a, 3/̂ +1* V xA-+i, xk-z, yk+i*} = Ml; 

hence xA_3 J a*, and so x,r-_3 < xA-_i V a. Now pk-z < xk-i V a and w\pk-z, 
and by Lemma 5.3 there exists x " ^ xA-_i such t h a t ( ^ - 3 , W, a] ) is a minimal 
pair. This contradicts L e m m a 6-.7, and the proof of Theorem 6.3 is complete. 
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