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PLANAR SUBLATTICES OF A FREE LATTICE. I
IVAN RIVAL AND BILL SANDS

1. Introduction. There are threc lattice-theoretic properties that arc
generally used to open a discussion on sublattices of a free lattice:

(W) foralla,b,¢c,d, a ANb <cV dimpliesa AD =Z¢,a AN b = d,
@« £cVd,orb £c¢cVd;

(SDv) foralla,b,¢c, aVb=uaVcimpliesa Vb=aV (bAc);

(SD,) foralla,b,¢c, « ANb=u« A cimpliesa Ab=a N (b V ).

(W) is one of the conditions present in . M. Whitman's solution [17] of the
word problem for lattices while (SD,) and (SD,) were originated by B.
Jénsson [8] (cf. R. A. Dean [21). It is well known that each of these conditions
holds in every sublattice of a free lattice.

In the late 1950’s Jonsson posed a conjecture (cf. B. Jonsson and J. E. Kiefer
[9]) that has in the intervening period attracted considerable attention.

CONJECTURE. A finite laltice is a sublattice of « free lattice if and only if it

satisfies (SD,), (SD,) and (W).

What is known?

F. Galvin and B. Jénsson (3] considered a special case of the conjecture in
1961: they showed that any finite distributive lattice that satisfies (SD,,),
(SD,), and (W) is a sublattice of a free lattice. What is more, they could
essentially display all finite distributive sublattices of a free lattice: « finile
distributive lattice is a sublattice of a free lattice if and only if it is a linear sum of
lattices, each of which 1s isomorphic to 1, 23, or 2 X n for some n. (For a positive
integer m, m denotes the m-element chain.)

Call a lattice semidistributive if it satisfies (SD,,) and (SD,). Of course,
every distributive lattice is semidistributive while a modular semidistributive
lattice is distributive. Hence, Galvin and Jénsson had really settled the con-
jecture for all finite modular lattices.

In 1962, B. Jénsson and J. E. Kiefer [9] proved that finite sublattices of a
free lattice have breadth at most four; moreover, they showed that the con-
jecture will hold for all finite lattices if it holds for finite lattices of breadth
at most three. Still, all efforts to settle even the breadth fwo case have been
unsuccessful.

The purpose of this paper is to settle the conjecture in the affirmative for a
rather extensive class of breadth two lattices; namely, planar lattices, that is,
finite lattices with planar (Hasse) diagrams.
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THEOREM. A finite planar lattice is « sublattice of a free lattice if and only if
1t satisfies (SD,,), (SD,), and (W).

In a companion paper [15] we construct a minimum list & of lattices such
that a finite lattice is a planar sublattice of a free lattice if and only if 1t contains
no sublattice isomorphic to a lattice in L .

Some words about the plan of this paper are in order.

In § 2 we shall elaborate on some basic facts concerning breadth, especially
in the context of semidistributive lattices of breadth at most two.

One of the most interesting by-products of our investigations stems from the
importance of the ‘“‘finiteness’” condition in the conjecture. R. Freese and J. B.
Nation (cf. B. Jonsson and J. B. Nation [10]) have already exhibited a finitely
generated (infinite) lattice that satisfies (SD,), (SD,), and (W) yet is not a
sublattice of a free lattice. In §3 we shall construct a small family of finite
partially ordered sets none of which can appear as a subset in a finite breadth
two lattice satisfying (SD,,), (SD,), and (W). This result contrasts sharply
with the problem of characterizing those finite partially ordered sets that
generate a finite free lattice (cf. Yu. I. Sorkin [16] and R. Wille [18]). The
prospect of enumerating, or at least characterizing, those finite partially
ordered sets that cannot appear as subsets in a finite sublattice of a free lattice,
may be as illuminating about the structure of free lattices as the solution to the
current conjecture itself. *

In §4 we shall recall some elementary facts about planarity for lattices.

Our basic approach to the problem originates in the thesis of H. S. Gaskill
(4] (cf. [5]) where the conditions (T,)) and (T,) were first formulated. A paper
of . S. Gaskill, G. Gritzer, and C. R. Platt [6] continued the study of (T\))
and (Tx) along the lines initiated by Gaskill. R. McKenzie had shown in [13]
that a finite lattice is a sublattice of a free lattice if and only if it is a bounded
homomorphic image of a free lattice and satisfies (W). Gaskill and Platt [7]
combined these results to prove that « finite laitice is @ sublattice of « free lattice
if and only if it satisfies (T\)), (T,), and (W). This criterion is likely the most
practical characterization known for actually determining whether or not a
particular finite lattice is a sublattice of a free lattice; it is the one that we shall
use. The central ideas in this approach are ‘“minimal pairs’’ and ‘“‘cycles’.
These ideas will be developed in § 5 and § 6. (The substance of these ideas was
also suggested by B. Jénsson in the early 1960’s in private notes which were
not widely circulated (cf. [10]).)

The main body of the proof occurs in § 7 and § 8.

Finally, for an obvious reason we prefer to include in the introduction some
retrospective remarks about our proof. The proof of the main theorem of this
paper is long and arduous. In some respects the proof amounts to an accumula-
tion of techniques which in concert enable us to carry a straightforward
approach through to the end. We maintain a guarded optimism that this same
approach may yet be extended to settle the complete breadth two case of the
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conjecture. In any case, several of the techniques in our repertoire seem to he of
quite independent interest.

2. Breadth. The breadth b(L) of a lattice L is the smallest integer b such that
every join V%1 x; of elements of L is equal to a join of b of the x’s. Of course,
a lattice has breadth one if and only if it is a chain.

What would happen if we were to use meets instead of joins in the definition
of b(L)? Notice that this definition does not appear to be self-dual: actually,
it is.

LemyMa 2.1, Let L be a lattice with b(L) = b, and let b be the smallest integer
such that every meet )\ .1} x; of elements of L is equal to « meet of 0" of the x's.
Then b’ = b.

Proof. Suppose 0’ > b. It follows that there are elements x;, 1 <7 <0 + 1,
of L such that /\Zii x, is not equal to the meet of any b of the x;'s. Let
yvi=Af{xdl £ =20+1,175 j} foreachj € {1,...,0+ 1}; we have that
y; £ x;, for each j. Nowlet z, = V {y,]1 £j =0 4+ 1, j# k} for each
ke {1,...,0+ 1}. Note that z, £ x, for each k but that \/Iji} v; £ x; for
any k; thus, z, \/';L} v, for any k, contradicting b(L) = b. Hence 0’ £ 0,
and a dual argument shows equality.

For any integer n = 3, a crown [1] of order 2% is a subset

C = {xly Vi, X2, Yo, « + oy Xpy yn}

of a partially ordered set in which x1 < y1, y1 > %2, X2 < yo, . .., X, < Yy
and y, > x; are the only comparability relations that hold in C (see Figure 1).
The next lemma illustrates the usefulness of crowns of order six in a discussion
of breadth two lattices.

V1

X1 Xo X3 Xy
F16URE 1. A crown of order 2.
Lemma 2.2, 4 lattice has breadth at most two if and only if it conlains no crown
of order six.

Call a finite lattice L dismantlable if we can write L = {xy, xs, . . ., x,,} such
that {x1, 2, ..., x;} is a sublattice of L for each 7 = 1, 2, ..., n. The notion
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of dismantlability was first introduced by I. Rival in [14] and it has since
played a major role particularly in the study of planar lattices. Dismantlable
lattices themselves have been characterized by D. Kelly and I. Rival [11].

LeEmwmaA 2.3. 4 finite lattice is dismantlable if and only if it contains no crown.

As a consequence, every dismantlable lattice has breadth at most two. It
turns out that, in the presence of (SD,,), the converse is true as well.

LemMa 2.4, Let L be a finite lattice satisfying (SD,,). Then L 1s dismantlable
if and only if b(L) =< 2.

Proof. Let b(L) £ 2, and suppose that L is not dismantlable. By Lemma
2.3, L contains a crown; let

{xly ylv X2, y2, ey Xy yn}

be a crown of minimum order in L. We may assume that x; V x,;1 = y; and
Vi AN Yipr =X, 2 =1,...,72—1,and x, V x; = y,, ¥» A y; = x1 hold in
L. Furthermore, since b(L) < 2, Lemma 2.2 implies that » = 4. Now, if
x1 V X3 P X, {X1, ¥, Xo, Ve, X3, X1 V &3} is a crown of order 6, which is impos-
sible; hence x1 V x3 > x» and by duality y; A y3 < y.. Also, if x1 V x3 P x4,
it is easy to see that {x1, x1 V X3, X3, ¥3, X1, Y1, - - -, Xp, ¥} Will contain a crown
of order < 2u, which is a contradiction. Therefore x; V x; > x3, and we have
by symmetry that

X1 VasgZaxsVar=2a3Va; =2...2x,V &xe=x1V xs
Now
yl\/yz=x1ng\/x;;=x1Vx;;=x2\/x;=gix3\/x4=y2Vy3,

and hence (SD,,) implies thaty, V y2 = y2 V (y1 A ¥3) = ¥2, a contradiction.
Thus L is dismantlable, and the lemma is established.

In this paper we shall be primarily interested in finite lattices of breadth
at most two. Still, it seems worthwhile to prove the next two results in the
framework of finite lattices of arbitrary breadth.

Recall that for elements x and vy of a lattice L, with x > vy, x covers vy (or vy is
covered by x, or x is an upper cover of y, or y is a lower cover of x) if x > 2=y
implies 2 = y. We write x > yory < x.

LEMMA 2.5. Let ny be the maximum number of elements covered by any element
of the finite laitice L. Then ny = b(L).

Proof. Let b = b(L). There are elements x,, . . ., x, of L such that

b
yi= Vil 2i=b,i%j} < Va,
i=1

for each j € {1,...,0}. Hence for each j there exists w; < V%, x;such that
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y; £ w,; Moreover y; V v, = Vi x;if 7 # k; thus all the w,’s are distinct,
showing that V%_, x; has at least b lower covers.

The self-dual nature of breadth has already been demonstrated in Lemma
2.1. Letting #»* be the maximum number of elements covering any element of
L, we have n* = b(L) by duality.

LEMMA 2.6. Let L be a finite lattice satisfying (SDA) and let w* be the maximum
number of elements covering any element of L. Then n* = b(L).

Proof. Let @ € L and let x4, . . ., x,+ be distinct elements covering «. Since
x; A x; = a whenever 7 3 j, successive applications of (SD,) show that
xi A Vix; |1 7 <w* j#i} =a for each i€ {1,...,n*}; that is,
x; £ Vix; |1 £37 = n* j# i} for each 4. It follows that

\/{leléjén*,j#i}<\/1xj
j=

for each 7, and so b(L) = #»*. From Lemma 2.5 we conclude b (L) = n*.

We conclude this section with some further results concerning breadth two
lattices.

LemwMA 2.7, Let L be a finite lattice satisfying (SDA) such that b(L) = 2. Then

(1) each element of L has at most two upper covers;

(i1) if x, v, z are distinct elements of Land w = x Ny = x N3 =y A 3 then
u € {x, v, 2}, that 1s, {x, y, 2} 1s not an antichain.

Proof. (i) This is immediate from Lemma 2.6.

(iif) Letu =x Ay =x Az =1y A z and suppose {x, v, z} is an antichain.
Then «, v, and z are all greater than u, and we may choose upper covers x1, yi,
21 of wsuch that x =2 x1, ¥y 2 y1, and 3 = z;;sincex Ay =x Az =79y A 3

= u, x1, ¥1, and z; are distinct, contradicting (i).

Lemma 2.8. (1) Let L be a finite breadth two lattice, and let {a, b, ¢} be a three-
element antichain in L with « V b and a V ¢ noncomparable. Then « < b V c.

(ii) If in addition L satisfies (SD,) then, letting o’ be « lower cover of a, either
a’'Vb>aord Vc>a.

Proof. (i) If a € 0 V cthen {b,a V b,a,a V ¢,¢,b V ¢} is a crown of order
six, contradicting Lemma 2.2.

(ii) Let us suppose that @’ V b > e and o’ V ¢ > a. Thena A (¢’ V b) =
@ =a AN (¢ V) whence, by (SDp) ¢’ =a A (@’ Vb V). From (i),
b V ¢ > a so that @’ = a, which is impossible.

3. Finiteness. The purpose of this section is to establish a result that pro-
vides us with a powerful technique in applying the finiteness assumption of
the conjecture. The result, which is due to I. Rival, also seems to be of consider-
able independent interest.
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For noncomparable elements « and b of a partially ordered set we write
al|b. An element « of a lattice L, « # 0, is join irreducible if « = b V ¢ implies
«=">bora = c;ae#1ismeet irreducible if « = b N ¢ implies « = b or ¢ = c.
J(L), respectively M (L), shall denote the subset of all join irreducible ele-
ments, respectively meet irreducible elements, of L.

If P and Q are partially ordered sets, recall that a one-to-one mapn : P — Q
is a weak embedding if both 7 and n~! are order-preserving. Consider the par-
tially ordered set MO of Figure 2, and construct partially ordered sets A/1 and
M2 (Figure 2) as follows:

M1 = MO \J {h}, where b < f, k||, ¢, d, e, and ¢, and & may or may not
be comparable with «;

M2 = M1 U {i}, where 7 < g, 1||a, b, ¢, d, f, and k, and 7 may or may not
be comparable with e.

ProvrosiTioN 3.1. Let L be a semidistributive laitice satisfying (W) such that
b(L) = 2. Suppose that
(i) there is a weak embedding n : MO — L such that fn and gn are join
irreducible elements of L, or

f £

a c e
M1 M2

FIGURE 2
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(ii) there is « weak embedding v : M1 — L such that gn is « join irreducible
element of L, or

(ii1) there 1s @ weak embedding n : M2 — L.
Then L 1s infinite.

Proof. We will give the proof, assuming that (ii) holds; it will be easy to see
that similar proofs exist in the other two cases.
Suppose (ii), and consider the set

C = {enln : M1 — L is a weak embedding, gn ¢ J(L)} C L.

By assumption C is nonempty. Suppose that L is finite; then we can choose 7
satisfying (ii) such that ¢y is a maximal element of C. Furthermore, letting
xn = &' for x € M1, we may assume that a’ V ¢/ =0, ¢ Ve =d,0 Nd
=c¢,and i/ VI’ = f". Let ¢, < ¢’. We have from Lemma 2.8(ii) that either
ce Va' =0 orce Ve =d.

Suppose ¢x V @' = 0'. By (W) we must have f' Ad’ £b'. If (ff ANd')V
b < f’ then

{a’/, (f/ A d/) V. I),, f/ A d/, d,, 6’,)”, g/’ hl} o~ ﬂ[l,

and ' A d’ > ¢/, contradicting the maximality of ¢y =¢'. So (f' A d')
V 0 <« f’, which implies that (f’ A d’) V 0’ = f’. Since »' vV V' = f’ and
(W', 0, f A d'} is an antichain, the dual of Lemma 2.7(ii) implies that
(ff Nd)VHE <f.Butnow (f Ad') VK %, and hence

W, (f'NdYVH, AN, D, f, g, b} = M,

and f' A d’ > ¢/, again contradicting the maximality of ¢’.
Hence ¢y V ¢’ = d’, and by (W) we must have V' A g’ £ d’. Now (0’ A ¢')
V d' £ ¢, and since ¢’ € J(L) we in fact have (0’ A g') V d’ < g’. Thus

{0, Ng', O Ng)yvd, e, f, g, W =M,
and 0" A g’ > ¢/, contradicting the maximality of ¢’.

For readers of a statistical bent, we remark that Proposition 3.1 will be
applied no less than 18 times in the proof of the main theorem.

4. Planarity. Planar lattices were investigated and characterized by
D. Kelly and I. Rival [12]. Their characterization, while not needed here, will
play a central role in a companion paper [15]. We shall assume familiarity with
some of the more transparent concepts concerning planar lattices.

Let e(L) be a planar embedding of the planar lattice L, and let x € L. It is
intuitively obvious that the lower covers of x are linearly ordered from left to
right. Hence we can define a relation N on the elements of L as follows: x\y if
and only if x||y and there are lower covers x" and ¥ of x V y such that x =< «’,
y = v/, and x’ is to the left of y" (with respect to e(L)).

For the remainder of this section we let L be a planar (finite) lattice, and we
suppose that N has been defined with respect to some planar embedding of L.
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The first lemma, due to J. Zilber, sets out the basic properties of \ (for a
proof, see [12]).

LEMMA 4.1. X\ is «a strict partial order on L. Moreover, if x||y, then x\y or y\x.

It follows that for x, y € L, exactly one of the following holds: x = y,x < vy,
x > v, x\y, yAx. Consequently, the expression ‘“‘xAy’’ can be read, and thought
of, as “‘x is to the left of y"’.

LeMMA 4.2(1) If x\y and y < z, then x\z or x < z.
(ii) If x\y and x < z, then z\y or 3 > .

Proof. (i) If x = 3 then x > v, contradicting x\y. If 2Ax then by transitivity
z\y, contradicting y < z. The conclusion follows from Lemma 4.1. The proof
of (ii) is similar.

Remark. Clearly there is a kind of duality at work here. Corresponding to A,
we may define a partial order N on L by: x\'y if and only if yAx (the expression
“xN'y" of course could stand for ‘‘x is to the right of ¥'"). Then given any state-
ment S valid for a particular planar embedding of a planar lattice L, we may
replace “‘left” with “right”” and N with X" in S without affecting its validity.
The resulting statement will be called the reflection of S. With this terminology,
Lemma 4.2(ii) is the reflection of Lemma 4.2(i).

While we are on the subject, we may as well point out that the next lemma is
“self-reflective’’.

LeMMA 4.3, If xhyhz then x N 2 <y < x V 2.

Proof. Suppose y € x V z. Since yAz and z < x V z, Lemma 4.2 implies that
¥\ V z. But since Ay and x V z > x, Lemma 4.2 also implies that x V z)\y, a
contradiction. Hence ¥y < x V z and, dually, x A 2 < y.

COROLLARY 4.4. If x\yAs then x V y V 2 =x V =

It follows, of course, that a planar lattice has breadth at most two.

For a join irreducible element « of L we denote its unique lower cover by «y.
Similarly, if « € M(L) we denote its unique upper cover by «*. (Covering
elements shall be separated in the figures by double lines when we wish to
emphasize the fact.)

LemMA 4.5. Let L satisfy (SD\)) and let x, y, = be elements of L such that x\y\s,
y € J(L), and vy < z. Then x\y V z.

Proof. If x <y V z then by Corollary 44 x Vz =1y V z By (SD,),
yVz=(xAy) Vs butsincey € J(L)andx||y,x Ay < y4 < zand hence

¥ V z = z, a contradiction. Therefore x €y V 2z, and by Lemma 4.2 (i) we
conclude that x\y V 2.

LemMmaA 4.6. Let L satisfy SDj.
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(1) If x, v, y1, ¥ are elements of L such that x\y, y1 > v, Y2 > ¥, and yi\y.
thenx V y = x V y.
(1) If xxy\z then x Ny # y A 2.

Proof. (i) It is clear that x V y > y implies x V y = u for some u > y;
from Lemma 2.7(i), « = y; or # < y,. In the first case, x Vy = x V u
=xV iy 2xVy sothatx Vy=xV y as desired. If # = y, then y;\u
from Lemma 4.2, and so Lemma 4.3 implies that x Vy =2 x V u = x V v,
= x V v, showing that x V y = x V y; in either case.

(i) Ifx Ay=9 Asthenx Ay =19 Az =x A zfrom the dual of Corol-
lary 4.4. But this is impossible by Lemma 2.7 (ii).

Consider the right boundary B of L (of course, with respect to the planar
embedding e(L)). B certainly contains at least one element of M (L), if
|L| > 1; for instance B will contain a dual atom of L. Therefore we can speak
of the minimal meet irreducible element of B. The first part of the following
lemma is due to K. A. Baker, P>. C. Fishburn, and F. S. Roberts [1], and the
second part (actually, its reflection) is Proposition 2.6 of [12].

LEMMA 4.7, Let B be the right boundary of L and let a be the minimal mee!
1rreducible element of B. Then
(i) @ s doubly 1rreducible;
(ii) if x € L\B there exists y € B such that y is doubly irreducible and x\y;
(iii) x < @ 1mplies that x € B.

Proof of (iii). If x ¢ B, choose v as in (ii). From Lemma 4.2, either a\y or
« > y; since @ € B, we have ¢« > y. But y € 3M (L), contradicting the choice
of a.

This last result will reemerge to play an important role in § 6 and beyond.

5. Minimal pairs. Let L be a lattice and let X, ¥ C L. We shall write
X K Vif, for every x € X, there exists y € ¥ such that x < y.

Let p € Land let J be a finite subset of L. The pair (p, J ) is called a minimal
pair if the following three conditions hold:

@) p ¢ J;
i) p = VI;
(iii) if J' is a finite subset of L such thatp < V J and J’ < J, thenJ’ D J.

We begin this section with some well-known properties of minimal pairs.

LeEmMmA 5.1. Let {p, J) be a minimal pair. Then
(i) J 1s an antichain;

(ii) p £ xforanyx € J;

(iii) J € J(L);

(iv) x € J implies that x4 @ M (L);
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(v) if {p, T) is @ minimal pair and p < p' < N Jfor p' € L, {p', J) is also
« minimal pair;
(vi) b(L) = n implies |J| < n.

Proof. (i) and (vi) are true because otherwise V J = V J’ for some proper
subset J’ of J; since J’ < J, this is a contradiction.

(ii) If p < x for x € J then, letting x4 € L be such that p < x4y < x and
setting J' = (J\{x}) U {x4}, we have that J/ < J, p = V J', and J' 2 J,
contradicting the assumption that (p, J) is a minimal pair.

(iii) Let x = y V 2z € J, and set J' = (J\{x}) U {y, z}. Then p = V J’
and J’ < J, so we must have that / C J’. This implies that x = y or x = z,
as desired.

(iv) Since || = 2 from (ii), we can find x” € J with &’ = x. If x € M(L),
then &' V x4 = &’ V x; hence, letting J' = (J\{x}) U {x4}, we have that
J << J,NNJ" =\ J,and J' 2 J, contradicting the assumption that (p, J) is
a minimal pair.

(v) This is obvious.

As a consequence, there is an alternate description of minimal pairs in a
lattice of breadth two.

LemMa 5.2, Let p € L and J C L with J finite, and assume b (L) = 2. Then
(p, T) is « minimal pair if and only if the following conditions hold:
(i) J = {a, b} for some a, b € L;
(i) p SaVobwhilep £a, p £0;
(iii) if a1 < «, by £ b are such that p =< a1 V by, then a1 = a and by = b.

We shall require some further techniques to assist us in our investigation of
minimal pairs.

LEMMA 5.3. Let b(L) = 2, let x € J(L), and let y and p be elements of L such
that x|y, y < p 2 xV y, and p £ x4 V y. Then there exists y' = y such that
(p, {x, ¥'}) 1s @ minimal pair.

Proof. Let V = {u € Llu <y, p £x V u}. Since y € ¥V, ¥ is nonempty,
and hence we can find a minimal element y" of V. If x; < x and vy, £y are
such that p = x; V y;, then x; = x; for otherwise x; £ x4 and so x1 V y1
< x4 V vy < p. But now y; = 9’ by the minimality of ', hence by Lemma 5.2
we are done.

LEMMA 5.4. Let L be planar, and let (p, {x, y}) be « minimal pair with x < p
and p\y. Let p' € L be such that x < p' < &V yand p'Np. Then (p’,{x, y})is«
minimal pair.

Proof. We need only check that (iii) of Lemma 5.2 holds. Let ¥’ £ x and
y £y with p/ Sa' V. If ¥ < p then p’ < x' V y' £ p, which is impos-
sible. Since p\y, the dual of Lemma 4.2(i) implies that p’ApAy’. Now Lemma
4.3 implies p < 3 V p’ £ &’ V ', and we conclude that &' = x and y’ = y.

https://doi.org/10.4153/CJM-1978-104-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-104-2

1266 I. RIVAL AND B. SANDS

LeMMA 5.5, Let L be planar and let {py, {x1, y1}), (P2, {xo, ¥2}) be minima/
pairs with x;\y1, vy < p1, and py = yao. Then either xo < X1 0r X1\X».

Proof. Let xoAxy or x93 = x1. Then xo V y2 = x9 V 3y although (p2, {x2, vo} )
is a minimal pair.

Now, let L have breadth two and satisfy (SD,,) as well. We proceed to show
that there are, in this case, just two kinds of minimal pairs, as illustrated ir
Figure 3. Let (p, {x, ¥} ) be a minimal pair. If x < p, this is Figure 3(a) (except
that p may equal x V y). If ¥ < p a similar diagram results. Suppose, then,
that x, v, and p form an antichain. Since x V y = p we have x V y =«
V vV p. Suppose thatx V p = y;thenx Vp=xV yV p =xV y soby
(SD,) x vV (p Ny) =x Vy=p Butsince p A y <y this contradicts the
assumption that (p, {x, y}) is a minimal pair. Hence x V p % y and by sym-
metry ¥ V p & x. Thus we arrive at Figure 3(b) (of course, p need not equal

xVy
P
X y
(@)
xVy
x p y
(&)

FIGure 3. Two kinds of minimal pairs.
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the meet of x V p and y V p). Minimal pairs corresponding to Figures 3(a)
and 3 (b) will be said to be of type (a) and type (b), respectively. It is important
to note that the minimal pairs constructed in Lemmas 5.3 and 5.4 are of
type (a).

We have shown that in a lattice of breadth two and satisfying (SD,)), every
minimal pair is of type (a) or type (D). Indeed, even minimal pairs of type (b),
as we shall shortly see, may be “‘replaced” by minimal pairs of type (a).

ProprosiTiON 5.6. Let L be « finite semidistributive lattice of breadth two and
satisfying (W). Let {p, {x, v} ) be a minimal pair of type (b) with p € J(L). Then
either

(i) there is y' ¢ L such that y" < p and (p, {x, y'}) is « minimal pair of type
(@), or

(i1) there are elements x', x'" of L such that " < x" < p, and {(p, {x', y}),

', {x, "'} ) are minimal pairs of type (a).

Remarks. In this proposition the pair {x, ¥} is to be read as an ordered pair,
so the minimal pairs (p, {x, ¥}) and (p, {y, x}) are different. For example,
the lattice of Figure 4, with the minimal pair {(p, {x, y}) as indicated, satisfies
(ii) but not (i).

2
’
) x y
x X’
FIGURE 4
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The proof of Proposition 5.7 is comparatively easy under the additional
hypothesis that L is planar. Indeed, let L be a planar lattice satisfying the
hypotheses of Proposition 5.7. By Corollary 4.4, either xApAy or yApAx, say the
former. Since p £ x4 V ¥, Corollary 4.4 implies that x, < p; symmetrically,
ye < p. Now, either p = pxe Va or p < pe V. If p £ pye V x we readily
obtain a minimal pair {p, {x, ¥'}) with ¥ < p, whence (i) holds. Otherwise,
P £ px V y and we obtain a minimal pair (p, {«', y}) with &' < p. If xeds’
then xehx’Ay and p < & V v < x4 V y, which is impossible; hence, x, < &',
According to the minimality of &/, ¥’y V ¥ & &/, where &’y < &’. By Lemma
2.8(i1), &'« V x > «’. Finally, we choose x’ minimal so that x" < x4 and
x" V x > «', whence (x', {x, '’} ) is a minimal pair of type (a).

Proof. Let x4 < x and let us suppose that p P wy. If x4 < p V 3 then
P Sxe VP Vy=uxe Vy by Lemma 2.8(1); hence, xx < p V y. Now, let
a= VP A @xeVy) and b= (xV p)A @V p) Then x4 £« 2D
As (p, {x, ¥} ) is a minimal pair and p Z x4, it follows that p||e. In addition,
rVa=s2xVb=xVp If xVa=xVyp then, according to (SD,),
xVp=xV (¢« Ap) From Lemma 5.3 there exists v =< « A p such that
{p, {x, ¥'}) is a minimal pair of type (a). On the other hand, ifx V ¢« < x V p
then x© V « 2 p. Furthermore, x A b = x4 = x A (x¢ V y) so that from
Lemma 2.7(ii) « = b A (x4 V ¥) > x4 and «llx. Applying Lemma 2.8(ii) we
have that either «y V & > @ or uy V p > «, where ay < «. Either case is a
violation of (W). We conclude that p > xs.

Let ps be the unique lower cover of p. Then py = x4. By Lemma 2.8(ii)
either x V pyu > pory V pe > p. If x V py > p, then by Lemma 5.3 there
exists ¥’ = py such that {(p, {x, ¥’} ) is a minimal pair of type (a), as claimed.
Otherwise, x V py £ p while ¥ V py > p. Let yu < 3. If v4 V ps > p then
XV pellye V P, and by Lemma 2.8(1), ps < v& V x; hence, p < v4 V Pa
= X V ¥, contradicting the fact that (p, {x, y}) is a minimal pair. Thus,
Y« V px & p, and by Lemma 5.3, there exists &' =< p, such that (p, {x/, y})
is a minimal pair of type (a).

Let «'||xg. Set ¢ = p A (x4 V y); then x4 < ¢ < pyg. Since x A p = x4
=x A (x4 V ¥) we have that ¢ > x4 ; that is, c||x. Also, ¢||x’ since x’ V y > p.
As x Va' S x V ps, (W) implies that x V&' F ¢ Let d = (x V') A
(x% V ¥); then, by the dual of Lemma 2.8(i), d < p and so d < ¢. We know
that x Vd =x v If ¥V d<xV & then x Vd % x'. Since (x V d)
AN @e Vy) =d= (" Vd A (x¢ Vy) we have that ¢ = (x V d) A
(®" Vd)>dande £ x4 V y.Since d V &' £ pe we have e V vy < pge V vy
=x'"Vy Ilfevy=xVythenx’ Vy=(Ax)Vyand e A x' <,
which contradicts the minimality of ”. Thus,e V y < &' V yandeV y % «'.
It follows that

(,x" Vd,e,e Ve, e,x Va,eVy x y = M2

(see Figure 5). By virtue of Proposition 3.1 L must be infinite which is a con-
tradiction. It follows that x V d = x V &’ whence, by (SD,)xV (x’ A d) > x'.
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FIGURE 5

Since xy V (¥’ A d) £ d, we may apply Lemma 5.3 to find &/ £ &' A d
such that (x/, {x, "’} ) is a minimal pair of type (a).

Finally, let & > x4. In view of the minimality of x', x'y V ¥ £ «’, where
X'y < «'. Now, Lemma 2.8(ii) implies that x’y V & > «x’. By Lemma 5.3 there
exists &’/ < x’y such that {x’, {x, x”'} ) is a minimal pair of type (a).

6. Cycles. A finite lattice L is said to satisfy (T\,) if there is a linear ordering
{x1,...,x,} of all the elements of L such that if {x;, J) is a minimal pair and
x; € J, then ¢ < j. L is said to satisfy (T,) if the dual of L satisfies (T\,).

For us, the significance of these concepts lies in the following result.

TueOREM 6.1. (H. Gaskill and C. R. Platt [7]). 4 finite lattice is a sublattice
of a free lattice if and only if it satisfies (T,,), (Tx), and (W).

It is clear that a finite lattice L will fail to satisfy (T,) if and only if there is
an integer # > 1 and minimal pairs {p,, J;), 1 =1, 2,...,n, such that
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pir C Jifor 1 £i<n and p; € J,; in this case we call C = {{p1, J1),
(pa, Jo)y ooy {pu, Ju)} a cycle of length % in L, and we write [(C) = n.
The next result is essentially a corollary of Proposition 5.6.

ProrositioN 6.2. Let L be « semidistributive lattice of breadth two, and let L
contain « cycle of minimal pairs. Then L contains a cycle, all of whose minimal
pairs are of type (a).

Proof. For each cycle C = {{p;, J;)| i =1,...,n} in L, define
B(C)y ={il1 i =2 n, (py, J:)is of type ()},

and let 8y = min {8(C) | C is a cycle in L}. Choose a cycle C = {{p;, J¢)|
1= 1,...,n} such that 8(C) = B,. If 8o = 0, we have nothing to do. Suppose
Bo > 0, and, without loss of generality, assume that {p;, Jy) is a minimal pair
of type (). Letting J, = {x1, v1} and p» = x1, we apply Proposition 5.6 with
X = x5,y =y, and p = py. If (i) holds, then

C, = {<P1, {xlv y/}>v <p2r J2>r ey <pm Jn>}

is a cycle in L with 8(C;) < B(C) = By, contrary to assumption. Similarly, if
(ii) holds, then

Ci’ = {<P1v {x,r yl} >v <x/r {xly x”}), <p2y J2>y ceey <pny Jn)}
is a cycle in L with B(Cs) < B(C) = B, again contrary to assumption.

Remark. Proposition 6.2 has also been proved by B. Jénsson and J. B. Nation
[10, Corollary 6.4], their approach being quite different from ours. Immediate
use will be made of this result, but we will eventually require the full force of
Proposition 5.6.

We are ready to state our main theorem and begin its proof.

THEOREM 6.3. A planar lattice L is a sublattice of  free lattice if and only 1f L
1s semidistributive and satisfies (W).

Proof. The “only if" direction, of course, is well-known.

The proof of the converse will be by induction on the order of L. Let L be a
planar semidistributive lattice satisfying (W); by Theorem 6.1 it is enough to
show L satisfies (T,,) and (T,). We assume we are given a fixed planar embed-
ding of L, and any ensuing references to \ or other concepts associated with
planarity will be with respect to this planar embedding.

Let @ be the minimal meet irreducible on the right boundary of L. By Lemma
4.7, « is doubly irreducible; hence L\{a} is a sublattice of L, and thusisa planar
semidistributive lattice satisfying (W) whose order is smaller than that of L.
By the induction hypothesis, L\{a} satisfies Theorem 6.3.

Suppose L violates (T,)) or (T,); by dualizing if necessary, we may assume
that L violates (T,). (Recently, A. Day has shown that for a finite semidis-
tributive lattice (Ty)) is equivalent to (Tx) (Can. J. Math. (1978)).) Thus L
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contains a cycle {(p;, J;)|i=1,2,...,n} of minimal pairs, and from
Proposition 6.2 we may assume that every (p;, J;) is of type (a). Clearly
« € U1 Jy, for otherwise {(p,, J,) |1 =1, 2,...,n} will be a cycle in

L\{a}, contradicting the induction hypothesis.

Aside. By definition, p;y1 € J; for 1 <1 = n — 1, and p, € J,. For con-
venience, we will simply write that p,;41 € J, for 1 <17 =< #n; that is, the sub-
scripts are to be read modulo #. A similar convention will be adopted, usually

without comment, throughout this paper.
For each 7z € {1,2,...,n}, define

o = {pi if by % a

¢ a* fpi=ua

and
S 47 ifaq J,
CTAUNA) U et ifac Ty
We first claim that p,/ € J; for each 7 € {1,2,...,n}. If p;y1 = «a, then

since P € J; we have pyi = a* € J/. Suppose pip1 # «; then clearly
pi1 & JN\J, and since p 1" = p1 € J; we conclude p,i/ € J./, as claimed.

Notice also that U%1 J;/ C L\{a}; therefore, if each (p;/, J/) were a
minimal pair in L\{«}, {{p./, J/)]1=1,2,...,n} would be a cycle of
minimal pairs in L\{«}, contrary to the induction hypothesis. Consequently
we choose k such that (p,’, J,/) is not a minimal pair in L\{«}. In particular,
i’y T ) # {pry Jir), and hence « = prora € Ji. If @ = py, then a ¢ J;, and
« £ V J.: but since « is doubly irreducible and « < «* = P, it follows that
p £ VI, =V 7/, and from Lemma 5.1 (v) (p/, Ji') is a minimal pair in
L\{a}, contrary to assumption. Therefore let « € J;, and let J, = {ar, v}
where v, < p.

Suppose « = y;. Then p, = «*, and since p, € J,_1, Lemma 5.1 (iv) implies
that p, > «* We have x;, V «* = x, V v, > py; also, if b < x; is such that
bV a* > p;, thensinced V «* = b V y,and (py, J;) is a minimal pair, b = x;.
Since (p,/, Ji') = {(pr, {«*, xx}) is not a minimal pair in L\{«}, we can find
¢ < a*, ¢ # «, such that x; V ¢ > pp. But now x, V¢ = x; V ¥ = x, V «,
and by (SD,) we have x, V « = x; V (¢ A «), contradicting the fact that
{ps, Ji) is a minimal pair. Hence « = x;.

Let % denote the set of all cycles in L whose minimal pairs are all of type (a).
IFor each C ¢ % we have seen that we may choose a minimal pair (p¢, J¢)
of Csuch that {p¢/, J¢’) (defined above) is not a minimal pair in L\{a}; fur-
thermore, « € J¢ and allpe. For C = {{p;, Ji)|i=1,2,...,0} ¢ € we
define

a(C)

Hila € Ty 1 £ 1 < n}l,

min {«(C)|C € F}.

and we set ay
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We now show that there exists a cycle C € % and a choice for (pg, Ja) such
that a(C) = ap and «* > pe. Choose C = {(py, Ji)|i =1, 2,...,n} € C
(where (p¢, Je) = (pr, Ji), say) such that a(C) = ay, and assume that
a* > pr. Let Jp = {x;, v} where y, < pr and x, = «. If « £ v, is such that
w NV oa* > p;, then since 1 V «* = u V x, and (p;, J;) is a minimal pair,
w = y;. Since {(p.', Ji') = (pi, {¥r, ¢*}) is not a minimal pair in L\{«}, by
Lemma 5.3 we can find &’ < a*, &' 5 «, such that {pi, {v,, «'}) is a minimal
pair of type (a). If &'\uy then v, V «y = vy V &' > Py, contradicting the fact
that (p;, J;) is a minimal pair; since '\« it follows that " > «y. Let &'y < &',
By the choice of &', y. V x'x & pi, implying 3y, V &' £ «/, and so
(vi V&) Ax = a0 If X% Vo, then (0% V a) A ' = 'y =
(v V &'y) A ', and also v, V x's\'N\'s V «, contradicting Lemma 4.6 (ii).
Thus x's V « > &', and by Lemma 5.3 there exists '’ < x'y such that
(x', {&"', @} ) is a minimal pair of type (a). Hence

(j = {<1)1» J1>v LR <pk71v Jk‘1>v <pk7 {ykv x,}>r <xlv {x”v xk}>7
<pk+1) Jk+1>r cee <f)ru Jﬂ>}

. . 7 . Il
is a cycle in € with a(C) = as, (pe, Je) = &/, {x", x:}), and «* > pg, as
desired. For future reference, we summarize this result in a lemma.

LemMa 6.4, If C € € and {pe, J¢) are such that a(C) = ay and a* $ pe,
then there exists C € € and {pgs, Jg) such that a(C) = ao, I(C) = 1(C) + 1,
and «* > pg.

We are now able to choose a specific cycle in L to be studied throughout the
remainder of the proof. Let

% = {C € ¥|a(C) = ap and there is a choice of (p¢, J¢)
such that a* > Pl

and set [y = min {I{(C)|C € €}. Choose Cy = {{p;, J)i =1,2,..., L} €C,
where /(Co) = [y, and suppose that (pcyy Jeo) = (Pr, Ji)- Let J; = {x4, v} and
z;=ux; Vy fori=1,2 ..., 1. Then we have that y, < p, < 2z, = «* and
x; = a. Furthermore, let v,x < v,; then if yil|x:, we see that yu V x, =
«* > pi, contradicting the fact that {(p,, Jx) is a minimal pair. Therefore
Vixe < & = «, which implies yx =< «s. Figure 6 illustrates the minimal pair
{pr, Ji), with the understanding that y,s may equal a.

We continue our explorations by locating pr41 which, by assumption, is in
Jr = {x4, y+}. Our goal now is to prove that p, 1 = x;.

Suppose piy1 = ¥ Letting xpp1 < pry1, we have x40 = vy and hence
Vit1N¥rp1, since X1 18 on the right boundary by Lemma 4.7. If 2,4, =
Xp+1 V Vir1 = Py, then by Lemma 5.1(v) (py, Jrr1) is a minimal pair of type
(a), and

C= {0, J1)s oy Pty Jim1)y Prs Tiw1)y Prias Tra2)y o+ oy (Pror J10))
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*

a* = z;

Vi Ax

Yi*

FIGURE 6

is a cycle in 4 for which a(C) < a(Cy) = ay, an impossibility. Also, since
7 = «*, Lemma 4.5 shows that y,.1 £ «*. Hence z.41]|pr and z44]|¢*. Since
VN1, we deduce from Lemma 4.2 that v \pr and hence z..1\p,; and
zrane®. Consequently z,41 < i1 V @

We claim that x,y1 = v Otherwise, x41 < yix, and (W) implies that
Zipt = Xpp1 V Vi1 & Pr A a. Also, x4y is meet reducible by the choice of «,
and hence there exists 1t > x;;1 such that u#\ug. Since y, € J(L) we have
1Ny, and by Lemma 4.5 u||a*. However, y, 1A x;41 implies v, 1hue\yy, and so by
Lemma 4.6(1) vi1 V 2 =201 = yi1 V ¥ By Lemma 2.7(3i), « V y,
< zpr1. Therefore, as in Figure 7,

{0 N Y, Yoy Pry P A @y Zrp1, @&, Vi, ab =2 M2,

By Proposition 3.1 this is a contradiction, and hence x; ;1 = Vi4.

Now let ¥ir1x < Y1, and suppose that yiiix ;1. From Lemma 4.6 (i),
Vir1x V Xpp1 = pry, contradicting the fact that {(pyy1, Jip1) 1s a minimal pair.
Thus ¥ip1e < Xpp1e

We use the same arguments to investigate (pris, Jry2). Suppose x4 =
Prie- I 2ppe = priq, then by Lemma 5.1(v) (pry1, Jis2) is a minimal pair of
type (a), and

C = {(Pl, J1>) ce ey <pk$ Jk>y <Pk+1yjk+2>v <pk+3v Jk+3>y RN <le Jlo>}

is a cycle in € for which I1(C) < I(Cy) = I, an impossibility. Therefore
Zrie & Pre1, and hence zyo £ «. But now zpe = a0 V Yo = Prge =
Xpr1 = Pre1 A «, which is a violation of (W). Consequently we must have
DPrre = Yer1, and we may assume Xji2 < Vip1x and vy oAy By Lemma 4.5,

Verol|[Vis1 V @, and 2,02 F pry1 as before. Suppose that x;, 2 < ¥i114; then there
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QYVi+1 V

FIGURE 7

exists ¢’ > xxe such that u'Aas. It follows that y. oNet/ Ny and ' V yei
< Zppe. Also 1’ £ yi01 V a, and therefore
(', 1"V Vi, Yean Zeey Xegty Bty Ve V@, Yy, @} = M2

which is impossible. Hence xpy0 = yri14. Letting yrioe < iy, we see that
Vipor < Xppo, since {(Pri2, Jri2) is a minimal pair.

If prys = x40 then, as before, 245 & prye and 245 F prga. But z3 =
Xrrs V Virs = Pras = Xpae = Prye A Pre1 is a violation of (W); hence pyi3 =
Yire. By Lemma 4.6(1), yii2 V Xpp1 > prp1. By Lemma 5.3, there exists
x" £ x41 such that {(prr1, {¥ire, &'}) is @ minimal pair of type (a). Thus

C=1{{p1, J1)y ooy P Ti)y Prvrs v &1y Prrsy Tivads o ooy (Proy Jio)}

is a cycle in @ with [(C) < I(Cy) = lo, which is impossible.
We conclude that 1 = x; = «, as claimed. An important consequence is:

LemMmA 6.5. (1) ¢ € J; implies that 1 = k; in other words, cy = 1.
(ii) vy does mot equal p, for any t € {1, ..., [o}.

Proof. (i) Suppose ¢ € J,, ¢ # k; then
C= {<pk+lyjk+l>r sy <Pl: Jl>}

is a cycle in % with a(C) < a(Cy) = ap, which is impossible.
(ii) Suppose that y, = p, for some ¢; then ¢ £ k + 1, and so

C = {<pt7jt>!' sy <pkyjk>}
is a cycle in 4 with I(C) < I, which is impossible.
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The following two lemmas will be useful in asserting the nonexistence of
certain minimal pairs, and will be applied many times in conjunction with
Lemma 5.3.

LEMMA 6.6. Let1 < t < lyand letx’ € L be such that {p,, {a, x'}) 1s a minimal
pair of type (a). Thent = kort =k — 1 (modulo Iy).
Proof. Suppose t # k — 1 or k and let

C = {<Pk+1yjk+1>) ceey <p!—1rJl—1>v <plv {(1, xl}>}

Then C € ¢ witha(C) = ay = 1,1(C) < I, — 1. It follows that C ¢ % ; that
is, «* % p,. But from Lemma 6.4 we can construct C € % such that I(C) =
I(C) 4+ 1 < ly; since this is impossible, we are done.

LEMMA 6.7. Let 1 <t < lyand let z € L be such that {p,, {z, a}) is a« minimal
patr. Thent = k, k — 1, 0r k — 2 (modulo ly).

Proof. If (p,, {2, a}) is of type (a), we are done by Lemma 6.6. Therefore
let {p., {z, a}) be of type (b), and let

C = {(plv {Zv (l}), <Pk+ly Jk+l>v s ey <pt-—1v ]t—-l>}-

Assume that t = k, & — 1, or & — 2, and apply Proposition 5.6 with x = «,
y = z,and p = p,. If (i) holds, then there exists 3" € L such that {p, {a, y'})
is a minimal pair of type (a), and

- {<p1v {(lv y/}>r <pk+lv Jk+1>r ceey <pl—lv Jl—1>}

is a cycle in % such that «(C;) = 1 and [(C;) < Iy — 2. On the other hand, if
(i) bolds then there exist x’, x’" € L such that {p,, {x, z}) and (, {a, x"'})
are minimal pairs of type (a), and

C2 = {<plr {x,7 Z} )1 <x’v {(I, .“C”}>, <Pk+1! Jk+1>r ce ey (pt—lv Jl—1>}

is a cycle in % such that «(Cy) = 1 and [(Cy) < lp — 1. Ineither case, Lemma
6.4 again implies that there exists C ¢ % such that [(C) < I,, which is impos-
sible.

7. The case a, £ p,. Before proceeding to the substance of this section, we
prove a simple lemma.

LEMMA 7.1. Let K be a lattice satisfying (SD,), and let 1, v, a, b, and ¢ be ele-
ments of K such that v < a < v, 1t <b < v, al|lb, and v < ¢ < v. Then either
cZborc=a.

Proof. 1If ¢ £ and ¢ £ a, then ¢ Vb0 =9 and ¢ A ¢ =u =0 A a. By
SDp), 2t = (¢ VD) AN a =9 A a = a,a contradiction.

Without loss of generality, we may let p, = y;_1. Assume that ay £ py;
we will eventually arrive at a contradiction. For convenience, this will be
accomplished in two parts.

https://doi.org/10.4153/CJM-1978-104-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-104-2

1276 I. RIVAL AND B. SANDS

A. Clmm y,\,_l)\x,ﬁ_l.

Suppose that x,_1\y—1; then x,_ Ay, or x,_1 > v If x1 < o*, Lemma 4.5
implies that x;_; > y;; but by Lemma 5.1(v) and Lemma 5.4 this would mean
that (py—1, J;) is a minimal pair of type (a), and we can construct a cycle
C ¢ % with I(C) < I,. This is a contradiction, and therefore x_j\a*. If
Zp—1 > dy, then by Lemma 4.3 2,y = x-1 V %21 = -1 V ay, and by (SD,))
-1 = X1 V. (3-1 A ux), contradicting the fact that {p,_1, J;_1) is a minimal
pair. Hence z;_i\ayx and gz, 1Ae® both hold. As a result, 2,1 < %1 V @ (see
Figure 8).

Let yim1x < ¥o1 and set 26 = x, 1 V Yi—14. Since (pi—1, Jr—1) is a minimal
pair, # % v,.1 and hence u)\y;_i. Since (P, Jx) is a minimal pair, y; V ax
% P = -1 and hence v\ V agha. Now since y,o1 V « = ¢* = (yV ay)
V «, the dual of Lemma 2.7 (ii) implies that y,_1 V ts = yi1 V (v V ag)
< ¥, and so y;1 V «s F @ Moreover, from Lemma 4.6 (i1) y0 A (v V ay)
# Vi_14. It follows that v, < yi_1¢. Now, letting v = z,_1 A «*, we can choose
zsuch thatv < z < 2,5 Of course z £ a*. If 5 < 31, then by (W) we deduce

QX1 V a

FIGURE 8
gz Au £ a* =y, V a; hence
{Z N i, 2, Vi—1y Yr—1 \% Ay Ay Zp—1, (L*r Xi—1) (l} = MZ,

which is impossible. Therefore v < 2.

Either pr_1 > x—1 or pr_1 > yier. I v < pr1 < 211 then yp < pry
< a* = z;; but then (p,_1, J3) is a minimal pair of type (a), and we can con-
struct a cycle C € € with [(C) < [y. Hence we must have x,_; < Py < Zx_1.
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Assume that x;_; 5 u. Since {p;_1, J;_1) is a minimal pair, pp-1 £ 2. If pp_i||u
then px—1 & ¥i—14, and

{xk—lv Uy Yp—1%y Vi1 \% Ugy Ay, {)k’Al \% i, (l*, pk—-ly (1’} = sz

which is impossible. On the other hand, if p,_1 > # then (recalling that
pro1 € J(L)) we have

(X1, 1, Yi—1s, Vi1 V A,y Qx, Pro1, a*, a} = M1,

also an impossibility. Thus x;_; = #, thatis, x;—1 > Vi_1x.

Let xp_16 < x5_1; ecither x_14\v or x_1sx < v. If x;_14Av then, since
{pr_1, Jr—1) is a minimal pair, Lemma 4.2 implies that x;_A¢;_15 V Vi 1\v;
but now (Xx_1x V ¥1) VU =21 = x,1 V (014 V V1), contradicting
the dual of Lemma 4.6(ii). Hence x;—14 < v.

Since py—1 € Ji_2, we may let p,_1 = ¥,_o. Suppose that x;_2A\y;_s; we pro-
ceed to show this is impossible.

First assume that x,_» < z,_1. Either x;_o\x;_; or x,_» > x,_1; Lemma 4.5
shows that x,_2 > x, 1. But now (p,_s, J;_1) is a minimal pair of type (a), and
we can construct a cycle C € 4 with I(C) < [, which is impossible. Therefore
Xpo\zp1. Since (pye, Jr_2) is a minimal pair, X, V %1 & Y2, and so
Xp—e V X1 & vie1e 1lence yi1 A Yo = Yio1s = Vi1 A (Xx—2 V x3-1), and
by (SD,) we get that 5,0 = (w2 V %4—1) V iz 3 Ve

Now since ;1 V g < «*, (W) implies that yi_1x V as 2 v = 21 A «*
Also, since x,_1A\y;_1 and v,_1x\tx, the reflection of Lemma 4.6 (i) shows that
Vic1x V @ = Vi1 V ax. Consequently, y;_; < v, and

d
{202y Yiee, Zemt, U, @F, Koty Yim1, Mo V Xpo1, Vi1 V. ax} =2 (M2)%

Thus we conclude that y,_s\x;_s.

Since yi_15 < X3—1 < Yp—o, it 1s clear that x;_o < v4_;. From Lemma 5.5
we have that x;_2Ay;_1, and so 2,2 = 2,1 by Lemma 4.3. If x;_» > x;_4, then
{Pr—s, Jr—1) is a minimal pair of type (a), and we can construct a cycle C ¢ ¢
with [(C) < [y, which is impossible. Therefore, since y;_A\x;_s, we have
Xp_ 1Mo NY,—1. I xp_odv, then by Lemma 4.3 X145 = 621 A v < X0 <
x—1 V o, contradicting Lemma 7.1. Thus x;_» < 2. Also, yi_o ;1 V x40
since {(p_s, Jr—2) is a minimal pair, and (x;_1 V x4 2) V2 = 2,1 = V2 V 0;
Lemma 2.7 (ii) implies that z;_o = (x4—1 V x5—2) V ¥z < 2,—1. We now have

{xk—ly Xp—1 V Xp_g, Xp—2, U, Vi1, Bp—2, @, Vio, (L} =~ M2,
This contradiction establishes that y,_1\x;_;, as advertised.

B. Claim. For allj < k, yix < P; < ¥ V g and yrg < x5, ¥ < pi V dg.

First notice that yre < 2,21 < a* and v < pro1 < 2,21 = o, since yq and
«* are both on the right boundary. Also, it is easy to see that neither x,_; nor
pr—1 can equal ¢. By Lemma 7.1, either pr_; > y; or pro1 = ag. If pr1 < v,
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V g, then (p,_1, J;) is a minimal pair of type (a), and we can construct a cycle
C ¢ % with 1(C) < 1o, which is impossible. Hence p—1 < v V ay, and it
follows that x;—1 < p,—1. We have shown that the claim is true forj = & — 1.

Proceeding by induction, we assume that yx < p; < ¥r V @y and ype < &,
v; < pr V ug for all j such that ¢ < j < k, and we consider {(p;—1, Ji-1).
Without loss of generality, let x; < p; = y,1 (this means that we
get v < vio1 < pr V g gratis). Notice that, since x4, v;, and p; are all dis-
tinct from «, Lemma 7.1 implies that each of x;, y; and p; are either less than
or equal to w4, or greater than or equal to v,.

Assume that x,1 < pp V «y. Certainly x,21 £ s, since ypp < v:o1. If
X\ then x, Ny, and from Lemma 4.5 this is impossible. y;4 is on the
right boundary, so x;_1 > yi4. Now p,_1 is greater than one of x;,_; and y,_1,
and in either case v < pro1 < 2:21 S pr V ag and pog #Z vy If piy
i V ax, then p,oy £ «, and by Lemma 7.1 we have that p;,_1 > y,. Thus
(pi-1, J1) is a minimal pair of type (a), and neither y,_; nor x,_; equals ¢« = xy,
showing that ¢ — 1 # k (modulo /). Hence

C={(pir, Ji), Prav, Tis1)y o ooy (Pis, Jim2)}

is a cycle in ¢ with [(C) < Iy, which is impossible. Therefore p,_; < v, V 4,
establishing the claim for j = 7 — 1.

We now assume that x;_; € pp V ay. Since y;_1 < 3 V ax < pr V tyg, we
have xi1 2 pr V g, If pr V aghx;—1, then Lemma 4.3 and x,_; ¢ imply
Vi < U = (P V tg) N <xi21 < (Pr V ag) V a = a* Hence from Lemma
7.1 we infer x,; = v, 80 X421 = ¥ V ag > v,1, a contradiction. Conse-
quently we let x,_1Ap; V «aq. It follows that x,—1\y,_1 = p, > x;, that either
X;-1\X; or x;_; > xy, and that either x;_\y; or x,_1 > v,. From Lemma 5.5
we infer x Ay, and so &, \y Ny Also v, < v, V ay, for otherwise y, V ax)\y;
which implies (y, V «y) A vi=as = ¥; A «, contradicting Lemma 4.6 (i1). If
x; = wg then y; £ «y also, contradicting the fact that x;||y;. Hence by Lemma
7, v, Sx;, < p; =vi. Iz, > v, by Corollary 44z, = x41 V v =
x¥i1 V oy by (SDy), i = xo0 V. (yim1 A y4), contradicting the fact that
(pi-1, Ji-1) is a minimal pair. Thus z,_;\y; and z,_1\a4.

Let v,m15 < vi—1, and set b = x;1 V y;_14. Since {p;_1, J;_1) is a minimal
pair, b & y,—1 and so dA\y,_1. We claim that y, 14 > y;. If y;214 = v, then
X; = ¥, and so from Lemma 6.5311) y; = pi1 < ag. Let 1 > y.4 such that
1 = dg. From the reflection of Lemma 4.6(1), x; V u = y,.1 = p;; since
(py, Ji) is a minimal pair, u = y; = p;y1. Assuming X1 < P41, We have
Xir1 = Vg Aszisnot & — 1 (modulo /), we have a contradiction to the induc-
tion hypothesis. Thus v, 14 > v, as claimed.

Now let ¢ = z,1 A (pr V ay); by (W), ¢ £ 3; V ay. Also by (W), c AU
£ vi V uy. Suppose that y; ## ¢y. By Lemma 7.1, ¢y < y; V ¢y, 50 ¥ & ty.
By (W) again, z;, = x; Vy, % ax = (pr V ax) A @, while z;, > p; = y,_1.
Hence

ONC e Yict, 20 Vi Zimty Vi V s, X4ty Gy} =2 M2
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Therefore we must have y; = «y. Since (p;, J;) is a minimal pair and z; =
Vi V g, we have x; = y,. Let v < ay; then y,_1Av or y;-1 > v. If y,_1Av, then
x; Vo pysince (py, J;) is a minimal pair; hence pAx; V vhay. Now p; V
g = v Vg = (x; V1) V ag, and from Lemma 2.7(ii) p, Vo =p;V
(x; V9) <.V ay. Also,v < 2z, 3 wouldimplyz, 1 = x,1 V yi1 = x,21 V v
by Lemma 4.3, and hence z;; = x,1 V (¥:-1 A v) by (SD,)), contradicting
the fact that (p,_1, J;-1) is a minimal pair. Hence z,_; # v, and

{b A Cy Cy Y i—1, pz Vv Uy Uy -1y Vi V Ugy X 1—1, (l*} = A[2

We conclude that » < y;-;. From Lemma 6.5(ii), x; = y; # p.1, and so
Ay = y; = pop1. Letting x40 < pyg1, we get x40 < vim1 < ¢; also v\,
since x ;41 is on the right boundary. Certainly 7 + 1 # & (modulo /,), so by the
induction hypothesis yp < ¥ip1 < Pr V ay. It follows that vy, < 241,
implying y;;1 = ¢. But this means ay = P11 < 2541 = ¢, a contradiction. We

have shown that the claim is true for j = ¢ — 1, and the proof of B is complete.

Now, by going completely around the cycle Cy, we conclude from B that
Yix < pr < Vi V ag. This contradiction completes the case «x £ py, and this
section.

8. The case ¢, = p,. Gamely continuing with the proof of Theorem 6.3, we
may now assume that ¢y, < p, in L. First we rapidly show that x;_1\y;_1,
where y, 1 = p;. Suppose y;_1\x;_;. Since «y and ¢* are on the right boundary,
we know that ¢y < x,1 < «*. But x,_1 # «, and hence x;_; = v, by Lemma
7.1. Thus v V ag < %21 < ¢, and 50 v V ag < peey < 21 £ a* = z;. It
follows that (p;—1, /) is a minimal pair of type (a), and we can construct a
cycle C € € such that [(C) < I, an impossibility. Therefore x;_;\y;_;.

If x,_1 < ¥, then x,_; = y; from Lemma 4.5, and (p,_1, J;) is a minimal
pair of type (a). This is impossible, so x,_i\a*. If 2,_; =2 ¥, thenz,_, = x._1 V
Vi1 = xp—1 V afrom Lemma 4.3, and hence by (SD\) z1-1 = %21 V. (0em1 A @)
= x,-1 V dy, contradicting the fact that (p;_1, Jr—1) is a minimal pair. Thus
Zk_1)\(l*.

Set w = &1 V ay. Since (p,_1, Jr—1) is a minimal pair, w % p,_; and hence
w 2 y,-1. However, we claim that w > y,. If yx & ¢y then yhay, and since
Xp—1A\yg Or X5—1 > ¥ we have w = x,1 V «y > v, by Lemma 4.3. On the other
hand, if v, > a4 then v, = a4, and Lemma 4.6(i) implies that w = x,_; V
Ay > V.

A. In this part we assume that p,_; > x,-1 (later we will deal with the other
case, pr_1 > Yi—1). If whpi_; then ay < pr_y, implying that w = x,_; V ay
< proa. It follows that either p,_A\w or p,—1 > w. In either case, p,_1 V Y1 =
Zre1 =W V Yi—1, 80 Pr-1 V w < 2,1 by the dual of Lemma 2.7 (ii). Since
pi—1 € Jr—2, we may assume that p,_; = yp_o.

Case (i). Let y;_ohx;_s.

https://doi.org/10.4153/CJM-1978-104-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-104-2

1280 I. RIVAL AND B. SANDS

From Lemma 5.5 we know that x;_s\y,_1 or xz—2 < ¥;_1. In either casc
o = X—o V Vi—a = 2, follows. Since (pi_2, Jr—2) is a minimal pair, x;—; V
Xpme < Zpop and Yr_o\Ximy V. Xp—aNypo1. Since Yo V yior = 5o = (X1 V
Xp—2) V Yp_1, the dual of Lemma 2.7 (ii) implies that z;_2 = ¥;—2 V (wp—1 V
Xp—2) < Zp-1.

We claim that 2,2 > a4 Otherwise z;,_» & a4, from which we get y;_o\w
and z;_2 w. Hence either p;_o\w or pr_o < w. If pr_oAw then from Lemma 4.3
Pree > Vice A W = x4, whence x,_; < pr_e < a5-1 V ¢ and pr_o Fw =
¥r—1 V ag. Thus from Lemma 5.3 there exists ¥’ < x;_; such that (p—_o, {&, a})
is a minimal pair of type (a), contrary to Lemma 6.6. Therefore p,—. < w.
Since pi—s V x1-1 F ¥i—2 we have

{Zlc—2y Pk—? Vv Xp—1y Wy Vi \/ gy Vi—1y Xp—1y Ugey Vi—2, (1} = (-AI2)d

Hence z;—9 > ay.
Now either x,_s = ayg Or v,_s > 4, since otherwise x;—o V Y12 = 249 >

g = 21 A ais a violation of (W). Since y,_o\x;_2, we have x;_2 = «4 in any
case, and so x;—1 V X2 2 w. If pr_e < w then xp1 V x—2 > pr_s, contra-
dicting the fact that (p;—s, Ji—2) is a minimal pair; thus p—s £ w. If pp_o >
xi—1 then by Lemma 5.3 there exists ¥’ < x;_; such that (p,_s, {x',a}) is a
minimal pair of type (a), contrary to Lemma 6.6. Therefore p,—2 % x;,_1, and
SO Xp—1NPr—2, WNPr—2, and py_» > x,_». Since {(p,_s, Jr—2) is a minimal pair,
VioNX—1 V Xp_a\pr_a. Since yi—o V (X1 V &p—2) = Z—2 = YVie2 V Pr_a, the
dual of Lemma 2.6(ii) implies that x,_1 V pre = (i1 V X1—2) V pr_e <
Zp—e, IMPlying x;—1 V Pr_s F Vi—a.

Next we claim that p,—o V @ % x,1. Otherwise, p—2 V @ = 5,1 V «, and
by (SDy) pi—2 V @ = (%21 A pr—2) V a. However, (x;—1 A pr—2) V ax = w
which means p_o £ (X521 A Pir—2) V ag. Thus by Lemma 5.3 there exists
' = wp—1 A pr—s such that {p,_,, {x’, a}) is a minimal pair of type (a), con-
tradicting Lemma 6.6.

Therefore pr—2 V @ 2 x;—; and so

(X1, X1 V. Pucs, P2y Pr—z V Viet, Vi1, Si—2, Pi—z V @, Vs, a} = M2,

We conclude that Case (i) is impossible.
For the remaining two cases, recall that either y,_» > w or y;_s\w.

Case (i1). Let x;_o\y;_o and v;_s > w.

Since xp_o\yr_oha, we have pr_s < 2_2 = x4_2 V a. Let v = x;_2 V w; then
Pr—2 ¥ vand v F v, since (pr—s, Jr—2) Is a minimal pair. If py_s > x40, it
follows from Lemmia 5.3 that there exists x” < x;_» such that {(p,_», {&’, a}) is
a minimal pair of type (a). This contradicts Lemma 6.6, and hence
Dr—2 > Yi—2.

Suppose that p,—2 < x;-1 V «. Then, since x;—1 V ¢y = w < pp_1, we may
apply Lemma 5.3 again to find x”" < x;_; such that {(p,_s, {x"/, a}) is a minimal
pair of type (a), which is another contradiction of Lemma 6.6. Therefore
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Pr_onx_1 V a. Next, suppose that z,_s = 2,_1. Since x;—o\yi_o\y;_1 we have
Zp_2 = Xp—2 V Yo = X2 V ¥—1 by Lemma 4.3; but now z;_. = x;_9 V
(Yi—2 A ¥i-1) by (SDy,), and y,_2 A yr—1 < ¥4, contradicting the fact that
(pr—2, Jr—2) 1s a minimal pair. Thus we have shown that z;_o\x;—; V ¢ and
Zr—oNZp_1.

If v A pr—s > x4, theno A pr_e £ 4,1 V @ by (W), and

{0 A Drs, Pr—s, Vim2, Zi—1y Yie1, Zrma, X1 V. @y Xpg, ¥} = M2,

Therefore v A pr_» = x;_y, implying that x,_; = w > «y. Also, we now have
thatv A pr—e = v A (=1 V @), and so pr_e V @ = pp_a V (x4-1 V @) £ vby
(SDn).

We may let pp_s = v,_3. By Lemma 5.5, either x;_3 < x5_2 Or &p_o\p_s.
Since ayx < yi—3 and (p,_3, Ji—3) is a minimal pair, x5 V agx £ pp_s. If
Xpeg < Xp_2 OF Xp_oA¥r_3\yi—s, then p,_3 < 72,3 < x4_3 V «; therefore from
Lemma 5.3 there exists x’ £ a3 such that (p;_s, {«’, @} ) is a minimal pair.
This contradicts Lemma 6.7, and we conclude that y,_s\x,_;. It follows that
vAx—3, and hence x;,_» V g £ pr—s. Now, if x5 < x50 V @ then pp_; <
Zre3 = X2 V «; from Lemma 5.3 there exists &' < x5 such that (pi_s,
{x’, a}) is a minimal pair, contradicting Lemma 6.7 once more. Thus it must
be that x,_2 V alx;_3, and so x;_3 > «*. Finally, if a2 V y,21 = X2 V «,
then by (SD,) we have y1 < X0 V ¥im1 = x—2 V. (i1 A @) = x50 V
asx = v, a contradiction; thus x;—s V ¥:—1 £ «. Now if x3_5 > y;_, then

{yk_a, Vies V Vic1, Zi—1, Yi—2 V @, &, Xr—2 V Yp—1, Xx—3, 'I)} >~ M1,
while if x._3 & y;—o then

{Vize, 2re1, Vi1, A%, @, Xp—o NV Vil1, Xp_s, Sr_a} = M1,
showing that Case (ii) is impossible.

Case (iii). Let x;_o\yi_o\w.

Suppose that x5 < z_;. Then sz, = x,21 V Y1 = 52 V ¥—1, and
(SD,,) implies that z;,_1 = (x,-1 A ¥4—2) V ¥—1. Since (pi—1, Jr—1) Is a minimal
pair, xs > xp_1. Now, xp_1 < Pree < Zp—2 = 24-1, and pr_ol\pr_1 OF Pr_o >
pr_1; hence from Lemma 5.4 and Lemma 5.1(v) {ps_s, Jx_1) is a minimal pair
of type (a), which is impossible. Therefore x,_shz;_;. If z,_o > w then
Shee = Xpma V Ypms = ;2 V w, and by (SDy) z—e = x50 V (yi—2 A w).
Since {(p,_s, J1—2) is a minimal pair, this is a contradiction; thus z;_.\w. Since
Zree > X and w = X3 V @y, it follows that z,_shay. Finally we have that
Xp—s V Xp_1\YVi—s since {(py_s, Jr—s) is a minimal pair. Therefore

a
{22, Vr—2y Bio1, Yae1y %, Xpm1, Ay X V Koy, af = (M2)%

With this contradiction we have succeeded in showing that p,—1 > xx_; is
impossible.
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B. Finally we assume p;_1 > v,_1. If pr_1 £ a* then (p;_1, Ji) is a minimal
pair of type (a), which is impossible. Hence p,_1 \a*.

Recall that p,_1 = y,_2, and first assume that x;_s\y;_.. By Lemma 5.5,
Npme < Xpot OF Xp—iA¥—e, and 8o Zi_s = X1 V Ye—e = Zp—r I pr_e > yio,
then (p;_s, Ji—1) is a minimal pair of type (a), which is impossible; therefore
Pres > Xp_o. Also, x;_o\yi_oha implies pr_» < %2 V @, but since (pr_s, Ji_s)
is a minimal pair, p,_» £ x,_» V «y. Thus by Lemma 5.3 there exists &’ < x;_s
such that {p;_s, {x’, ¢} ) is a minimal pair of type (a), contradicting Lemma 6.6.
We conclude that y,_s\x;_o, and hence x;_2 > 4.

We turn our attention briefly to J,y:. Without loss of generality,
let x41 < @y < Prpa; then xppq is on the right boundary, so yi 1A\ 1. If either
Xp—1 Z Vip1 OF X1 NYep1, then ¢ = prp1 < 21 = X1 V X1 S 241, a con-
tradiction. Ience y;;1 > a1 or y1Ax—1, and it follows that z,41 = vip1 V
Prr1 = Xp1 Vo > Py I (pr_y, Jip1) is @ minimal pair, then we can con-
struct a cycle C ¢ % such that a(C) < g, which is impossible; hence, letting
Nptr1e < Xppr and vipie < Yes1, we conclude that either vy V Xjp1e > Prt
or Yir1s V &pp1 > pr_1. Suppose the former; then, since (piy1, Jr+1) is a mini-
mal pair, 241 > Vi1 V Xpp1e = Virr V Xppix V Pr—1 = i1, a contradiction.
Therefore vii1x V Xpp1 > prcy, and 0 Vipe V Xpp1 = 21 Vo Pre1 = Zim1
Clearly yii1x w, and we now have viiie V X1 £ Virx V W < Vig1s V
Prc1 = Vepix V Xpp1, iIMPlying vipie V @ = Yip1x V Pr—1. From the dual of
Lemma 2.7(ii) we get thatz;_; = w V pi1 < Vip1s V X1, whence vy 14 z,—1.
Since (pry1, Jr+1) is a minimal pair, we also have yii16 V Xpp1 & Prtre

Suppose that a2 > «*; then

) * )
{001y 2ty Vimt, @5, @) Vg1 V Xpg1, Kp—2y Viprs) = M.

Hence x;—» & «*, and it follows by Lemma 4.3 that x;—» < y,—2 V ¢ = x4
V a. Furthermore z,_» < y;_» V «, for otherwise z,_2 = X2 V V2 = Vo
V a, and by (SD,) z—2 = y—s V (x,—2 A @), contradicting the fact that
(pr—s, Jr—2) is @ minimal pair; hence z;_o\a. If p,_s > v;_» then by Lemma 5.3
there exists &' < y,_» such that {(p;_s, {x’, ¢}) is a minimal pair of type (a),
which is a contradiction to Lemma 6.6. Hence py_2 > x;_s.

Let pr—o = vi—3. If xx_3\y;_3 then by Lemma 4.3 p;_3 < z;_3 < x5_3 V «,
while pr—s F x5 V «y since {(py_s, J;_3) is a minimal pair; by Lemma 5.3
there exists " = x;_; such that {ps—s, {x’, ¢} ) is a minimal pair, contradicting
Lemma 6.7. Thus y;_s\x,_3. If x,_3 > o* then

. . * .
{M;—ly i1y Vi1, @y @y Vig1se V X1, Xi—3, yk+1*} = M1,

hence x,_3 £ «*, and so x5 < x,—1 V @. Now pr3 < x;-1 V @ and whp,_s,
and by Lemma 5.3 there exists x”' < x,_; such that {p,_s, {x/, a} ) is a minimal
pair. This contradicts Lemma 6.7, and the proof of Theorem 6.3 is complete.
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